Coverage Report

Created: 2025-12-31 07:57

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/ffmpeg/libavcodec/sipr.c
Line
Count
Source
1
/*
2
 * SIPR / ACELP.NET decoder
3
 *
4
 * Copyright (c) 2008 Vladimir Voroshilov
5
 * Copyright (c) 2009 Vitor Sessak
6
 *
7
 * This file is part of FFmpeg.
8
 *
9
 * FFmpeg is free software; you can redistribute it and/or
10
 * modify it under the terms of the GNU Lesser General Public
11
 * License as published by the Free Software Foundation; either
12
 * version 2.1 of the License, or (at your option) any later version.
13
 *
14
 * FFmpeg is distributed in the hope that it will be useful,
15
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17
 * Lesser General Public License for more details.
18
 *
19
 * You should have received a copy of the GNU Lesser General Public
20
 * License along with FFmpeg; if not, write to the Free Software
21
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22
 */
23
24
#include <math.h>
25
#include <stdint.h>
26
#include <string.h>
27
28
#include "libavutil/channel_layout.h"
29
#include "libavutil/float_dsp.h"
30
#include "libavutil/mathematics.h"
31
32
#define BITSTREAM_READER_LE
33
#include "avcodec.h"
34
#include "codec_internal.h"
35
#include "decode.h"
36
#include "get_bits.h"
37
#include "lsp.h"
38
#include "acelp_vectors.h"
39
#include "acelp_pitch_delay.h"
40
#include "acelp_filters.h"
41
#include "celp_filters.h"
42
43
#define MAX_SUBFRAME_COUNT   5
44
45
#include "sipr.h"
46
#include "siprdata.h"
47
48
typedef struct SiprModeParam {
49
    const char *mode_name;
50
    uint16_t bits_per_frame;
51
    uint8_t subframe_count;
52
    uint8_t frames_per_packet;
53
    float pitch_sharp_factor;
54
55
    /* bitstream parameters */
56
    uint8_t number_of_fc_indexes;
57
    uint8_t ma_predictor_bits;  ///< size in bits of the switched MA predictor
58
59
    /** size in bits of the i-th stage vector of quantizer */
60
    uint8_t vq_indexes_bits[5];
61
62
    /** size in bits of the adaptive-codebook index for every subframe */
63
    uint8_t pitch_delay_bits[5];
64
65
    uint8_t gp_index_bits;
66
    uint8_t fc_index_bits[10]; ///< size in bits of the fixed codebook indexes
67
    uint8_t gc_index_bits;     ///< size in bits of the gain  codebook indexes
68
} SiprModeParam;
69
70
static const SiprModeParam modes[MODE_COUNT] = {
71
    [MODE_16k] = {
72
        .mode_name          = "16k",
73
        .bits_per_frame     = 160,
74
        .subframe_count     = SUBFRAME_COUNT_16k,
75
        .frames_per_packet  = 1,
76
        .pitch_sharp_factor = 0.00,
77
78
        .number_of_fc_indexes = 10,
79
        .ma_predictor_bits    = 1,
80
        .vq_indexes_bits      = {7, 8, 7, 7, 7},
81
        .pitch_delay_bits     = {9, 6},
82
        .gp_index_bits        = 4,
83
        .fc_index_bits        = {4, 5, 4, 5, 4, 5, 4, 5, 4, 5},
84
        .gc_index_bits        = 5
85
    },
86
87
    [MODE_8k5] = {
88
        .mode_name          = "8k5",
89
        .bits_per_frame     = 152,
90
        .subframe_count     = 3,
91
        .frames_per_packet  = 1,
92
        .pitch_sharp_factor = 0.8,
93
94
        .number_of_fc_indexes = 3,
95
        .ma_predictor_bits    = 0,
96
        .vq_indexes_bits      = {6, 7, 7, 7, 5},
97
        .pitch_delay_bits     = {8, 5, 5},
98
        .gp_index_bits        = 0,
