Coverage Report

Created: 2025-12-31 07:57

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/opus/silk/NLSF2A.c
Line
Count
Source
1
/***********************************************************************
2
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
3
Redistribution and use in source and binary forms, with or without
4
modification, are permitted provided that the following conditions
5
are met:
6
- Redistributions of source code must retain the above copyright notice,
7
this list of conditions and the following disclaimer.
8
- Redistributions in binary form must reproduce the above copyright
9
notice, this list of conditions and the following disclaimer in the
10
documentation and/or other materials provided with the distribution.
11
- Neither the name of Internet Society, IETF or IETF Trust, nor the
12
names of specific contributors, may be used to endorse or promote
13
products derived from this software without specific prior written
14
permission.
15
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25
POSSIBILITY OF SUCH DAMAGE.
26
***********************************************************************/
27
28
#ifdef HAVE_CONFIG_H
29
#include "config.h"
30
#endif
31
32
/* conversion between prediction filter coefficients and LSFs   */
33
/* order should be even                                         */
34
/* a piecewise linear approximation maps LSF <-> cos(LSF)       */
35
/* therefore the result is not accurate LSFs, but the two       */
36
/* functions are accurate inverses of each other                */
37
38
#include "SigProc_FIX.h"
39
#include "tables.h"
40
41
412k
#define QA      16
42
43
/* helper function for NLSF2A(..) */
44
static OPUS_INLINE void silk_NLSF2A_find_poly(
45
    opus_int32          *out,      /* O    intermediate polynomial, QA [dd+1]        */
46
    const opus_int32    *cLSF,     /* I    vector of interleaved 2*cos(LSFs), QA [d] */
47
    opus_int            dd         /* I    polynomial order (= 1/2 * filter order)   */
48
)
49
824k
{
50
824k
    opus_int   k, n;
51
824k
    opus_int32 ftmp;
52
53
824k
    out[0] = silk_LSHIFT( 1, QA );
54
824k
    out[1] = -cLSF[0];
55
4.76M
    for( k = 1; k < dd; k++ ) {
56
3.93M
        ftmp = cLSF[2*k];            /* QA*/
57
3.93M
        out[k+1] = silk_LSHIFT( out[k-1], 1 ) - (opus_int32)silk_RSHIFT_ROUND64( silk_SMULL( ftmp, out[k] ), QA );
58
12.0M
        for( n = k; n > 1; n-- ) {
59
8.13M
            out[n] += out[n-2] - (opus_int32)silk_RSHIFT_ROUND64( silk_SMULL( ftmp, out[n-1] ), QA );
60
8.13M
        }
61
3.93M
        out[1] -= ftmp;
62
3.93M
    }
63
824k
}
64
65
/* compute whitening filter coefficients from normalized line spectral frequencies */
66
void silk_NLSF2A(
67
    opus_int16                  *a_Q12,             /* O    monic whitening filter coefficients in Q12,  [ d ]          */
68
    const opus_int16            *NLSF,              /* I    normalized line spectral frequencies in Q15, [ d ]          */
69
    const opus_int              d,                  /* I    filter order (should be even)                               */
70
    int                         arch                /* I    Run-time architecture                                       */
71
)
72
412k
{
73
