Coverage Report

Created: 2025-12-31 07:57

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/opus/celt/rate.c
Line
Count
Source
1
/* Copyright (c) 2007-2008 CSIRO
2
   Copyright (c) 2007-2009 Xiph.Org Foundation
3
   Written by Jean-Marc Valin */
4
/*
5
   Redistribution and use in source and binary forms, with or without
6
   modification, are permitted provided that the following conditions
7
   are met:
8
9
   - Redistributions of source code must retain the above copyright
10
   notice, this list of conditions and the following disclaimer.
11
12
   - Redistributions in binary form must reproduce the above copyright
13
   notice, this list of conditions and the following disclaimer in the
14
   documentation and/or other materials provided with the distribution.
15
16
   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17
   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
20
   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
21
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
23
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
24
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
25
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
26
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
*/
28
29
#ifdef HAVE_CONFIG_H
30
#include "config.h"
31
#endif
32
33
#include <math.h>
34
#include "modes.h"
35
#include "cwrs.h"
36
#include "arch.h"
37
#include "os_support.h"
38
39
#include "entcode.h"
40
#include "rate.h"
41
#include "quant_bands.h"
42
43
static const unsigned char LOG2_FRAC_TABLE[24]={
44
   0,
45
   8,13,
46
  16,19,21,23,
47
  24,26,27,28,29,30,31,32,
48
  32,33,34,34,35,36,36,37,37
49
};
50
51
#if defined(CUSTOM_MODES)
52
53
/*Determines if V(N,K) fits in a 32-bit unsigned integer.
54
  N and K are themselves limited to 15 bits.*/
55
static int fits_in32(int _n, int _k)
56
{
57
   static const opus_int16 maxN[15] = {
58
      32767, 32767, 32767, 1476, 283, 109,  60,  40,
59
       29,  24,  20,  18,  16,  14,  13};
60
   static const opus_int16 maxK[15] = {
61
      32767, 32767, 32767, 32767, 1172, 238,  95,  53,
62
       36,  27,  22,  18,  16,  15,  13};
63
   if (_n>=14)
64
   {
65
      if (_k>=14)
66
         return 0;
67
      else
68
         return _n <= maxN[_k];
69
   } else {
70
      return _k <= maxK[_n];
71
   }
72
}
73
74
void compute_pulse_cache(CELTMode *m, int LM)
75
{
76
   int C;
77
   int i;
78
   int j;
79
   int curr=0;
80
   int nbEntries=0;
81
   int entryN[100], entryK[100], entryI[100];
82
   const opus_int16 *eBands = m->eBands;
83
   PulseCache *cache = &m->cache;
84
   opus_int16 *cindex;
85
   unsigned char *bits;
86
   unsigned char *cap;
87
88
   cindex = (opus_int16 *)opus_alloc(sizeof(cache->index[0])*m->nbEBands*(LM+2));
89
   cache->index = cindex;
90
91
   /* Scan for all unique band sizes */
92
   for (i=0;i<=LM+1;i++)
93
   {
94
      for (j=0;j<m->nbEBands;j++)
95
      {
96
         int k;
97
         int N = (eBands[j+1]-eBands[j])<<i>>1;
98
         cindex[i*m->nbEBands+j] = -1;
99
         /* Find other bands that have the same size */
100
         for (k=0;k<=i;k++)
101
         {
102
            int n;
103
            for (n=0;n<m->nbEBands && (k!=i || n<j);n++)
104
            {
105
               if (N == (eBands[n+1]-eBands[n])<<k>>1)
106
               {
107
                  cindex[i*m->nbEBands+j] = cindex[k*m->nbEBands+n];
108
                  break;
109
               }
110
            }
111
         }
112
         if (cache->index[i*m->nbEBands+j] == -1 && N!=0)
113
         {
114
            int K;
115
            entryN[nbEntries] = N;
116
            K = 0;
117
            while (fits_in32(N,get_pulses(K+1)) && K<MAX_PSEUDO)
118
               K++;
119
            entryK[nbEntries] = K;
120
            cindex[i*m->nbEBands+j] = curr;
121
            entryI[nbEntries] = curr;
122
123
            curr += K+1;
124
            nbEntries++;
125
         }
126
      }
127
   }
128
   bits = (unsigned char *)opus_alloc(sizeof(unsigned char)*curr);
129
   cache->bits = bits;
130
   cache->size = curr;
131
   /* Compute the cache for all unique sizes */
132
   for (i=0;i<nbEntries;i++)
133
   {
134
      unsigned char *ptr = bits+entryI[i];
135
      opus_int16 tmp[CELT_MAX_PULSES+1];
136
      get_required_bits(tmp, entryN[i], get_pulses(entryK[i]), BITRES);
137
      for (j=1;j<=entryK[i];j++)
138
         ptr[j] = tmp[get_pulses(j)]-1;
139
      ptr[0] = entryK[i];
140
   }
141
142
   /* Compute the maximum rate for each band at which we'll reliably use as
143
       many bits as we ask for. */
144
   cache->caps = cap = (unsigned char *)opus_alloc(sizeof(cache->caps[0])*(LM+1)*2*m->nbEBands);
145
   for (i=0;i<=LM;i++)
146
   {
147
      for (C=1;C<=2;C++)
148
      {
149
         for (j=0;j<m->nbEBands;j++)
150
         {
151
            int N0;
152
            int max_bits;
153
            N0 = m->eBands[j+1]-m->eBands[j];
154
            /* N=1 bands only have a sign bit and fine bits. */
155
            if (N0<<i == 1)
156
               max_bits = C*(1+MAX_FINE_BITS)<<BITRES;
157
            else
158
            {
159
               const unsigned char *pcache;
160
               opus_int32           num;
161
               opus_int32           den;
162
               int                  LM0;
163
               int                  N;
164
               int                  offset;
165
               int                  ndof;
166
               int                  qb;
167
               int                  k;
168
               LM0 = 0;
169
               /* Even-sized bands bigger than N=2 can be split one more time.