99
        .fc_index_bits        = {9, 9, 9},
100
        .gc_index_bits        = 7
101
    },
102
103
    [MODE_6k5] = {
104
        .mode_name          = "6k5",
105
        .bits_per_frame     = 232,
106
        .subframe_count     = 3,
107
        .frames_per_packet  = 2,
108
        .pitch_sharp_factor = 0.8,
109
110
        .number_of_fc_indexes = 3,
111
        .ma_predictor_bits    = 0,
112
        .vq_indexes_bits      = {6, 7, 7, 7, 5},
113
        .pitch_delay_bits     = {8, 5, 5},
114
        .gp_index_bits        = 0,
115
        .fc_index_bits        = {5, 5, 5},
116
        .gc_index_bits        = 7
117
    },
118
119
    [MODE_5k0] = {
120
        .mode_name          = "5k0",
121
        .bits_per_frame     = 296,
122
        .subframe_count     = 5,
123
        .frames_per_packet  = 2,
124
        .pitch_sharp_factor = 0.85,
125
126
        .number_of_fc_indexes = 1,
127
        .ma_predictor_bits    = 0,
128
        .vq_indexes_bits      = {6, 7, 7, 7, 5},
129
        .pitch_delay_bits     = {8, 5, 8, 5, 5},
130
        .gp_index_bits        = 0,
131
        .fc_index_bits        = {10},
132
        .gc_index_bits        = 7
133
    }
134
};
135
136
const float ff_pow_0_5[] = {
137
    1.0/(1 <<  1), 1.0/(1 <<  2), 1.0/(1 <<  3), 1.0/(1 <<  4),
138
    1.0/(1 <<  5), 1.0/(1 <<  6), 1.0/(1 <<  7), 1.0/(1 <<  8),
139
    1.0/(1 <<  9), 1.0/(1 << 10), 1.0/(1 << 11), 1.0/(1 << 12),
140
    1.0/(1 << 13), 1.0/(1 << 14), 1.0/(1 << 15), 1.0/(1 << 16)
141
};
142
143
static void dequant(float *out, const int *idx, const float * const cbs[])
144
227k
{
145
227k
    int i;
146
227k
    int stride  = 2;
147
227k
    int num_vec = 5;
148
149
1.36M
    for (i = 0; i < num_vec; i++)
150
1.13M
        memcpy(out + stride*i, cbs[i] + stride*idx[i], stride*sizeof(float));
151
152
227k
}
153
154
static void lsf_decode_fp(float *lsfnew, float *lsf_history,
155
                          const SiprParameters *parm)
156
227k
{
157
227k
    int i;
158
227k
    float lsf_tmp[LP_FILTER_ORDER];
159
160
227k
    dequant(lsf_tmp, parm->vq_indexes, lsf_codebooks);
161
162
2.49M
    for (i = 0; i < LP_FILTER_ORDER; i++)
163
2.27M
        lsfnew[i] = lsf_history[i] * 0.33 + lsf_tmp[i] + mean_lsf[i];
164
165
227k
    ff_sort_nearly_sorted_floats(lsfnew, LP_FILTER_ORDER - 1);
166
167
    /* Note that a minimum distance is not enforced between the last value and
168
       the previous one, contrary to what is done in ff_acelp_reorder_lsf() */
169
227k
    ff_set_min_dist_lsf(lsfnew, LSFQ_DIFF_MIN, LP_FILTER_ORDER - 1);
170
227k
    lsfnew[9] = FFMIN(lsfnew[LP_FILTER_ORDER - 1], 1.3 * M_PI);
171
172
227k
    memcpy(lsf_history, lsf_tmp, LP_FILTER_ORDER * sizeof(*lsf_history));
173
174
2.27M
    for (i = 0; i < LP_FILTER_ORDER - 1; i++)
175
2.04M
        lsfnew[i] = cos(lsfnew[i]);
176
227k
    lsfnew[LP_FILTER_ORDER - 1] *= 6.153848 / M_PI;
177
227k
}
178
179
/** Apply pitch lag to the fixed vector (AMR section 6.1.2). */
180
static void pitch_sharpening(int pitch_lag_int, float beta,
181
                             float *fixed_vector)
182
882k
{
183
882k
    int i;
184
185
20.6M
    for (i = pitch_lag_int; i < SUBFR_SIZE; i++)
186
19.7M
        fixed_vector[i] += beta * fixed_vector[i - pitch_lag_int];
187
882k
}
188
189
/**
190
 * Extract decoding parameters from the input bitstream.
