Coverage Report

Created: 2025-12-31 07:57

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/theora/lib/state.c
Line
Count
Source
1
/********************************************************************
2
 *                                                                  *
3
 * THIS FILE IS PART OF THE OggTheora SOFTWARE CODEC SOURCE CODE.   *
4
 * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS     *
5
 * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
6
 * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING.       *
7
 *                                                                  *
8
 * THE Theora SOURCE CODE IS COPYRIGHT (C) 2002-2009,2025           *
9
 * by the Xiph.Org Foundation and contributors                      *
10
 * https://www.xiph.org/                                            *
11
 *                                                                  *
12
 ********************************************************************
13
14
  function:
15
16
 ********************************************************************/
17
18
#include <stdlib.h>
19
#include <string.h>
20
#include "state.h"
21
#if defined(OC_DUMP_IMAGES)
22
# include <stdio.h>
23
# include "png.h"
24
# include "zlib.h"
25
#endif
26
27
/*The function used to fill in the chroma plane motion vectors for a macro
28
   block when 4 different motion vectors are specified in the luma plane.
29
  This version is for use with chroma decimated in the X and Y directions
30
   (4:2:0).
31
  _cbmvs: The chroma block-level motion vectors to fill in.
32
  _lbmvs: The luma block-level motion vectors.*/
33
343k
static void oc_set_chroma_mvs00(oc_mv _cbmvs[4],const oc_mv _lbmvs[4]){
34
343k
  int dx;
35
343k
  int dy;
36
343k
  dx=OC_MV_X(_lbmvs[0])+OC_MV_X(_lbmvs[1])
37
343k
   +OC_MV_X(_lbmvs[2])+OC_MV_X(_lbmvs[3]);
38
343k
  dy=OC_MV_Y(_lbmvs[0])+OC_MV_Y(_lbmvs[1])
39
343k
   +OC_MV_Y(_lbmvs[2])+OC_MV_Y(_lbmvs[3]);
40
343k
  _cbmvs[0]=OC_MV(OC_DIV_ROUND_POW2(dx,2,2),OC_DIV_ROUND_POW2(dy,2,2));
41
343k
}
42
43
/*The function used to fill in the chroma plane motion vectors for a macro
44
   block when 4 different motion vectors are specified in the luma plane.
45
  This version is for use with chroma decimated in the Y direction.
46
  _cbmvs: The chroma block-level motion vectors to fill in.
47
  _lbmvs: The luma block-level motion vectors.*/
48
0
static void oc_set_chroma_mvs01(oc_mv _cbmvs[4],const oc_mv _lbmvs[4]){
49
0
  int dx;
50
0
  int dy;
51
0
  dx=OC_MV_X(_lbmvs[0])+OC_MV_X(_lbmvs[2]);
52
0
  dy=OC_MV_Y(_lbmvs[0])+OC_MV_Y(_lbmvs[2]);
53
0
  _cbmvs[0]=OC_MV(OC_DIV_ROUND_POW2(dx,1,1),OC_DIV_ROUND_POW2(dy,1,1));
54
0
  dx=OC_MV_X(_lbmvs[1])+OC_MV_X(_lbmvs[3]);
55
0
  dy=OC_MV_Y(_lbmvs[1])+OC_MV_Y(_lbmvs[3]);
56
0
  _cbmvs[1]=OC_MV(OC_DIV_ROUND_POW2(dx,1,1),OC_DIV_ROUND_POW2(dy,1,1));
57
0
}
58
59
/*The function used to fill in the chroma plane motion vectors for a macro
60
   block when 4 different motion vectors are specified in the luma plane.
61
  This version is for use with chroma decimated in the X direction (4:2:2).
62
  _cbmvs: The chroma block-level motion vectors to fill in.