170
                  As of commit 44203907 all bands >1 are even, including custom modes.*/
171
               if (N0 > 2)
172
               {
173
                  N0>>=1;
174
                  LM0--;
175
               }
176
               /* N0=1 bands can't be split down to N<2. */
177
               else if (N0 <= 1)
178
               {
179
                  LM0=IMIN(i,1);
180
                  N0<<=LM0;
181
               }
182
               /* Compute the cost for the lowest-level PVQ of a fully split
183
                   band. */
184
               pcache = bits + cindex[(LM0+1)*m->nbEBands+j];
185
               max_bits = pcache[pcache[0]]+1;
186
               /* Add in the cost of coding regular splits. */
187
               N = N0;
188
               for(k=0;k<i-LM0;k++){
189
                  max_bits <<= 1;
190
                  /* Offset the number of qtheta bits by log2(N)/2
191
                      + QTHETA_OFFSET compared to their "fair share" of
192
                      total/N */
193
                  offset = ((m->logN[j]+(opus_int32)((opus_uint32)(LM0+k)<<BITRES))>>1)-QTHETA_OFFSET;
194
                  /* The number of qtheta bits we'll allocate if the remainder
195
                      is to be max_bits.
196
                     The average measured cost for theta is 0.89701 times qb,
197
                      approximated here as 459/512. */
198
                  num=459*(opus_int32)((2*N-1)*offset+max_bits);
199
                  den=((opus_int32)(2*N-1)<<9)-459;
200
                  qb = IMIN((num+(den>>1))/den, 57);
201
                  celt_assert(qb >= 0);
202
                  max_bits += qb;
203
                  N <<= 1;
204
               }
205
               /* Add in the cost of a stereo split, if necessary. */
206
               if (C==2)
207
               {
208
                  max_bits <<= 1;
209
                  offset = ((m->logN[j]+(i<<BITRES))>>1)-(N==2?QTHETA_OFFSET_TWOPHASE:QTHETA_OFFSET);
210
                  ndof = 2*N-1-(N==2);
211
                  /* The average measured cost for theta with the step PDF is
212
                      0.95164 times qb, approximated here as 487/512. */
213
                  num = (N==2?512:487)*(opus_int32)(max_bits+ndof*offset);
214
                  den = ((opus_int32)ndof<<9)-(N==2?512:487);
215
                  qb = IMIN((num+(den>>1))/den, (N==2?64:61));
216
                  celt_assert(qb >= 0);
217
                  max_bits += qb;
218
               }
219
               /* Add the fine bits we'll use. */
220
               /* Compensate for the extra DoF in stereo */
221
               ndof = C*N + ((C==2 && N>2) ? 1 : 0);
222
               /* Offset the number of fine bits by log2(N)/2 + FINE_OFFSET
223
                   compared to their "fair share" of total/N */
224
               offset = ((m->logN[j] + (i<<BITRES))>>1)-FINE_OFFSET;
225
               /* N=2 is the only point that doesn't match the curve */
226
               if (N==2)
227
                  offset += 1<<BITRES>>2;
228
               /* The number of fine bits we'll allocate if the remainder is
229
                   to be max_bits. */
230
               num = max_bits+ndof*offset;
231
               den = (ndof-1)<<BITRES;
232
               qb = IMIN((num+(den>>1))/den, MAX_FINE_BITS);
233
               celt_assert(qb >= 0);
234
               max_bits += C*qb<<BITRES;
235
            }
236
            max_bits = (4*max_bits/(C*((m->eBands[j+1]-m->eBands[j])<<i)))-64;
237
            celt_assert(max_bits >= 0);
238
            celt_assert(max_bits < 256);
239
            *cap++ = (unsigned char)max_bits;
240
         }
241
      }
242
   }
243
}
244
245
#endif /* CUSTOM_MODES */
246
247
10.2M
#define ALLOC_STEPS 6
248
249
