Coverage Report

Created: 2025-12-31 07:57

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/opus/silk/resampler.c
Line
Count
Source
1
/***********************************************************************
2
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
3
Redistribution and use in source and binary forms, with or without
4
modification, are permitted provided that the following conditions
5
are met:
6
- Redistributions of source code must retain the above copyright notice,
7
this list of conditions and the following disclaimer.
8
- Redistributions in binary form must reproduce the above copyright
9
notice, this list of conditions and the following disclaimer in the
10
documentation and/or other materials provided with the distribution.
11
- Neither the name of Internet Society, IETF or IETF Trust, nor the
12
names of specific contributors, may be used to endorse or promote
13
products derived from this software without specific prior written
14
permission.
15
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25
POSSIBILITY OF SUCH DAMAGE.
26
***********************************************************************/
27
28
#ifdef HAVE_CONFIG_H
29
#include "config.h"
30
#endif
31
32
/*
33
 * Matrix of resampling methods used:
34
 *                                 Fs_out (kHz)
35
 *                        8      12     16     24     48
36
 *
37
 *               8        C      UF     U      UF     UF
38
 *              12        AF     C      UF     U      UF
39
 * Fs_in (kHz)  16        D      AF     C      UF     UF
40
 *              24        AF     D      AF     C      U
41
 *              48        AF     AF     AF     D      C
42
 *
43
 * C   -> Copy (no resampling)
44
 * D   -> Allpass-based 2x downsampling
45
 * U   -> Allpass-based 2x upsampling
46
 * UF  -> Allpass-based 2x upsampling followed by FIR interpolation
47
 * AF  -> AR2 filter followed by FIR interpolation
48
 */
49
50
#include "resampler_private.h"
51
52
/* Tables with delay compensation values to equalize total delay for different modes */
53
static const opus_int8 delay_matrix_enc[ 6 ][ 3 ] = {
54
/* in  \ out  8  12  16 */
55
/*  8 */   {  6,  0,  3 },
56
/* 12 */   {  0,  7,  3 },
57
/* 16 */   {  0,  1, 10 },
58
/* 24 */   {  0,  2,  6 },
59
/* 48 */   { 18, 10, 12 },
60
/* 96 */   {  0,  0,  44 }
61
};
62
63
static const opus_int8 delay_matrix_dec[ 3 ][ 6 ] = {
64
/* in  \ out  8  12  16  24  48  96*/
65
/*  8 */   {  4,  0,  2,  0,  0,  0 },
66
/* 12 */   {  0,  9,  4,  7,  4,  4 },
67
/* 16 */   {  0,  3, 12,  7,  7,  7 }
68
};
69
70
/* Simple way to make [8000, 12000, 16000, 24000, 48000] to [0, 1, 2, 3, 4] */
71
187k
#define rateID(R) IMIN(5, ( ( ( ((R)>>12) - ((R)>16000) ) >> ((R)>24000) ) - 1 ))
72
73
0
#define USE_silk_resampler_copy                     (0)
74
0
#define USE_silk_resampler_private_up2_HQ_wrapper   (1)
75
486k
#define USE_silk_resampler_private_IIR_FIR          (2)
76
0
#define USE_silk_resampler_private_down_FIR         (3)
77
78
/* Initialize/reset the resampler state for a given pair of input/output sampling rates */
79
opus_int silk_resampler_init(
80
    silk_resampler_state_struct *S,                 /* I/O  Resampler state                                             */
81
    opus_int32                  Fs_Hz_in,           /* I    Input sampling rate (Hz)                                    */
82
    opus_int32                  Fs_Hz_out,          /* I    Output sampling rate (Hz)                                   */
83
    opus_int                    forEnc              /* I    If 1: encoder; if 0: decoder                                */