63
  _lbmvs: The luma block-level motion vectors.*/
64
9.13k
static void oc_set_chroma_mvs10(oc_mv _cbmvs[4],const oc_mv _lbmvs[4]){
65
9.13k
  int dx;
66
9.13k
  int dy;
67
9.13k
  dx=OC_MV_X(_lbmvs[0])+OC_MV_X(_lbmvs[1]);
68
9.13k
  dy=OC_MV_Y(_lbmvs[0])+OC_MV_Y(_lbmvs[1]);
69
9.13k
  _cbmvs[0]=OC_MV(OC_DIV_ROUND_POW2(dx,1,1),OC_DIV_ROUND_POW2(dy,1,1));
70
9.13k
  dx=OC_MV_X(_lbmvs[2])+OC_MV_X(_lbmvs[3]);
71
9.13k
  dy=OC_MV_Y(_lbmvs[2])+OC_MV_Y(_lbmvs[3]);
72
9.13k
  _cbmvs[2]=OC_MV(OC_DIV_ROUND_POW2(dx,1,1),OC_DIV_ROUND_POW2(dy,1,1));
73
9.13k
}
74
75
/*The function used to fill in the chroma plane motion vectors for a macro
76
   block when 4 different motion vectors are specified in the luma plane.
77
  This version is for use with no chroma decimation (4:4:4).
78
  _cbmvs: The chroma block-level motion vectors to fill in.
79
  _lmbmv: The luma macro-block level motion vector to fill in for use in
80
           prediction.
81
  _lbmvs: The luma block-level motion vectors.*/
82
11.4k
static void oc_set_chroma_mvs11(oc_mv _cbmvs[4],const oc_mv _lbmvs[4]){
83
11.4k
  _cbmvs[0]=_lbmvs[0];
84
11.4k
  _cbmvs[1]=_lbmvs[1];
85
11.4k
  _cbmvs[2]=_lbmvs[2];
86
11.4k
  _cbmvs[3]=_lbmvs[3];
87
11.4k
}
88
89
/*A table of functions used to fill in the chroma plane motion vectors for a
90
   macro block when 4 different motion vectors are specified in the luma
91
   plane.*/
92
const oc_set_chroma_mvs_func OC_SET_CHROMA_MVS_TABLE[TH_PF_NFORMATS]={
93
  (oc_set_chroma_mvs_func)oc_set_chroma_mvs00,
94
  (oc_set_chroma_mvs_func)oc_set_chroma_mvs01,
95
  (oc_set_chroma_mvs_func)oc_set_chroma_mvs10,
96
  (oc_set_chroma_mvs_func)oc_set_chroma_mvs11
97
};
98
99
100
101
/*Returns the fragment index of the top-left block in a macro block.
102
  This can be used to test whether or not the whole macro block is valid.
103
  _sb_map: The super block map.
104
  _quadi:  The quadrant number.
105
  Return: The index of the fragment of the upper left block in the macro
106
   block, or -1 if the block lies outside the coded frame.*/
107
4.99M
static ptrdiff_t oc_sb_quad_top_left_frag(oc_sb_map_quad _sb_map[4],int _quadi){
108
  /*It so happens that under the Hilbert curve ordering described below, the
109
     upper-left block in each macro block is at index 0, except in macro block
110
     3, where it is at index 2.*/
111
4.99M
  return _sb_map[_quadi][_quadi&_quadi<<1];
112
4.99M
}
113
114
/*Fills in the mapping from block positions to fragment numbers for a single
115
   color plane.
116
  This function also fills in the "valid" flag of each quadrant in the super
117
   block flags.
118
  _sb_maps:  The array of super block maps for the color plane.
119
  _sb_flags: The array of super block flags for the color plane.
120
  _frag0:    The index of the first fragment in the plane.
121
  _hfrags:   The number of horizontal fragments in a coded frame.
122
  _vfrags:   The number of vertical fragments in a coded frame.*/
123
static void oc_sb_create_plane_mapping(oc_sb_map _sb_maps[],
124
9.14k
 oc_sb_flags _sb_flags[],ptrdiff_t _frag0,int _hfrags,int _vfrags){
125
  /*Contains the (macro_block,block) indices for a 4x4 grid of
126
     fragments.
127
    The pattern is a 4x4 Hilbert space-filling curve.
128
    A Hilbert curve has the nice property that as the curve grows larger, its
129
     fractal dimension approaches 2.