static OPUS_INLINE int interp_bits2pulses(const CELTMode *m, int start, int end, int skip_start,
250
      const int *bits1, const int *bits2, const int *thresh, const int *cap, opus_int32 total, opus_int32 *_balance,
251
      int skip_rsv, int *intensity, int intensity_rsv, int *dual_stereo, int dual_stereo_rsv, int *bits,
252
      int *ebits, int *fine_priority, int C, int LM, ec_ctx *ec, int encode, int prev, int signalBandwidth)
253
107k
{
254
107k
   opus_int32 psum;
255
107k
   int lo, hi;
256
107k
   int i, j;
257
107k
   int logM;
258
107k
   int stereo;
259
107k
   int codedBands=-1;
260
107k
   int alloc_floor;
261
107k
   opus_int32 left, percoeff;
262
107k
   int done;
263
107k
   opus_int32 balance;
264
107k
   SAVE_STACK;
265
266
107k
   alloc_floor = C<<BITRES;
267
107k
   stereo = C>1;
268
269
107k
   logM = LM<<BITRES;
270
107k
   lo = 0;
271
107k
   hi = 1<<ALLOC_STEPS;
272
755k
   for (i=0;i<ALLOC_STEPS;i++)
273
647k
   {
274
647k
      int mid = (lo+hi)>>1;
275
647k
      psum = 0;
276
647k
      done = 0;
277
8.66M
      for (j=end;j-->start;)
278
8.01M
      {
279
8.01M
         int tmp = bits1[j] + (mid*(opus_int32)bits2[j]>>ALLOC_STEPS);
280
8.01M
         if (tmp >= thresh[j] || done)
281
5.20M
         {
282
5.20M
            done = 1;
283
            /* Don't allocate more than we can actually use */
284
5.20M
            psum += IMIN(tmp, cap[j]);
285
5.20M
         } else {
286
2.81M
            if (tmp >= alloc_floor)
287
320k
               psum += alloc_floor;
288
2.81M
         }
289
8.01M
      }
290
647k
      if (psum > total)
291
294k
         hi = mid;
292
353k
      else
293
353k
         lo = mid;
294
647k
   }
295
107k
   psum = 0;
296
   /*printf ("interp bisection gave %d\n", lo);*/
297
107k
   done = 0;
298
1.44M
   for (j=end;j-->start;)
299
1.33M
   {
300
1.33M
      int tmp = bits1[j] + ((opus_int32)lo*bits2[j]>>ALLOC_STEPS);
301
1.33M
      if (tmp < thresh[j] && !done)
302
553k
      {
303
553k
         if (tmp >= alloc_floor)
304
35.7k
            tmp = alloc_floor;
305
517k
         else
306
517k
            tmp = 0;
307
553k
      } else
308
782k
         done = 1;
309
      /* Don't allocate more than we can actually use */
310
1.33M
      tmp = IMIN(tmp, cap[j]);
311
1.33M
      bits[j] = tmp;
312
1.33M
      psum += tmp;
313
1.33M
   }
314
315
   /* Decide which bands to skip, working backwards from the end. */
316
663k
   for (codedBands=end;;codedBands--)
317
770k
   {
318
770k
      int band_width;
319
770k
      int band_bits;
320
770k
      int rem;
321
770k
      j = codedBands-1;
322
      /* Never skip the first band, nor a band that has been boosted by
323
          dynalloc.
324
         In the first case, we'd be coding a bit to signal we're going to waste
325
          all the other bits.
326
         In the second case, we'd be coding a bit to redistribute all the bits
327
          we just signaled should be concentrated in this band. */
328
770k
      if (j<=skip_start)
329
63.8k
      {
330
         /* Give the bit we reserved to end skipping back. */
331
63.8k
         total += skip_rsv;
332
63.8k
         break;
333
63.8k
      }
334
      /*Figure out how many left-over bits we would be adding to this band.
335
        This can include bits we've stolen back from higher, skipped bands.*/
336
707k
      left = total-psum;
337
707k
      percoeff = celt_udiv(left, m->eBands[codedBands]-m->eBands[start]);
338
707k
      left -= (m->eBands[codedBands]-m->eBands[start])*percoeff;
339
707k
      rem = IMAX(left-(m->eBands[j]-m->eBands[start]),0);
340
707k
      band_width = m->eBands[codedBands]-m->eBands[j];
341
707k
      band_bits = (int)(bits[j] + percoeff*band_width + rem);
342
      /*Only code a skip decision if we're above the threshold for this band.
343
        Otherwise it is force-skipped.