191
 * @param parms          parameters structure
192
 * @param pgb            pointer to initialized GetBitContext structure
193
 */
194
static void decode_parameters(SiprParameters* parms, GetBitContext *pgb,
195
                              const SiprModeParam *p)
196
1.00M
{
197
1.00M
    int i, j;
198
199
1.00M
    if (p->ma_predictor_bits)
200
781k
        parms->ma_pred_switch       = get_bits(pgb, p->ma_predictor_bits);
201
202
6.05M
    for (i = 0; i < 5; i++)
203
5.04M
        parms->vq_indexes[i]        = get_bits(pgb, p->vq_indexes_bits[i]);
204
205
3.45M
    for (i = 0; i < p->subframe_count; i++) {
206
2.44M
        parms->pitch_delay[i]       = get_bits(pgb, p->pitch_delay_bits[i]);
207
2.44M
        if (p->gp_index_bits)
208
1.56M
            parms->gp_index[i]      = get_bits(pgb, p->gp_index_bits);
209
210
19.7M
        for (j = 0; j < p->number_of_fc_indexes; j++)
211
17.2M
            parms->fc_indexes[i][j] = get_bits(pgb, p->fc_index_bits[j]);
212
213
2.44M
        parms->gc_index[i]          = get_bits(pgb, p->gc_index_bits);
214
2.44M
    }
215
1.00M
}
216
217
static void sipr_decode_lp(float *lsfnew, const float *lsfold, float *Az,
218
                           int num_subfr)
219
227k
{
220
227k
    double lsfint[LP_FILTER_ORDER];
221
227k
    int i,j;
222
227k
    float t, t0 = 1.0 / num_subfr;
223
224
227k
    t = t0 * 0.5;
225
1.10M
    for (i = 0; i < num_subfr; i++) {
226
9.70M
        for (j = 0; j < LP_FILTER_ORDER; j++)
227
8.82M
            lsfint[j] = lsfold[j] * (1 - t) + t * lsfnew[j];
228
229
882k
        ff_amrwb_lsp2lpc(lsfint, Az, LP_FILTER_ORDER);
230
882k
        Az += LP_FILTER_ORDER;
231
882k
        t += t0;
232
882k
    }
233
227k
}
234
235
/**
236
 * Evaluate the adaptive impulse response.
237
 */
238
static void eval_ir(const float *Az, int pitch_lag, float *freq,
239
                    float pitch_sharp_factor)
240
882k
{
241
882k
    float tmp1[SUBFR_SIZE+1], tmp2[LP_FILTER_ORDER+1];
242
882k
    int i;
243
244
882k
    tmp1[0] = 1.0;
245
9.70M
    for (i = 0; i < LP_FILTER_ORDER; i++) {
246
8.82M
        tmp1[i+1] = Az[i] * ff_pow_0_55[i];
247
8.82M
        tmp2[i  ] = Az[i] * ff_pow_0_7 [i];
248
8.82M
    }
249
882k
    memset(tmp1 + 11, 0, 37 * sizeof(float));
250
251
882k
    ff_celp_lp_synthesis_filterf(freq, tmp2, tmp1, SUBFR_SIZE,
252
882k
                                 LP_FILTER_ORDER);
253
254
882k
    pitch_sharpening(pitch_lag, pitch_sharp_factor, freq);
255
882k
}
256
257
/**
258
 * Evaluate the convolution of a vector with a sparse vector.
259
 */
260
static void convolute_with_sparse(float *out, const AMRFixed *pulses,
261
                                  const float *shape, int length)
262
882k
{
263
882k
    int i, j;
264
265
882k
    memset(out, 0, length*sizeof(float));
266
4.62M
    for (i = 0; i < pulses->n; i++)
267
151M
        for (j = pulses->x[i]; j < length; j++)
268
147M
            out[j] += pulses->y[i] * shape[j - pulses->x[i]];
269
882k
}
270
271
/**
272
 * Apply postfilter, very similar to AMR one.