130
    The intuition is that nearby blocks in the curve are also close spatially,
131
     with the previous element always an immediate neighbor, so that runs of
132
     blocks should be well correlated.*/
133
9.14k
  static const int SB_MAP[4][4][2]={
134
9.14k
    {{0,0},{0,1},{3,2},{3,3}},
135
9.14k
    {{0,3},{0,2},{3,1},{3,0}},
136
9.14k
    {{1,0},{1,3},{2,0},{2,3}},
137
9.14k
    {{1,1},{1,2},{2,1},{2,2}}
138
9.14k
  };
139
9.14k
  ptrdiff_t  yfrag;
140
9.14k
  unsigned   sbi;
141
9.14k
  int        y;
142
9.14k
  sbi=0;
143
9.14k
  yfrag=_frag0;
144
268k
  for(y=0;;y+=4){
145
268k
    int imax;
146
268k
    int x;
147
    /*Figure out how many columns of blocks in this super block lie within the
148
       image.*/
149
268k
    imax=_vfrags-y;
150
268k
    if(imax>4)imax=4;
151
18.2k
    else if(imax<=0)break;
152
1.50M
    for(x=0;;x+=4,sbi++){
153
1.50M
      ptrdiff_t xfrag;
154
1.50M
      int       jmax;
155
1.50M
      int       quadi;
156
1.50M
      int       i;
157
      /*Figure out how many rows of blocks in this super block lie within the
158
         image.*/
159
1.50M
      jmax=_hfrags-x;
160
1.50M
      if(jmax>4)jmax=4;
161
519k
      else if(jmax<=0)break;
162
      /*By default, set all fragment indices to -1.*/
163
1.24M
      memset(_sb_maps[sbi],0xFF,sizeof(_sb_maps[sbi]));
164
      /*Fill in the fragment map for this super block.*/
165
1.24M
      xfrag=yfrag+x;
166
4.09M
      for(i=0;i<imax;i++){
167
2.85M
        int j;
168
11.8M
        for(j=0;j<jmax;j++){
169
9.01M
          _sb_maps[sbi][SB_MAP[i][j][0]][SB_MAP[i][j][1]]=xfrag+j;
170
9.01M
        }
171
2.85M
        xfrag+=_hfrags;
172
2.85M
      }
173
      /*Mark which quadrants of this super block lie within the image.*/
174
6.24M
      for(quadi=0;quadi<4;quadi++){
175
4.99M
        _sb_flags[sbi].quad_valid|=
176
4.99M
         (oc_sb_quad_top_left_frag(_sb_maps[sbi],quadi)>=0)<<quadi;
177
4.99M
      }
178
1.24M
    }
179
259k
    yfrag+=_hfrags<<2;
180
259k
  }
181
9.14k
}
182
183
/*Fills in the Y plane fragment map for a macro block given the fragment
184
   coordinates of its upper-left hand corner.
185
  _mb_map:    The macro block map to fill.
186
  _fplane: The description of the Y plane.
187
  _xfrag0: The X location of the upper-left hand fragment in the luma plane.
188
  _yfrag0: The Y location of the upper-left hand fragment in the luma plane.*/
189
static void oc_mb_fill_ymapping(oc_mb_map_plane _mb_map[3],
190
1.18M
 const oc_fragment_plane *_fplane,int _xfrag0,int _yfrag0){
191
1.18M
  int i;
192
1.18M
  int j;
193
7.12M
  for(i=0;i<2;i++)for(j=0;j<2;j++){
194
4.74M
    _mb_map[0][i<<1|j]=(_yfrag0+i)*(ptrdiff_t)_fplane->nhfrags+_xfrag0+j;
195
4.74M
  }
196
1.18M
}
197
198
/*Fills in the chroma plane fragment maps for a macro block.
199
  This version is for use with chroma decimated in the X and Y directions
200
   (4:2:0).
201
  _mb_map:  The macro block map to fill.
202
  _fplanes: The descriptions of the fragment planes.
203
  _xfrag0:  The X location of the upper-left hand fragment in the luma plane.
204
  _yfrag0:  The Y location of the upper-left hand fragment in the luma plane.*/
205
static void oc_mb_fill_cmapping00(oc_mb_map_plane _mb_map[3],
206
778k
 const oc_fragment_plane _fplanes[3],int _xfrag0,int _yfrag0){
207
778k
  ptrdiff_t fragi;
208
778k
  _xfrag0>>=1;
209
778k
  _yfrag0>>=1;
210
778k
  fragi=_yfrag0*(ptrdiff_t)_fplanes[1].nhfrags+_xfrag0;
211
778k
  _mb_map[1][0]=fragi+_fplanes[1].froffset;
212
778k
  _mb_map[2][0]=fragi+_fplanes[2].froffset;
213
778k
}
214
215
/*Fills in the chroma plane fragment maps for a macro block.
216
  This version is for use with chroma decimated in the Y direction.
217
  _mb_map:  The macro block map to fill.