344
        This ensures that we have enough bits to code the skip flag.*/
345
707k
      if (band_bits >= IMAX(thresh[j], alloc_floor+(1<<BITRES)))
346
182k
      {
347
182k
         if (encode)
348
0
         {
349
            /*This if() block is the only part of the allocation function that
350
               is not a mandatory part of the bitstream: any bands we choose to
351
               skip here must be explicitly signaled.*/
352
0
            int depth_threshold;
353
            /*We choose a threshold with some hysteresis to keep bands from
354
               fluctuating in and out, but we try not to fold below a certain point. */
355
0
            if (codedBands > 17)
356
0
               depth_threshold = j<prev ? 7 : 9;
357
0
            else
358
0
               depth_threshold = 0;
359
#ifdef FUZZING
360
            (void)signalBandwidth;
361
            (void)depth_threshold;
362
            if ((rand()&0x1) == 0)
363
#else
364
0
            if (codedBands<=start+2 || (band_bits > (depth_threshold*band_width<<LM<<BITRES)>>4 && j<=signalBandwidth))
365
0
#endif
366
0
            {
367
0
               ec_enc_bit_logp(ec, 1, 1);
368
0
               break;
369
0
            }
370
0
            ec_enc_bit_logp(ec, 0, 1);
371
182k
         } else if (ec_dec_bit_logp(ec, 1)) {
372
44.0k
            break;
373
44.0k
         }
374
         /*We used a bit to skip this band.*/
375
138k
         psum += 1<<BITRES;
376
138k
         band_bits -= 1<<BITRES;
377
138k
      }
378
      /*Reclaim the bits originally allocated to this band.*/
379
663k
      psum -= bits[j]+intensity_rsv;
380
663k
      if (intensity_rsv > 0)
381
64.1k
         intensity_rsv = LOG2_FRAC_TABLE[j-start];
382
663k
      psum += intensity_rsv;
383
663k
      if (band_bits >= alloc_floor)
384
197k
      {
385
         /*If we have enough for a fine energy bit per channel, use it.*/
386
197k
         psum += alloc_floor;
387
197k
         bits[j] = alloc_floor;
388
465k
      } else {
389
         /*Otherwise this band gets nothing at all.*/
390
465k
         bits[j] = 0;
391
465k
      }
392
663k
   }
393
394
107k
   celt_assert(codedBands > start);
395
   /* Code the intensity and dual stereo parameters. */
396
107k
   if (intensity_rsv > 0)
397
16.1k
   {
398
16.1k
      if (encode)
399
0
      {
400
0
         *intensity = IMIN(*intensity, codedBands);
401
0
         ec_enc_uint(ec, *intensity-start, codedBands+1-start);
402
0
      }
403
16.1k
      else
404
16.1k
         *intensity = start+ec_dec_uint(ec, codedBands+1-start);
405
16.1k
   }
406
91.8k
   else
407
91.8k
      *intensity = 0;
408
107k
   if (*intensity <= start)
409
94.4k
   {
410
94.4k
      total += dual_stereo_rsv;
411
94.4k
      dual_stereo_rsv = 0;
412
94.4k
   }
413
107k
   if (dual_stereo_rsv > 0)
414
13.4k
   {
415
13.4k
      if (encode)
416
0
         ec_enc_bit_logp(ec, *dual_stereo, 1);
417
13.4k
      else
418
13.4k
         *dual_stereo = ec_dec_bit_logp(ec, 1);
419
13.4k
   }
420
94.5k
   else
421
94.5k
      *dual_stereo = 0;
422
423
   /* Allocate the remaining bits */
424
107k
   left = total-psum;
425
107k
   percoeff = celt_udiv(left, m->eBands[codedBands]-m->eBands[start]);
426
107k
   left -= (m->eBands[codedBands]-m->eBands[start])*percoeff;
427
781k
   for (j=start;j<codedBands;j++)
428
673k
      bits[j] += ((int)percoeff*(m->eBands[j+1]-m->eBands[j]));
429
781k
   for (j=start;j<codedBands;j++)
430
673k
   {
431
673k
      int tmp = (int)IMIN(left, m->eBands[j+1]-m->eBands[j]);
432
673k
      bits[j] += tmp;
433
673k
      left -= tmp;
434
673k
   }
435
   /*for (j=0;j<end;j++)printf("%d ", bits[j]);printf("\n");*/
436
437
107k
   balance = 0;
438
781k
   for (j=start;j<codedBands;j++)
439
673k
   {
440
673k
      int N0, N, den;
441
673k
      int offset;
442
673k
      int NClogN;
443
673k
      opus_int32 excess, bit;
444
445
673k
      celt_assert(bits[j] >= 0);
446
673k
      N0 = m->eBands[j+1]-m->eBands[j];
447
673k
      N=N0<<LM;
448
673k
      bit = (opus_int32)bits[j]+balance;
449
450
673k
      if (N>1)
451
612k
      {
452
612k
         excess = MAX32(bit-cap[j],0);
453
612k
         bits[j] = bit-excess;
454
455
         /* Compensate for the extra DoF in stereo */
456
612k
         den=(C*N+ ((C==2 && N>2 && !*dual_stereo && j<*intensity) ? 1 : 0));
457
458
612k
         NClogN = den*(m->logN[j] + logM);
459
460
         /* Offset for the number of fine bits by log2(N)/2 + FINE_OFFSET
461
            compared to their "fair share" of total/N */
462
612k
         offset = (NClogN>>1)-den*FINE_OFFSET;
463
464
         /* N=2 is the only point that doesn't match the curve */
465
612k
         if (N==2)
466
203k
            offset += den<<BITRES>>2;
467
468
         /* Changing the offset for allocating the second and third
469
             fine energy bit */
470
612k
         if (bits[j] + offset < den*2<<BITRES)
471
355k
            offset += NClogN>>2;
472
257k
         else if (bits[j] + offset < den*3<<BITRES)
473
43.7k
            offset += NClogN>>3;
474
475
         /* Divide with rounding */
476
612k
         ebits[j] = IMAX(0, (bits[j] + offset + (den<<(BITRES-1))));
477
612k
         ebits[j] = celt_udiv(ebits[j], den)>>BITRES;
478
479
         /* Make sure not to bust */
480
612k
         if (C*ebits[j] > (bits[j]>>BITRES))
481
25.3k
            ebits[j] = bits[j] >> stereo >> BITRES;
482
483
         /* More than that is useless because that's about as far as PVQ can go */
484
612k
         ebits[j] = IMIN(ebits[j], MAX_FINE_BITS);
485
486
         /* If we rounded down or capped this band, make it a candidate for the
487
             final fine energy pass */
488
612k
         fine_priority[j] = ebits[j]*(den<<BITRES) >= bits[j]+offset;
489
490
         /* Remove the allocated fine bits; the rest are assigned to PVQ */
491
612k
         bits[j] -= C*ebits[j]<<BITRES;
492
493
612k
      } else {
494
         /* For N=1, all bits go to fine energy except for a single sign bit */
495
60.6k
         excess = MAX32(0,bit-(C<<BITRES));
496
60.6k
         bits[j] = bit-excess;
497
60.6k
         ebits[j] = 0;
498
60.6k
         fine_priority[j] = 1;
499
60.6k
      }
500
501
      /* Fine energy can't take advantage of the re-balancing in
502
          quant_all_bands().