273
 */
274
static void postfilter_5k0(SiprContext *ctx, const float *lpc, float *samples)
275
502k
{
276
502k
    float buf[SUBFR_SIZE + LP_FILTER_ORDER];
277
502k
    float *pole_out = buf + LP_FILTER_ORDER;
278
502k
    float lpc_n[LP_FILTER_ORDER];
279
502k
    float lpc_d[LP_FILTER_ORDER];
280
502k
    int i;
281
282
5.52M
    for (i = 0; i < LP_FILTER_ORDER; i++) {
283
5.02M
        lpc_d[i] = lpc[i] * ff_pow_0_75[i];
284
5.02M
        lpc_n[i] = lpc[i] * ff_pow_0_5 [i];
285
5.02M
    };
286
287
502k
    memcpy(pole_out - LP_FILTER_ORDER, ctx->postfilter_mem,
288
502k
           LP_FILTER_ORDER*sizeof(float));
289
290
502k
    ff_celp_lp_synthesis_filterf(pole_out, lpc_d, samples, SUBFR_SIZE,
291
502k
                                 LP_FILTER_ORDER);
292
293
502k
    memcpy(ctx->postfilter_mem, pole_out + SUBFR_SIZE - LP_FILTER_ORDER,
294
502k
           LP_FILTER_ORDER*sizeof(float));
295
296
502k
    ff_tilt_compensation(&ctx->tilt_mem, 0.4, pole_out, SUBFR_SIZE);
297
298
502k
    memcpy(pole_out - LP_FILTER_ORDER, ctx->postfilter_mem5k0,
299
502k
           LP_FILTER_ORDER*sizeof(*pole_out));
300
301
502k
    memcpy(ctx->postfilter_mem5k0, pole_out + SUBFR_SIZE - LP_FILTER_ORDER,
302
502k
           LP_FILTER_ORDER*sizeof(*pole_out));
303
304
502k
    ff_celp_lp_zero_synthesis_filterf(samples, lpc_n, pole_out, SUBFR_SIZE,
305
502k
                                      LP_FILTER_ORDER);
306
307
502k
}
308
309
static void decode_fixed_sparse(AMRFixed *fixed_sparse, const int16_t *pulses,
310
                                SiprMode mode, int low_gain)
311
882k
{
312
882k
    int i;
313
314
882k
    switch (mode) {
315
4.48k
    case MODE_6k5:
316
17.9k
        for (i = 0; i < 3; i++) {
317
13.4k
            fixed_sparse->x[i] = 3 * (pulses[i] & 0xf) + i;
318
13.4k
            fixed_sparse->y[i] = pulses[i] & 0x10 ? -1 : 1;
319
13.4k
        }
320
4.48k
        fixed_sparse->n = 3;
321
4.48k
        break;
322
375k
    case MODE_8k5:
323
1.50M
        for (i = 0; i < 3; i++) {
324
1.12M
            fixed_sparse->x[2*i    ] = 3 * ((pulses[i] >> 4) & 0xf) + i;
325
1.12M
            fixed_sparse->x[2*i + 1] = 3 * ( pulses[i]       & 0xf) + i;
326
327
1.12M
            fixed_sparse->y[2*i    ] = (pulses[i] & 0x100) ? -1.0: 1.0;
328
329
1.12M
            fixed_sparse->y[2*i + 1] =
330
1.12M
                (fixed_sparse->x[2*i + 1] < fixed_sparse->x[2*i]) ?