218
  _fplanes: The descriptions of the fragment planes.
219
  _xfrag0:  The X location of the upper-left hand fragment in the luma plane.
220
  _yfrag0:  The Y location of the upper-left hand fragment in the luma plane.*/
221
static void oc_mb_fill_cmapping01(oc_mb_map_plane _mb_map[3],
222
0
 const oc_fragment_plane _fplanes[3],int _xfrag0,int _yfrag0){
223
0
  ptrdiff_t fragi;
224
0
  int       j;
225
0
  _yfrag0>>=1;
226
0
  fragi=_yfrag0*(ptrdiff_t)_fplanes[1].nhfrags+_xfrag0;
227
0
  for(j=0;j<2;j++){
228
0
    _mb_map[1][j]=fragi+_fplanes[1].froffset;
229
0
    _mb_map[2][j]=fragi+_fplanes[2].froffset;
230
0
    fragi++;
231
0
  }
232
0
}
233
234
/*Fills in the chroma plane fragment maps for a macro block.
235
  This version is for use with chroma decimated in the X direction (4:2:2).
236
  _mb_map:  The macro block map to fill.
237
  _fplanes: The descriptions of the fragment planes.
238
  _xfrag0:  The X location of the upper-left hand fragment in the luma plane.
239
  _yfrag0:  The Y location of the upper-left hand fragment in the luma plane.*/
240
static void oc_mb_fill_cmapping10(oc_mb_map_plane _mb_map[3],
241
138k
 const oc_fragment_plane _fplanes[3],int _xfrag0,int _yfrag0){
242
138k
  ptrdiff_t fragi;
243
138k
  int       i;
244
138k
  _xfrag0>>=1;
245
138k
  fragi=_yfrag0*(ptrdiff_t)_fplanes[1].nhfrags+_xfrag0;
246
414k
  for(i=0;i<2;i++){
247
276k
    _mb_map[1][i<<1]=fragi+_fplanes[1].froffset;
248
276k
    _mb_map[2][i<<1]=fragi+_fplanes[2].froffset;
249
276k
    fragi+=_fplanes[1].nhfrags;
250
276k
  }
251
138k
}
252
253
/*Fills in the chroma plane fragment maps for a macro block.
254
  This version is for use with no chroma decimation (4:4:4).
255
  This uses the already filled-in luma plane values.
256
  _mb_map:  The macro block map to fill.
257
  _fplanes: The descriptions of the fragment planes.
258
  _xfrag0:  The X location of the upper-left hand fragment in the luma plane.
259
  _yfrag0:  The Y location of the upper-left hand fragment in the luma plane.*/
260
static void oc_mb_fill_cmapping11(oc_mb_map_plane _mb_map[3],
261
270k
 const oc_fragment_plane _fplanes[3],int _xfrag0,int _yfrag0){
262
270k
  int k;
263
270k
  (void)_xfrag0;
264
270k
  (void)_yfrag0;
265
1.35M
  for(k=0;k<4;k++){
266
1.08M
    _mb_map[1][k]=_mb_map[0][k]+_fplanes[1].froffset;
267
1.08M
    _mb_map[2][k]=_mb_map[0][k]+_fplanes[2].froffset;
268
1.08M
  }
269
270k
}
270
271
/*The function type used to fill in the chroma plane fragment maps for a
272
   macro block.
273
  _mb_map:  The macro block map to fill.
274
  _fplanes: The descriptions of the fragment planes.
275
  _xfrag0:  The X location of the upper-left hand fragment in the luma plane.
276
  _yfrag0:  The Y location of the upper-left hand fragment in the luma plane.*/
277
typedef void (*oc_mb_fill_cmapping_func)(oc_mb_map_plane _mb_map[3],
278
 const oc_fragment_plane _fplanes[3],int _xfrag0,int _yfrag0);
279
280
/*A table of functions used to fill in the chroma plane fragment maps for a
281
   macro block for each type of chrominance decimation.*/
282
static const oc_mb_fill_cmapping_func OC_MB_FILL_CMAPPING_TABLE[4]={
283
  oc_mb_fill_cmapping00,
284
  oc_mb_fill_cmapping01,
285
  oc_mb_fill_cmapping10,
286
  oc_mb_fill_cmapping11
287
};
288
289
/*Fills in the mapping from macro blocks to their corresponding fragment
290
   numbers in each plane.