503
         Instead, do the re-balancing here.*/
504
673k
      if(excess > 0)
505
179k
      {
506
179k
         int extra_fine;
507
179k
         int extra_bits;
508
179k
         extra_fine = IMIN(excess>>(stereo+BITRES),MAX_FINE_BITS-ebits[j]);
509
179k
         ebits[j] += extra_fine;
510
179k
         extra_bits = extra_fine*C<<BITRES;
511
179k
         fine_priority[j] = extra_bits >= excess-balance;
512
179k
         excess -= extra_bits;
513
179k
      }
514
673k
      balance = excess;
515
516
673k
      celt_assert(bits[j] >= 0);
517
673k
      celt_assert(ebits[j] >= 0);
518
673k
   }
519
   /* Save any remaining bits over the cap for the rebalancing in
520
       quant_all_bands(). */
521
107k
   *_balance = balance;
522
523
   /* The skipped bands use all their bits for fine energy. */
524
770k
   for (;j<end;j++)
525
663k
   {
526
663k
      ebits[j] = bits[j] >> stereo >> BITRES;
527
663k
      celt_assert(C*ebits[j]<<BITRES == bits[j]);
528
663k
      bits[j] = 0;
529
663k
      fine_priority[j] = ebits[j]<1;
530
663k
   }
531
107k
   RESTORE_STACK;
532
107k
   return codedBands;
533
107k
}
534
535
int clt_compute_allocation(const CELTMode *m, int start, int end, const int *offsets, const int *cap, int alloc_trim, int *intensity, int *dual_stereo,
536
      opus_int32 total, opus_int32 *balance, int *pulses, int *ebits, int *fine_priority, int C, int LM, ec_ctx *ec, int encode, int prev, int signalBandwidth)
537
107k
{
538
107k
   int lo, hi, len, j;
539
107k
   int codedBands;
540
107k
   int skip_start;
541
107k
   int skip_rsv;
542
107k
   int intensity_rsv;
543
107k
   int dual_stereo_rsv;
544
107k
   VARDECL(int, bits1);
545
107k
   VARDECL(int, bits2);
546
107k
   VARDECL(int, thresh);
547
107k
   VARDECL(int, trim_offset);
548
107k
   SAVE_STACK;
549
550
107k
   total = IMAX(total, 0);
551
107k
   len = m->nbEBands;
552
107k
   skip_start = start;
553
   /* Reserve a bit to signal the end of manually skipped bands. */
554
107k
   skip_rsv = total >= 1<<BITRES ? 1<<BITRES : 0;
555
107k
   total -= skip_rsv;
556
   /* Reserve bits for the intensity and dual stereo parameters. */
557
107k
   intensity_rsv = dual_stereo_rsv = 0;
558
107k
   if (C==2)
559
27.2k
   {
560
27.2k
      intensity_rsv = LOG2_FRAC_TABLE[end-start];
561
27.2k
      if (intensity_rsv>total)
562
11.1k
         intensity_rsv = 0;
563
16.1k
      else
564
16.1k
      {
565
16.1k
         total -= intensity_rsv;
566
16.1k
         dual_stereo_rsv = total>=1<<BITRES ? 1<<BITRES : 0;
567
16.1k
         total -= dual_stereo_rsv;
568
16.1k
      }
569
27.2k
   }
570
107k
   ALLOC(bits1, len, int);
571
107k
   ALLOC(bits2, len, int);
572
107k
   ALLOC(thresh, len, int);
573
107k
   ALLOC(trim_offset, len, int);
574
575
1.44M
   for (j=start;j<end;j++)
576
1.33M
   {
577
      /* Below this threshold, we're sure not to allocate any PVQ bits */
578
1.33M
      thresh[j] = IMAX((C)<<BITRES, (3*(m->eBands[j+1]-m->eBands[j])<<LM<<BITRES)>>4);
579
      /* Tilt of the allocation curve */
580
1.33M
      trim_offset[j] = C*(m->eBands[j+1]-m->eBands[j])*(alloc_trim-5-LM)*(end-j-1)
581
1.33M
            *(1<<(LM+BITRES))>>6;
582
      /* Giving less resolution to single-coefficient bands because they get
583
         more benefit from having one coarse value per coefficient*/
584
1.33M
      if ((m->eBands[j+1]-m->eBands[j])<<LM==1)
585
138k
         trim_offset[j] -= C<<BITRES;
586
1.33M
   }
587
107k
   lo = 1;
588
107k
   hi = m->nbAllocVectors - 1;
589
107k
   do
590
375k
   {
591
375k
      int done = 0;
592
375k
      int psum = 0;
593
375k
      int mid = (lo+hi) >> 1;
594
4.84M
      for (j=end;j-->start;)