331
869k
                -fixed_sparse->y[2*i    ] : fixed_sparse->y[2*i];
332
1.12M
        }
333
334
375k
        fixed_sparse->n = 6;
335
375k
        break;
336
502k
    case MODE_5k0:
337
502k
    default:
338
502k
        if (low_gain) {
339
466k
            int offset = (pulses[0] & 0x200) ? 2 : 0;
340
466k
            int val = pulses[0];
341
342
1.86M
            for (i = 0; i < 3; i++) {
343
1.39M
                int index = (val & 0x7) * 6 + 4 - i*2;
344
345
1.39M
                fixed_sparse->y[i] = (offset + index) & 0x3 ? -1 : 1;
346
1.39M
                fixed_sparse->x[i] = index;
347
348
1.39M
                val >>= 3;
349
1.39M
            }
350
466k
            fixed_sparse->n = 3;
351
466k
        } else {
352
36.0k
            int pulse_subset = (pulses[0] >> 8) & 1;
353
354
36.0k
            fixed_sparse->x[0] = ((pulses[0] >> 4) & 15) * 3 + pulse_subset;
355
36.0k
            fixed_sparse->x[1] = ( pulses[0]       & 15) * 3 + pulse_subset + 1;
356
357
36.0k
            fixed_sparse->y[0] = pulses[0] & 0x200 ? -1 : 1;
358
36.0k
            fixed_sparse->y[1] = -fixed_sparse->y[0];
359
36.0k
            fixed_sparse->n = 2;
360
36.0k
        }
361
502k
        break;
362
882k
    }
363
882k
}
364
365
static void decode_frame(SiprContext *ctx, SiprParameters *params,
366
                         float *out_data)
367
227k
{
368
227k
    int i, j;
369
227k
    int subframe_count = modes[ctx->mode].subframe_count;
370
227k
    int frame_size = subframe_count * SUBFR_SIZE;
371
227k
    float Az[LP_FILTER_ORDER * MAX_SUBFRAME_COUNT];
372
227k
    float *excitation;
373
227k
    float ir_buf[SUBFR_SIZE + LP_FILTER_ORDER];
374
227k
    float lsf_new[LP_FILTER_ORDER];
375
227k
    float *impulse_response = ir_buf + LP_FILTER_ORDER;
376
227k
    float *synth = ctx->synth_buf + 16; // 16 instead of LP_FILTER_ORDER for
377
                                        // memory alignment
378
227k
    int t0_first = 0;
379
227k
    AMRFixed fixed_cb;
380
381
227k
    memset(ir_buf, 0, LP_FILTER_ORDER * sizeof(float));
382
227k
    lsf_decode_fp(lsf_new, ctx->lsf_history, params);
383
384
227k
    sipr_decode_lp(lsf_new, ctx->lsp_history, Az, subframe_count);
385
386
227k
    memcpy(ctx->lsp_history, lsf_new, LP_FILTER_ORDER * sizeof(float));
387
388
227k
    excitation = ctx->excitation + PITCH_DELAY_MAX + L_INTERPOL;
389
390
1.10M
    for (i = 0; i < subframe_count; i++) {
391
882k
        float *pAz = Az + i*LP_FILTER_ORDER;
392
882k
        float fixed_vector[SUBFR_SIZE];
393
882k
        int T0,T0_frac;
394
882k
        float pitch_gain, gain_code, avg_energy;
395
396
882k
        ff_decode_pitch_lag(&T0, &T0_frac, params->pitch_delay[i], t0_first, i,
397
882k
                            ctx->mode == MODE_5k0, 6);
398
399
882k
        if (i == 0 || (i == 2 && ctx->mode == MODE_5k0))
400
327k
            t0_first = T0;
401
402
882k
        ff_acelp_interpolatef(excitation, excitation - T0 + (T0_frac <= 0),
403
882k
                              ff_b60_sinc, 6,
404
882k
                              2 * ((2 + T0_frac)%3 + 1), LP_FILTER_ORDER,
405
882k
                              SUBFR_SIZE);
406
407
882k
        decode_fixed_sparse(&fixed_cb, params->fc_indexes[i], ctx->mode,
408
882k
                            ctx->past_pitch_gain < 0.8);
409
410
882k
        eval_ir(pAz, T0, impulse_response, modes[ctx->mode].pitch_sharp_factor);
411
412
882k
        convolute_with_sparse(fixed_vector, &fixed_cb, impulse_response,
413
882k
                              SUBFR_SIZE);
414
415
882k
        avg_energy = (0.01 + ff_scalarproduct_float_c(fixed_vector,