291
  _mb_maps:   The list of macro block maps.
292
  _mb_modes:  The list of macro block modes; macro blocks completely outside
293
               the coded region are marked invalid.
294
  _fplanes:   The descriptions of the fragment planes.
295
  _pixel_fmt: The chroma decimation type.*/
296
static void oc_mb_create_mapping(oc_mb_map _mb_maps[],
297
3.04k
 signed char _mb_modes[],const oc_fragment_plane _fplanes[3],int _pixel_fmt){
298
3.04k
  oc_mb_fill_cmapping_func  mb_fill_cmapping;
299
3.04k
  unsigned                  sbi;
300
3.04k
  int                       y;
301
3.04k
  mb_fill_cmapping=OC_MB_FILL_CMAPPING_TABLE[_pixel_fmt];
302
  /*Loop through the luma plane super blocks.*/
303
111k
  for(sbi=y=0;y<_fplanes[0].nvfrags;y+=4){
304
108k
    int x;
305
660k
    for(x=0;x<_fplanes[0].nhfrags;x+=4,sbi++){
306
552k
      int ymb;
307
      /*Loop through the macro blocks in each super block in display order.*/
308
1.65M
      for(ymb=0;ymb<2;ymb++){
309
1.10M
        int xmb;
310
3.31M
        for(xmb=0;xmb<2;xmb++){
311
2.21M
          unsigned mbi;
312
2.21M
          int      mbx;
313
2.21M
          int      mby;
314
2.21M
          mbi=sbi<<2|OC_MB_MAP[ymb][xmb];
315
2.21M
          mbx=x|xmb<<1;
316
2.21M
          mby=y|ymb<<1;
317
          /*Initialize fragment indices to -1.*/
318
2.21M
          memset(_mb_maps[mbi],0xFF,sizeof(_mb_maps[mbi]));
319
          /*Make sure this macro block is within the encoded region.*/
320
2.21M
          if(mbx>=_fplanes[0].nhfrags||mby>=_fplanes[0].nvfrags){
321
1.02M
            _mb_modes[mbi]=OC_MODE_INVALID;
322
1.02M
            continue;
323
1.02M
          }
324
          /*Fill in the fragment indices for the luma plane.*/
325
1.18M
          oc_mb_fill_ymapping(_mb_maps[mbi],_fplanes,mbx,mby);
326
          /*Fill in the fragment indices for the chroma planes.*/
327
1.18M
          (*mb_fill_cmapping)(_mb_maps[mbi],_fplanes,mbx,mby);
328
1.18M
        }
329
1.10M
      }
330
552k
    }
331
108k
  }
332
3.04k
}
333
334
/*Marks the fragments which fall all or partially outside the displayable
335
   region of the frame.
336
  _state: The Theora state containing the fragments to be marked.*/
337
3.04k
static void oc_state_border_init(oc_theora_state *_state){
338
3.04k
  oc_fragment       *frag;
339
3.04k
  oc_fragment       *yfrag_end;
340
3.04k
  oc_fragment       *xfrag_end;
341
3.04k
  oc_fragment_plane *fplane;
342
3.04k
  int                crop_x0;
343
3.04k
  int                crop_y0;
344
3.04k
  int                crop_xf;
345
3.04k
  int                crop_yf;
346
3.04k
  int                pli;
347
3.04k
  int                y;
348
3.04k
  int                x;
349
  /*The method we use here is slow, but the code is dead simple and handles
350
     all the special cases easily.
351
    We only ever need to do it once.*/
352
  /*Loop through the fragments, marking those completely outside the
353
     displayable region and constructing a border mask for those that straddle
354
     the border.*/
355
3.04k
  _state->nborders=0;
356
3.04k
  yfrag_end=frag=_state->frags;
357
12.1k
  for(pli=0;pli<3;pli++){
358
9.14k
    fplane=_state->fplanes+pli;
359
    /*Set up the cropping rectangle for this plane.*/
360
9.14k
    crop_x0=_state->info.pic_x;
361
9.14k
    crop_xf=_state->info.pic_x+_state->info.pic_width;
362
9.14k
    crop_y0=_state->info.pic_y;
363
9.14k
    crop_yf=_state->info.pic_y+_state->info.pic_height;
364
9.14k
    if(pli>0){
365
6.09k
      if(!(_state->info.pixel_fmt&1)){
366
5.41k
        crop_x0=crop_x0>>1;
367
5.41k
        crop_xf=crop_xf+1>>1;
368
5.41k
      }
369
6.09k
      if(!(_state->info.pixel_fmt&2)){
370
5.01k
        crop_y0=crop_y0>>1;
371
5.01k
        crop_yf=crop_yf+1>>1;
372
5.01k
      }
373
6.09k
    }
374
9.14k
    y=0;
375
1.03M
    for(yfrag_end+=fplane->nfrags;frag<yfrag_end;y+=8){
376
1.02M
      x=0;
377
10.0M
      for(xfrag_end=frag+fplane->nhfrags;frag<xfrag_end;frag++,x+=8){
378
        /*First check to see if this fragment is completely outside the
379
           displayable region.*/
380
        /*Note the special checks for an empty cropping rectangle.