595
4.46M
      {
596
4.46M
         int bitsj;
597
4.46M
         int N = m->eBands[j+1]-m->eBands[j];
598
4.46M
         bitsj = C*N*m->allocVectors[mid*len+j]<<LM>>2;
599
4.46M
         if (bitsj > 0)
600
4.08M
            bitsj = IMAX(0, bitsj + trim_offset[j]);
601
4.46M
         bitsj += offsets[j];
602
4.46M
         if (bitsj >= thresh[j] || done)
603
4.01M
         {
604
4.01M
            done = 1;
605
            /* Don't allocate more than we can actually use */
606
4.01M
            psum += IMIN(bitsj, cap[j]);
607
4.01M
         } else {
608
450k
            if (bitsj >= C<<BITRES)
609
52.4k
               psum += C<<BITRES;
610
450k
         }
611
4.46M
      }
612
375k
      if (psum > total)
613
212k
         hi = mid - 1;
614
162k
      else
615
162k
         lo = mid + 1;
616
      /*printf ("lo = %d, hi = %d\n", lo, hi);*/
617
375k
   }
618
375k
   while (lo <= hi);
619
107k
   hi = lo--;
620
   /*printf ("interp between %d and %d\n", lo, hi);*/
621
1.44M
   for (j=start;j<end;j++)
622
1.33M
   {
623
1.33M
      int bits1j, bits2j;
624
1.33M
      int N = m->eBands[j+1]-m->eBands[j];
625
1.33M
      bits1j = C*N*m->allocVectors[lo*len+j]<<LM>>2;
626
1.33M
      bits2j = hi>=m->nbAllocVectors ?
627
1.12M
            cap[j] : C*N*m->allocVectors[hi*len+j]<<LM>>2;
628
1.33M
      if (bits1j > 0)
629
600k
         bits1j = IMAX(0, bits1j + trim_offset[j]);
630
1.33M
      if (bits2j > 0)
631
1.19M
         bits2j = IMAX(0, bits2j + trim_offset[j]);
632
1.33M
      if (lo > 0)
633
699k
         bits1j += offsets[j];
634
1.33M
      bits2j += offsets[j];
635
1.33M
      if (offsets[j]>0)
636
20.4k
         skip_start = j;
637
1.33M
      bits2j = IMAX(0,bits2j-bits1j);
638
1.33M
      bits1[j] = bits1j;
639
1.33M
      bits2[j] = bits2j;
640
1.33M
   }
641
107k
   codedBands = interp_bits2pulses(m, start, end, skip_start, bits1, bits2, thresh, cap,
642
107k
         total, balance, skip_rsv, intensity, intensity_rsv, dual_stereo, dual_stereo_rsv,
643
107k
         pulses, ebits, fine_priority, C, LM, ec, encode, prev, signalBandwidth);
644
107k
   RESTORE_STACK;
645
107k
   return codedBands;
646
107k
}
647
#ifdef ENABLE_QEXT
648
649
static const unsigned char last_zero[3] = {64, 50, 0};
650
static const unsigned char last_cap[3] = {110, 60, 0};
651
static const unsigned char last_other[4] = {120, 112, 70, 0};
652
653
static void ec_enc_depth(ec_enc *enc, opus_int32 depth, opus_int32 cap, opus_int32 *last) {
654
   int sym = 3;
655
   if (depth==*last) sym = 2;
656
   if (depth==cap) sym = 1;
657
   if (depth==0) sym = 0;
658
   if (*last == 0) {
659
      ec_enc_icdf(enc, IMIN(sym, 2), last_zero, 7);
660
   } else if (*last == cap) {
661
      ec_enc_icdf(enc, IMIN(sym, 2), last_cap, 7);
662
   } else {
663
      ec_enc_icdf(enc, sym, last_other, 7);
664
   }
665
   /* We accept some redundancy if depth==last (for last different from 0 and cap). */
666
   if (sym == 3) ec_enc_uint(enc, depth-1, cap);
667
   *last = depth;
668
}
669
670
static int ec_dec_depth(ec_dec *dec, opus_int32 cap, opus_int32 *last) {
671
   int depth, sym;
672
   if (*last == 0) {
673
      sym = ec_dec_icdf(dec, last_zero, 7);
674
      if (sym==2) sym=3;
675
   } else if (*last == cap) {
676
      sym = ec_dec_icdf(dec, last_cap, 7);
677
      if (sym==2) sym=3;
678
   } else {
679
      sym = ec_dec_icdf(dec, last_other, 7);
680
   }
681
   if (sym==0) depth=0;
682
   else if (sym==1) depth=cap;
683
   else if (sym==2) depth=*last;
684
   else depth = 1 + ec_dec_uint(dec, cap);
685
   *last = depth;
686
   return depth;
687
}
688
689
#define MSWAP16(a,b) do {opus_val16 tmp = a;a=b;b=tmp;} while(0)