416
882k
                                                      fixed_vector,
417
882k
                                                      SUBFR_SIZE)) /
418
882k
                     SUBFR_SIZE;
419
420
882k
        ctx->past_pitch_gain = pitch_gain = gain_cb[params->gc_index[i]][0];
421
422
882k
        gain_code = ff_amr_set_fixed_gain(gain_cb[params->gc_index[i]][1],
423
882k
                                          avg_energy, ctx->energy_history,
424
882k
                                          34 - 15.0/(0.05*M_LN10/M_LN2),
425
882k
                                          pred);
426
427
882k
        ff_weighted_vector_sumf(excitation, excitation, fixed_vector,
428
882k
                                pitch_gain, gain_code, SUBFR_SIZE);
429
430
882k
        pitch_gain *= 0.5 * pitch_gain;
431
882k
        pitch_gain = FFMIN(pitch_gain, 0.4);
432
433
882k
        ctx->gain_mem = 0.7 * ctx->gain_mem + 0.3 * pitch_gain;
434
882k
        ctx->gain_mem = FFMIN(ctx->gain_mem, pitch_gain);
435
882k
        gain_code *= ctx->gain_mem;
436
437
43.2M
        for (j = 0; j < SUBFR_SIZE; j++)
438
42.3M
            fixed_vector[j] = excitation[j] - gain_code * fixed_vector[j];
439
440
882k
        if (ctx->mode == MODE_5k0) {
441
502k
            postfilter_5k0(ctx, pAz, fixed_vector);
442
443
502k
            ff_celp_lp_synthesis_filterf(ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i*SUBFR_SIZE,
444
502k
                                         pAz, excitation, SUBFR_SIZE,
445
502k
                                         LP_FILTER_ORDER);
446
502k
        }
447
448
882k
        ff_celp_lp_synthesis_filterf(synth + i*SUBFR_SIZE, pAz, fixed_vector,
449
882k
                                     SUBFR_SIZE, LP_FILTER_ORDER);
450
451
882k
        excitation += SUBFR_SIZE;
452
882k
    }
453
454
227k
    memcpy(synth - LP_FILTER_ORDER, synth + frame_size - LP_FILTER_ORDER,
455
227k
           LP_FILTER_ORDER * sizeof(float));
456
457
227k
    if (ctx->mode == MODE_5k0) {
458
602k
        for (i = 0; i < subframe_count; i++) {
459
502k
            float energy = ff_scalarproduct_float_c(ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i * SUBFR_SIZE,
460
502k
                                                    ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i * SUBFR_SIZE,
461
502k
                                                    SUBFR_SIZE);
462
502k
            ff_adaptive_gain_control(&synth[i * SUBFR_SIZE],
463
502k
                                     &synth[i * SUBFR_SIZE], energy,
464
502k
                                     SUBFR_SIZE, 0.9, &ctx->postfilter_agc);
465
502k
        }
466
467
100k
        memcpy(ctx->postfilter_syn5k0, ctx->postfilter_syn5k0 + frame_size,
468
100k
               LP_FILTER_ORDER*sizeof(float));
469
100k
    }
470
227k
    memmove(ctx->excitation, excitation - PITCH_DELAY_MAX - L_INTERPOL,
471
227k
           (PITCH_DELAY_MAX + L_INTERPOL) * sizeof(float));
472
473
227k
    ff_acelp_apply_order_2_transfer_function(out_data, synth,
474
227k
                                             (const float[2]) {-1.99997   , 1.000000000},
475
227k
                                             (const float[2]) {-1.93307352, 0.935891986},
476
227k
                                             0.939805806,
477
227k
                                             ctx->highpass_filt_mem,
478
227k
                                             frame_size);
479
227k
}
480
481
static av_cold int sipr_decoder_init(AVCodecContext * avctx)
482
819
{
483
819
    SiprContext *ctx = avctx->priv_data;
484