381
          This guarantees that if we count a fragment as straddling the
382
           border below, at least one pixel in the fragment will be inside
383
           the displayable region.*/
384
9.01M
        if(x+8<=crop_x0||crop_xf<=x||y+8<=crop_y0||crop_yf<=y||
385
5.80M
         crop_x0>=crop_xf||crop_y0>=crop_yf){
386
3.21M
          frag->invalid=1;
387
3.21M
        }
388
        /*Otherwise, check to see if it straddles the border.*/
389
5.80M
        else if(x<crop_x0&&crop_x0<x+8||x<crop_xf&&crop_xf<x+8||
390
4.80M
         y<crop_y0&&crop_y0<y+8||y<crop_yf&&crop_yf<y+8){
391
4.79M
          ogg_uint64_t mask;
392
4.79M
          int         npixels;
393
4.79M
          int         i;
394
4.79M
          mask=npixels=0;
395
43.1M
          for(i=0;i<8;i++){
396
38.3M
            int j;
397
345M
            for(j=0;j<8;j++){
398
306M
              if(x+j>=crop_x0&&x+j<crop_xf&&y+i>=crop_y0&&y+i<crop_yf){
399
67.6M
                mask|=(ogg_uint64_t)1<<(i<<3|j);
400
67.6M
                npixels++;
401
67.6M
              }
402
306M
            }
403
38.3M
          }
404
          /*Search the fragment array for border info with the same pattern.
405
            In general, there will be at most 8 different patterns (per
406
             plane).*/
407
6.66M
          for(i=0;;i++){
408
6.66M
            if(i>=_state->nborders){
409
7.29k
              _state->nborders++;
410
7.29k
              _state->borders[i].mask=mask;
411
7.29k
              _state->borders[i].npixels=npixels;
412
7.29k
            }
413
6.66M
            else if(_state->borders[i].mask!=mask)continue;
414
4.79M
            frag->borderi=i;
415
4.79M
            break;
416
6.66M
          }
417
4.79M
        }
418
1.01M
        else frag->borderi=-1;
419
9.01M
      }
420
1.02M
    }
421
9.14k
  }
422
3.04k
}
423
424
3.04k
static int oc_state_frarray_init(oc_theora_state *_state){
425
3.04k
  int       yhfrags;
426
3.04k
  int       yvfrags;
427
3.04k
  int       chfrags;
428
3.04k
  int       cvfrags;
429
3.04k
  ptrdiff_t yfrags;
430
3.04k
  ptrdiff_t cfrags;
431
3.04k
  ptrdiff_t nfrags;
432
3.04k
  unsigned  yhsbs;
433
3.04k
  unsigned  yvsbs;
434
3.04k
  unsigned  chsbs;
435
3.04k
  unsigned  cvsbs;
436
3.04k
  unsigned  ysbs;
437
3.04k
  unsigned  csbs;
438
3.04k
  unsigned  nsbs;
439
3.04k
  size_t    nmbs;
440
3.04k
  int       hdec;
441
3.04k
  int       vdec;
442
3.04k
  int       pli;
443
  /*Figure out the number of fragments in each plane.*/
444
  /*These parameters have already been validated to be multiples of 16.*/
445
3.04k
  yhfrags=_state->info.frame_width>>3;
446
3.04k
  yvfrags=_state->info.frame_height>>3;
447
3.04k
  hdec=!(_state->info.pixel_fmt&1);
448
3.04k
  vdec=!(_state->info.pixel_fmt&2);
449
3.04k
  chfrags=yhfrags+hdec>>hdec;
450
3.04k
  cvfrags=yvfrags+vdec>>vdec;
451
3.04k
  yfrags=yhfrags*(ptrdiff_t)yvfrags;
452
3.04k
  cfrags=chfrags*(ptrdiff_t)cvfrags;
453
3.04k
  nfrags=yfrags+2*cfrags;
454
  /*Figure out the number of super blocks in each plane.*/
455
3.04k
  yhsbs=yhfrags+3>>2;
456
3.04k
  yvsbs=yvfrags+3>>2;
457
3.04k
  chsbs=chfrags+3>>2;
458
3.04k
  cvsbs=cvfrags+3>>2;
459
3.04k
  ysbs=yhsbs*yvsbs;
460
3.04k
  csbs=chsbs*cvsbs;
461
3.04k
  nsbs=ysbs+2*csbs;
462
3.04k
  nmbs=(size_t)ysbs<<2;
463
  /*Check for overflow.