690
static opus_val16 median_of_5_val16(const opus_val16 *x)
691
{
692
   opus_val16 t0, t1, t2, t3, t4;
693
   t2 = x[2];
694
   if (x[0] > x[1])
695
   {
696
      t0 = x[1];
697
      t1 = x[0];
698
   } else {
699
      t0 = x[0];
700
      t1 = x[1];
701
   }
702
   if (x[3] > x[4])
703
   {
704
      t3 = x[4];
705
      t4 = x[3];
706
   } else {
707
      t3 = x[3];
708
      t4 = x[4];
709
   }
710
   if (t0 > t3)
711
   {
712
      MSWAP16(t0, t3);
713
      MSWAP16(t1, t4);
714
   }
715
   if (t2 > t1)
716
   {
717
      if (t1 < t3)
718
         return MIN16(t2, t3);
719
      else
720
         return MIN16(t4, t1);
721
   } else {
722
      if (t2 < t3)
723
         return MIN16(t1, t3);
724
      else
725
         return MIN16(t2, t4);
726
   }
727
}
728
729
void clt_compute_extra_allocation(const CELTMode *m, const CELTMode *qext_mode, int start, int end, int qext_end, const celt_glog *bandLogE, const celt_glog *qext_bandLogE,
730
      opus_int32 total, int *extra_pulses, int *extra_equant, int C, int LM, ec_ctx *ec, int encode, opus_val16 tone_freq, opus_val32 toneishness)
731
{
732
   int i;
733
   opus_int32 last=0;
734
   opus_val32 sum;
735
   opus_val32 fill;
736
   int iter;
737
   int tot_bands;
738
   int tot_samples;
739
   VARDECL(int, depth);
740
   VARDECL(opus_int32, cap);
741
#ifdef FUZZING
742
   float depth_std;
743
#endif
744
   SAVE_STACK;
745
#ifdef FUZZING
746
   depth_std = -10.f*log(1e-8+(float)rand()/(float)RAND_MAX);
747
   depth_std = FMAX(0, FMIN(48, depth_std));
748
#endif
749
   if (qext_mode != NULL) {
750
      celt_assert(end==m->nbEBands);
751
      tot_bands = end + qext_end;
752
      tot_samples = qext_mode->eBands[qext_end]*C<<LM;
753
   } else {
754
      tot_bands = end;
755
      tot_samples = (m->eBands[end]-m->eBands[start])*C<<LM;
756
   }
757
   ALLOC(cap, tot_bands, opus_int32);
758
   for (i=start;i<end;i++) cap[i] = 12;
759
   if (qext_mode != NULL) {
760
      for (i=0;i<qext_end;i++) cap[end+i] = 14;
761
   }
762
   if (total <= 0) {
763
      for (i=start;i<m->nbEBands+qext_end;i++) {
764
         extra_pulses[i] = extra_equant[i] = 0;
765
      }
766
      RESTORE_STACK;
767
      return;
768
   }
769
   ALLOC(depth, tot_bands, int);
770
   if (encode) {
771
      VARDECL(opus_val16, flatE);
772
      VARDECL(int, Ncoef);
773
      VARDECL(opus_val16, min);
774
      VARDECL(opus_val16, follower);
775
776
      ALLOC(flatE, tot_bands, opus_val16);
777
      ALLOC(min, tot_bands, opus_val16);
778
      ALLOC(Ncoef, tot_bands, int);
779
      for (i=start;i<end;i++) {
780
         Ncoef[i] = (m->eBands[i+1]-m->eBands[i])*C<<LM;
781
      }
782
      /* Remove the effect of band width, eMeans and pre-emphasis to compute the real (flat) spectrum. */
783
      for (i=start;i<end;i++) {
784
         flatE[i] = PSHR32(bandLogE[i] - GCONST(0.0625f)*m->logN[i] + SHL32(eMeans[i],DB_SHIFT-4) - GCONST(.0062f)*(i+5)*(i+5), DB_SHIFT-10);
785
         min[i] = 0;
786
      }
787
      if (C==2) {
788
         for (i=start;i<end;i++) {
789
            flatE[i] = MAXG(flatE[i], PSHR32(bandLogE[m->nbEBands+i] - GCONST(0.0625f)*m->logN[i] + SHL32(eMeans[i],DB_SHIFT-4) - GCONST(.0062f)*(i+5)*(i+5), DB_SHIFT-10));
790
         }
791
      }
792
      flatE[end-1] += QCONST16(2.f, 10);
793
      if (qext_mode != NULL) {
794
         opus_val16 min_depth = 0;
795
         /* If we have enough bits, give at least 1 bit of depth to all higher bands. */
796
         if (total >= 3*C*(qext_mode->eBands[qext_end]-qext_mode->eBands[start])<<LM<<BITRES && (toneishness < QCONST32(.98f, 29) || tone_freq > 1.33f))
797