819
    int i;
485
486
819
    switch (avctx->block_align) {
487
1
    case 20: ctx->mode = MODE_16k; break;
488
6
    case 19: ctx->mode = MODE_8k5; break;
489
4
    case 29: ctx->mode = MODE_6k5; break;
490
1
    case 37: ctx->mode = MODE_5k0; break;
491
807
    default:
492
807
        if      (avctx->bit_rate > 12200) ctx->mode = MODE_16k;
493
286
        else if (avctx->bit_rate > 7500 ) ctx->mode = MODE_8k5;
494
234
        else if (avctx->bit_rate > 5750 ) ctx->mode = MODE_6k5;
495
220
        else                              ctx->mode = MODE_5k0;
496
807
        av_log(avctx, AV_LOG_WARNING,
497
807
               "Invalid block_align: %d. Mode %s guessed based on bitrate: %"PRId64"\n",
498
807
               avctx->block_align, modes[ctx->mode].mode_name, avctx->bit_rate);
499
819
    }
500
501
819
    av_log(avctx, AV_LOG_DEBUG, "Mode: %s\n", modes[ctx->mode].mode_name);
502
503
819
    if (ctx->mode == MODE_16k) {
504
522
        ff_sipr_init_16k(ctx);
505
522
        ctx->decode_frame = ff_sipr_decode_frame_16k;
506
522
    } else {
507
297
        ctx->decode_frame = decode_frame;
508
297
    }
509
510
9.00k
    for (i = 0; i < LP_FILTER_ORDER; i++)
511
8.19k
        ctx->lsp_history[i] = cos((i+1) * M_PI / (LP_FILTER_ORDER + 1));
512
513
4.09k
    for (i = 0; i < 4; i++)
514
3.27k
        ctx->energy_history[i] = -14;
515
516
819
    av_channel_layout_uninit(&avctx->ch_layout);
517
819
    avctx->ch_layout      = (AVChannelLayout)AV_CHANNEL_LAYOUT_MONO;
518
819
    avctx->sample_fmt     = AV_SAMPLE_FMT_FLT;
519
520
819
    return 0;
521
819
}
522
523
static int sipr_decode_frame(AVCodecContext *avctx, AVFrame *frame,
524
                             int *got_frame_ptr, AVPacket *avpkt)
525
1.12M
{
526
1.12M
    SiprContext *ctx = avctx->priv_data;
527
1.12M
    const uint8_t *buf=avpkt->data;
528
1.12M
    SiprParameters parm;
529
1.12M
    const SiprModeParam *mode_par = &modes[ctx->mode];
530
1.12M
    GetBitContext gb;
531
1.12M
    float *samples;
532
1.12M
    int subframe_size = ctx->mode == MODE_16k ? L_SUBFR_16k : SUBFR_SIZE;
533
1.12M
    int i, ret;
534
535
1.12M
    if (avpkt->size < (mode_par->bits_per_frame >> 3)) {
536
165k
        av_log(avctx, AV_LOG_ERROR,
537
165k
               "Error processing packet: packet size (%d) too small\n",
538
165k
               avpkt->size);
539
165k
        return AVERROR_INVALIDDATA;
540
165k
    }
541
542
    /* get output buffer */
543
958k
    frame->nb_samples = mode_par->frames_per_packet * subframe_size *
544
958k
                        mode_par->subframe_count;
545
958k
    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
546
0
        return ret;
547
958k
    samples = (float *)frame->data[0];
548
549
958k
    init_get_bits(&gb, buf, mode_par->bits_per_frame);
550
551
1.96M
    for (i = 0; i < mode_par->frames_per_packet; i++) {
552
1.00M
        decode_parameters(&parm, &gb, mode_par);
553
554
1.00M
        ctx->decode_frame(ctx, &parm, samples);
555
556
1.00M
        samples += subframe_size * mode_par->subframe_count;
557
1.00M
    }
558
559
958k
    *got_frame_ptr = 1;
560
561
958k
    return mode_par->bits_per_frame >> 3;
562
958k
}
563
564
const FFCodec ff_sipr_decoder = {
565
    .p.name         = "sipr",
566
    CODEC_LONG_NAME("RealAudio SIPR / ACELP.NET"),
567
    .p.type         = AVMEDIA_TYPE_AUDIO,
568
    .p.id           = AV_CODEC_ID_SIPR,
569
    .priv_data_size = sizeof(SiprContext),
570
    .init           = sipr_decoder_init,
571
    FF_CODEC_DECODE_CB(sipr_decode_frame),
572
    .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF,
573
};