464
    We support the ridiculous upper limits of the specification (1048560 by
465
     1048560, or 3 TB frames) if the target architecture has 64-bit pointers,
466
     but for those with 32-bit pointers (or smaller!) we have to check.
467
    If the caller wants to prevent denial-of-service by imposing a more
468
     reasonable upper limit on the size of attempted allocations, they must do
469
     so themselves; we have no platform independent way to determine how much
470
     system memory there is nor an application-independent way to decide what a
471
     "reasonable" allocation is.*/
472
3.04k
  if(yfrags/yhfrags!=yvfrags||2*cfrags<cfrags||nfrags<yfrags||
473
3.04k
   ysbs/yhsbs!=yvsbs||2*csbs<csbs||nsbs<ysbs||nmbs>>2!=ysbs){
474
0
    return TH_EIMPL;
475
0
  }
476
  /*Initialize the fragment array.*/
477
3.04k
  _state->fplanes[0].nhfrags=yhfrags;
478
3.04k
  _state->fplanes[0].nvfrags=yvfrags;
479
3.04k
  _state->fplanes[0].froffset=0;
480
3.04k
  _state->fplanes[0].nfrags=yfrags;
481
3.04k
  _state->fplanes[0].nhsbs=yhsbs;
482
3.04k
  _state->fplanes[0].nvsbs=yvsbs;
483
3.04k
  _state->fplanes[0].sboffset=0;
484
3.04k
  _state->fplanes[0].nsbs=ysbs;
485
3.04k
  _state->fplanes[1].nhfrags=_state->fplanes[2].nhfrags=chfrags;
486
3.04k
  _state->fplanes[1].nvfrags=_state->fplanes[2].nvfrags=cvfrags;
487
3.04k
  _state->fplanes[1].froffset=yfrags;
488
3.04k
  _state->fplanes[2].froffset=yfrags+cfrags;
489
3.04k
  _state->fplanes[1].nfrags=_state->fplanes[2].nfrags=cfrags;
490
3.04k
  _state->fplanes[1].nhsbs=_state->fplanes[2].nhsbs=chsbs;
491
3.04k
  _state->fplanes[1].nvsbs=_state->fplanes[2].nvsbs=cvsbs;
492
3.04k
  _state->fplanes[1].sboffset=ysbs;
493
3.04k
  _state->fplanes[2].sboffset=ysbs+csbs;
494
3.04k
  _state->fplanes[1].nsbs=_state->fplanes[2].nsbs=csbs;
495
3.04k
  _state->nfrags=nfrags;
496
3.04k
  _state->frags=_ogg_calloc(nfrags,sizeof(*_state->frags));
497
3.04k
  _state->frag_mvs=_ogg_malloc(nfrags*sizeof(*_state->frag_mvs));
498
3.04k
  _state->nsbs=nsbs;
499
3.04k
  _state->sb_maps=_ogg_malloc(nsbs*sizeof(*_state->sb_maps));
500
3.04k
  _state->sb_flags=_ogg_calloc(nsbs,sizeof(*_state->sb_flags));
501
3.04k
  _state->nhmbs=yhsbs<<1;
502
3.04k
  _state->nvmbs=yvsbs<<1;
503
3.04k
  _state->nmbs=nmbs;
504
3.04k
  _state->mb_maps=_ogg_calloc(nmbs,sizeof(*_state->mb_maps));
505
3.04k
  _state->mb_modes=_ogg_calloc(nmbs,sizeof(*_state->mb_modes));
506
3.04k
  _state->coded_fragis=_ogg_malloc(nfrags*sizeof(*_state->coded_fragis));
507
3.04k
  if(_state->frags==NULL||_state->frag_mvs==NULL||_state->sb_maps==NULL||
508
3.04k
   _state->sb_flags==NULL||_state->mb_maps==NULL||_state->mb_modes==NULL||
509
3.04k
   _state->coded_fragis==NULL){
510
0
    return TH_EFAULT;
511
0
  }
512
  /*Create the mapping from super blocks to fragments.*/
513
12.1k