            min_depth = QCONST16(1.f, 10);
798
         for (i=0;i<qext_end;i++) {
799
            Ncoef[end+i] = (qext_mode->eBands[i+1]-qext_mode->eBands[i])*C<<LM;
800
            min[end+i] = min_depth;
801
         }
802
         for (i=0;i<qext_end;i++) {
803
            flatE[end+i] = PSHR32(qext_bandLogE[i] - GCONST(0.0625f)*qext_mode->logN[i] + SHL32(eMeans[i],DB_SHIFT-4) - GCONST(.0062f)*(end+i+5)*(end+i+5), DB_SHIFT-10);
804
         }
805
         if (C==2) {
806
            for (i=0;i<qext_end;i++) {
807
               flatE[end+i] = MAXG(flatE[end+i], PSHR32(qext_bandLogE[NB_QEXT_BANDS+i] - GCONST(0.0625f)*qext_mode->logN[i] + SHL32(eMeans[i],DB_SHIFT-4) - GCONST(.0062f)*(end+i+5)*(end+i+5), DB_SHIFT-10));
808
            }
809
         }
810
      }
811
      ALLOC(follower, tot_bands, opus_val16);
812
      for (i=start+2;i<tot_bands-2;i++) {
813
         follower[i] = median_of_5_val16(&flatE[i-2]);
814
      }
815
      follower[start] = follower[start+1] = follower[start+2];
816
      follower[tot_bands-1] = follower[tot_bands-2] = follower[tot_bands-3];
817
      for (i=start+1;i<tot_bands;i++) {
818
         follower[i] = MAX16(follower[i], follower[i-1]-QCONST16(1.f, 10));
819
      }
820
      for (i=tot_bands-2;i>=start;i--) {
821
         follower[i] = MAX16(follower[i], follower[i+1]-QCONST16(1.f, 10));
822
      }
823
      for (i=start;i<tot_bands;i++) flatE[i] -= MULT16_16_Q15(Q15ONE-PSHR32(toneishness, 14), follower[i]);
824
      if (qext_mode != NULL) {
825
         for (i=0;i<qext_end;i++) flatE[end+i] = flatE[end+i] + QCONST16(3.f, 10) + QCONST16(.2f, 10)*i;
826
      }
827
      /* Approximate fill level assuming all bands contribute fully. */
828
      sum = 0;
829
      for (i=start;i<tot_bands;i++) {
830
         sum += MULT16_16(Ncoef[i], flatE[i]);
831
      }
832
      total >>= BITRES;
833
      fill = (SHL32(total, 10) + sum)/tot_samples;
834
      /* Iteratively refine the fill level considering the depth min and cap. */
835
      for (iter=0;iter<10;iter++) {
836
         sum = 0;
837
         for (i=start;i<tot_bands;i++)
838
            sum += Ncoef[i] * MIN32(SHL32(cap[i], 10), MAX32(min[i], flatE[i]-fill));
839
         fill -= (SHL32(total, 10) - sum)/tot_samples;
840
      }
841
      for (i=start;i<tot_bands;i++) {
842
#ifdef FIXED_POINT
843
         depth[i] = PSHR32(MIN32(SHL32(cap[i], 10), MAX32(min[i], flatE[i]-fill)), 10-2);
844
#else
845
         depth[i] = (int)floor(.5+4*MIN32(SHL32(cap[i], 10), MAX32(min[i], flatE[i]-fill)));
846
#endif
847
#ifdef FUZZING
848
         depth[i] = (int)-depth_std*log(1e-8+(float)rand()/(float)RAND_MAX);
849
         depth[i] = IMAX(0, IMIN(cap[i]<<2, depth[i]));
850
#endif
851
         if (ec_tell_frac(ec) + 80 < ec->storage*8<<BITRES)
852
            ec_enc_depth(ec, depth[i], 4*cap[i], &last);
853
         else
854
            depth[i] = 0;
855
      }
856
   } else {
857
      for (i=start;i<tot_bands;i++) {
858
         if (ec_tell_frac(ec) + 80 < ec->storage*8<<BITRES)
859
            depth[i] = ec_dec_depth(ec, 4*cap[i], &last);
860
         else
861
            depth[i] = 0;
862
      }
863
   }
864
   for (i=start;i<end;i++) {
865
      extra_equant[i] = (depth[i]+3)>>2;
866
      extra_pulses[i] = ((((m->eBands[i+1]-m->eBands[i])<<LM)-1)*C * depth[i] * (1<<BITRES) + 2)>>2;
867
   }
868
   if (qext_mode) {
869
      for (i=0;i<qext_end;i++) {
870
         extra_equant[end+i] = (depth[end+i]+3)>>2;
871
         extra_pulses[end+i] = ((((qext_mode->eBands[i+1]-qext_mode->eBands[i])<<LM)-1)*C * depth[end+i] * (1<<BITRES) + 2)>>2;
872
      }
873
   }
874
   RESTORE_STACK;
875
}
876
#endif