    /* This ordering was found to maximize quality. It improves numerical accuracy of
74
       silk_NLSF2A_find_poly() compared to "standard" ordering. */
75
412k
    static const unsigned char ordering16[16] = {
76
412k
      0, 15, 8, 7, 4, 11, 12, 3, 2, 13, 10, 5, 6, 9, 14, 1
77
412k
    };
78
412k
    static const unsigned char ordering10[10] = {
79
412k
      0, 9, 6, 3, 4, 5, 8, 1, 2, 7
80
412k
    };
81
412k
    const unsigned char *ordering;
82
412k
    opus_int   k, i, dd;
83
412k
    opus_int32 cos_LSF_QA[ SILK_MAX_ORDER_LPC ];
84
412k
    opus_int32 P[ SILK_MAX_ORDER_LPC / 2 + 1 ], Q[ SILK_MAX_ORDER_LPC / 2 + 1 ];
85
412k
    opus_int32 Ptmp, Qtmp, f_int, f_frac, cos_val, delta;
86
412k
    opus_int32 a32_QA1[ SILK_MAX_ORDER_LPC ];
87
88
412k
    silk_assert( LSF_COS_TAB_SZ_FIX == 128 );
89
412k
    celt_assert( d==10 || d==16 );
90
91
    /* convert LSFs to 2*cos(LSF), using piecewise linear curve from table */
92
412k
    ordering = d == 16 ? ordering16 : ordering10;
93
5.17M
    for( k = 0; k < d; k++ ) {
94
4.76M
        silk_assert( NLSF[k] >= 0 );
95
96
        /* f_int on a scale 0-127 (rounded down) */
97
4.76M
        f_int = silk_RSHIFT( NLSF[k], 15 - 7 );
98
99
        /* f_frac, range: 0..255 */
100
4.76M
        f_frac = NLSF[k] - silk_LSHIFT( f_int, 15 - 7 );
101
102
4.76M
        silk_assert(f_int >= 0);
103
4.76M
        silk_assert(f_int < LSF_COS_TAB_SZ_FIX );
104
105
        /* Read start and end value from table */
106
4.76M
        cos_val = silk_LSFCosTab_FIX_Q12[ f_int ];                /* Q12 */
107
4.76M
        delta   = silk_LSFCosTab_FIX_Q12[ f_int + 1 ] - cos_val;  /* Q12, with a range of 0..200 */
108
109
        /* Linear interpolation */
110
4.76M
        cos_LSF_QA[ordering[k]] = silk_RSHIFT_ROUND( silk_LSHIFT( cos_val, 8 ) + silk_MUL( delta, f_frac ), 20 - QA ); /* QA */
111
4.76M
    }
112
113
412k
    dd = silk_RSHIFT( d, 1 );
114
115
    /* generate even and odd polynomials using convolution */
116
412k
    silk_NLSF2A_find_poly( P, &cos_LSF_QA[ 0 ], dd );
117
412k
    silk_NLSF2A_find_poly( Q, &cos_LSF_QA[ 1 ], dd );
118
119
    /* convert even and odd polynomials to opus_int32 Q12 filter coefs */
120
2.79M
    for( k = 0; k < dd; k++ ) {
121
2.38M
        Ptmp = P[ k+1 ] + P[ k ];
122
2.38M
        Qtmp = Q[ k+1 ] - Q[ k ];
123
124
        /* the Ptmp and Qtmp values at this stage need to fit in int32 */
125
2.38M
        a32_QA1[ k ]     = -Qtmp - Ptmp;        /* QA+1 */
126
2.38M
        a32_QA1[ d-k-1 ] =  Qtmp - Ptmp;        /* QA+1 */
127
2.38M
    }
128
129
    /* Convert int32 coefficients to Q12 int16 coefs */
130
412k
    silk_LPC_fit( a_Q12, a32_QA1, 12, QA + 1, d );
131
132
521k
    for( i = 0; silk_LPC_inverse_pred_gain( a_Q12, d, arch ) == 0 && i < MAX_LPC_STABILIZE_ITERATIONS; i++ ) {
133
        /* Prediction coefficients are (too close to) unstable; apply bandwidth expansion   */
134
        /* on the unscaled coefficients, convert to Q12 and measure again                   */
135
109k
        silk_bwexpander_32( a32_QA1, d, 65536 - silk_LSHIFT( 2, i ) );
136
1.48M
        for( k = 0; k < d; k++ ) {
137
1.37M
            a_Q12[ k ] = (opus_int16)silk_RSHIFT_ROUND( a32_QA1[ k ], QA + 1 - 12 );            /* QA+1 -> Q12 */
138
1.37M
        }
139
109k
    }
140
412k
}