84
)
85
93.9k
{
86
93.9k
    opus_int up2x;
87
88
    /* Clear state */
89
93.9k
    silk_memset( S, 0, sizeof( silk_resampler_state_struct ) );
90
91
    /* Input checking */
92
93.9k
    if( forEnc ) {
93
0
        if( ( Fs_Hz_in  != 8000 && Fs_Hz_in  != 12000 && Fs_Hz_in  != 16000 && Fs_Hz_in  != 24000 && Fs_Hz_in  != 48000
94
#ifdef ENABLE_QEXT
95
                  && Fs_Hz_in != 96000
96
#endif
97
0
              ) ||
98
0
            ( Fs_Hz_out != 8000 && Fs_Hz_out != 12000 && Fs_Hz_out != 16000 ) ) {
99
0
            celt_assert( 0 );
100
0
            return -1;
101
0
        }
102
0
        S->inputDelay = delay_matrix_enc[ rateID( Fs_Hz_in ) ][ rateID( Fs_Hz_out ) ];
103
93.9k
    } else {
104
93.9k
        if( ( Fs_Hz_in  != 8000 && Fs_Hz_in  != 12000 && Fs_Hz_in  != 16000 ) ||
105
93.9k
            ( Fs_Hz_out != 8000 && Fs_Hz_out != 12000 && Fs_Hz_out != 16000 && Fs_Hz_out != 24000 && Fs_Hz_out != 48000
106
#ifdef ENABLE_QEXT
107
                  && Fs_Hz_out != 96000
108
#endif
109
93.9k
                  ) ) {
110
0
            celt_assert( 0 );
111
0
            return -1;
112
0
        }
113
93.9k
        S->inputDelay = delay_matrix_dec[ rateID( Fs_Hz_in ) ][ rateID( Fs_Hz_out ) ];
114
93.9k
    }
115
116
93.9k
    S->Fs_in_kHz  = silk_DIV32_16( Fs_Hz_in,  1000 );
117
93.9k
    S->Fs_out_kHz = silk_DIV32_16( Fs_Hz_out, 1000 );
118
119
    /* Number of samples processed per batch */
120
93.9k
    S->batchSize = S->Fs_in_kHz * RESAMPLER_MAX_BATCH_SIZE_MS;
121
122
    /* Find resampler with the right sampling ratio */
123
93.9k
    up2x = 0;
124
93.9k
    if( Fs_Hz_out > Fs_Hz_in ) {
125
        /* Upsample */
126
93.9k
        if( Fs_Hz_out == silk_MUL( Fs_Hz_in, 2 ) ) {                            /* Fs_out : Fs_in = 2 : 1 */
127
            /* Special case: directly use 2x upsampler */
128
0
            S->resampler_function = USE_silk_resampler_private_up2_HQ_wrapper;
129
93.9k
        } else {
130
            /* Default resampler */
131
93.9k
            S->resampler_function = USE_silk_resampler_private_IIR_FIR;
132
93.9k
            up2x = 1;
133
93.9k
        }
134
93.9k
    } else if ( Fs_Hz_out < Fs_Hz_in ) {
135
        /* Downsample */
136
0
         S->resampler_function = USE_silk_resampler_private_down_FIR;
137
0
        if( silk_MUL( Fs_Hz_out, 4 ) == silk_MUL( Fs_Hz_in, 3 ) ) {             /* Fs_out : Fs_in = 3 : 4 */
138
0
            S->FIR_Fracs = 3;
139
0
            S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR0;
140
0
            S->Coefs = silk_Resampler_3_4_COEFS;
141
0
        } else if( silk_MUL( Fs_Hz_out, 3 ) == silk_MUL( Fs_Hz_in, 2 ) ) {      /* Fs_out : Fs_in = 2 : 3 */
142
0
            S->FIR_Fracs = 2;
143
0
            S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR0;
144
0
            S->Coefs = silk_Resampler_2_3_COEFS;
145
0
        } else if( silk_MUL( Fs_Hz_out, 2 ) == Fs_Hz_in ) {                     /* Fs_out : Fs_in = 1 : 2 */
146
0
            S->FIR_Fracs = 1;
147
0
            S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR1;
148
0
            S->Coefs = silk_Resampler_1_2_COEFS;
149
0
        } else if( silk_MUL( Fs_Hz_out, 3 ) == Fs_Hz_in ) {                     /* Fs_out : Fs_in = 1 : 3 */
150
0
            S->FIR_Fracs = 1;
151
0
            S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR2;
152
0
            S->Coefs = silk_Resampler_1_3_COEFS;
153
0
        } else if( silk_MUL( Fs_Hz_out, 4 ) == Fs_Hz_in ) {                     /* Fs_out : Fs_in = 1 : 4 */
154
0
            S->FIR_Fracs = 1;
155
0
            S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR2;
156
0
            S->Coefs = silk_Resampler_1_4_COEFS;
157
0
        } else if( silk_MUL( Fs_Hz_out, 6 ) == Fs_Hz_in ) {                     /* Fs_out : Fs_in = 1 : 6 */
158
0
            S->FIR_Fracs = 1;
159
0
            S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR2;
160
0
            S->Coefs = silk_Resampler_1_6_COEFS;
161
0
        } else {
162
            /* None available */
163
0
            celt_assert( 0 );
164
0
            return -1;
165
0
        }
166
0
    } else {
167
        /* Input and output sampling rates are equal: copy */
168
0
        S->resampler_function = USE_silk_resampler_copy;
169
0
    }
170
171
    /* Ratio of input/output samples */
172
93.9k
    S->invRatio_Q16 = silk_LSHIFT32( silk_DIV32( silk_LSHIFT32( Fs_Hz_in, 14 + up2x ), Fs_Hz_out ), 2 );
173
    /* Make sure the ratio is rounded up */
174
285k
    while( silk_SMULWW( S->invRatio_Q16, Fs_Hz_out ) < silk_LSHIFT32( Fs_Hz_in, up2x ) ) {
175
191k
        S->invRatio_Q16++;
176
191k
    }
177
178
93.9k
    return 0;
179
93.9k
}
180
181
/* Resampler: convert from one sampling rate to another */
182
/* Input and output sampling rate are at most 48000 Hz  */
183
opus_int silk_resampler(
184
    silk_resampler_state_struct *S,                 /* I/O  Resampler state                                             */
185
    opus_int16                  out[],              /* O    Output signal                                               */
186
    const opus_int16            in[],               /* I    Input signal                                                */
187
    opus_int32                  inLen               /* I    Number of input samples                                     */
188
)
189
392k
{
190
392k
    opus_int nSamples;
191
192
    /* Need at least 1 ms of input data */
193
392k
    celt_assert( inLen >= S->Fs_in_kHz );
194
    /* Delay can't exceed the 1 ms of buffering */
195
392k
    celt_assert( S->inputDelay <= S->Fs_in_kHz );
196
197
392k
    nSamples = S->Fs_in_kHz - S->inputDelay;
198
199
    /* Copy to delay buffer */
200
392k
    silk_memcpy( &S->delayBuf[ S->inputDelay ], in, nSamples * sizeof( opus_int16 ) );
201
202
392k
    switch( S->resampler_function ) {
203
0
        case USE_silk_resampler_private_up2_HQ_wrapper:
204
0
            silk_resampler_private_up2_HQ_wrapper( S, out, S->delayBuf, S->Fs_in_kHz );
205
0
            silk_resampler_private_up2_HQ_wrapper( S, &out[ S->Fs_out_kHz ], &in[ nSamples ], inLen - S->Fs_in_kHz );
206
0
            break;
207
392k
        case USE_silk_resampler_private_IIR_FIR:
208
392k
            silk_resampler_private_IIR_FIR( S, out, S->delayBuf, S->Fs_in_kHz );
209
392k
            silk_resampler_private_IIR_FIR( S, &out[ S->Fs_out_kHz ], &in[ nSamples ], inLen - S->Fs_in_kHz );
210
392k
            break;
211
0
        case USE_silk_resampler_private_down_FIR:
212
0
            silk_resampler_private_down_FIR( S, out, S->delayBuf, S->Fs_in_kHz );
213
0
            silk_resampler_private_down_FIR( S, &out[ S->Fs_out_kHz ], &in[ nSamples ], inLen - S->Fs_in_kHz );
214
0
            break;
215
0
        default:
216
0
            silk_memcpy( out, S->delayBuf, S->Fs_in_kHz * sizeof( opus_int16 ) );
217
0
            silk_memcpy( &out[ S->Fs_out_kHz ], &in[ nSamples ], ( inLen - S->Fs_in_kHz ) * sizeof( opus_int16 ) );
218
392k
    }
219
220
    /* Copy to delay buffer */
221
392k
    silk_memcpy( S->delayBuf, &in[ inLen - S->inputDelay ], S->inputDelay * sizeof( opus_int16 ) );
222
223
392k
    return 0;
224
392k
}