  for(pli=0;pli<3;pli++){
514
9.14k
    oc_fragment_plane *fplane;
515
9.14k
    fplane=_state->fplanes+pli;
516
9.14k
    oc_sb_create_plane_mapping(_state->sb_maps+fplane->sboffset,
517
9.14k
     _state->sb_flags+fplane->sboffset,fplane->froffset,
518
9.14k
     fplane->nhfrags,fplane->nvfrags);
519
9.14k
  }
520
  /*Create the mapping from macro blocks to fragments.*/
521
3.04k
  oc_mb_create_mapping(_state->mb_maps,_state->mb_modes,
522
3.04k
   _state->fplanes,_state->info.pixel_fmt);
523
  /*Initialize the invalid and borderi fields of each fragment.*/
524
3.04k
  oc_state_border_init(_state);
525
3.04k
  return 0;
526
3.04k
}
527
528
3.04k
static void oc_state_frarray_clear(oc_theora_state *_state){
529
3.04k
  _ogg_free(_state->coded_fragis);
530
3.04k
  _ogg_free(_state->mb_modes);
531
3.04k
  _ogg_free(_state->mb_maps);
532
3.04k
  _ogg_free(_state->sb_flags);
533
3.04k
  _ogg_free(_state->sb_maps);
534
3.04k
  _ogg_free(_state->frag_mvs);
535
3.04k
  _ogg_free(_state->frags);
536
3.04k
}
537
538
539
/*Initializes the buffers used for reconstructed frames.
540
  These buffers are padded with 16 extra pixels on each side, to allow
541
   unrestricted motion vectors without special casing the boundary.
542
  If chroma is decimated in either direction, the padding is reduced by a
543
   factor of 2 on the appropriate sides.
544
  _nrefs: The number of reference buffers to init; must be in the range 3...6.*/
545
3.04k
static int oc_state_ref_bufs_init(oc_theora_state *_state,int _nrefs){
546
3.04k
  th_info       *info;
547
3.04k
  unsigned char *ref_frame_data;
548
3.04k
  size_t         ref_frame_data_sz;
549
3.04k
  size_t         ref_frame_sz;
550
3.04k
  size_t         yplane_sz;
551
3.04k
  size_t         cplane_sz;
552
3.04k
  int            yhstride;
553
3.04k
  int            yheight;
554
3.04k
  int            chstride;
555
3.04k
  int            cheight;
556
3.04k
  ptrdiff_t      align;
557
3.04k
  ptrdiff_t      yoffset;
558
3.04k
  ptrdiff_t      coffset;
559
3.04k
  ptrdiff_t     *frag_buf_offs;
560
3.04k
  ptrdiff_t      fragi;
561
3.04k
  int            hdec;
562
3.04k
  int            vdec;
563
3.04k
  int            rfi;
564
3.04k
  int            pli;
565
3.04k
  if(_nrefs<3||_nrefs>6)return TH_EINVAL;
566
3.04k
  info=&_state->info;
567
  /*Compute the image buffer parameters for each plane.*/
568
3.04k
  hdec=!(info->pixel_fmt&1);
569
3.04k
  vdec=!(info->pixel_fmt&2);
570
3.04k
  yhstride=info->frame_width+2*OC_UMV_PADDING;
571
3.04k
  yheight=info->frame_height+2*OC_UMV_PADDING;
572
  /*Require 16-byte aligned rows in the chroma planes.*/
573
3.04k
  chstride=(yhstride>>hdec)+15&~15;
574
3.04k
  cheight=yheight>>vdec;
575
3.04k
  yplane_sz=yhstride*(size_t)yheight;
576
3.04k
  cplane_sz=chstride*(size_t)cheight;
577
3.04k
  yoffset=OC_UMV_PADDING+OC_UMV_PADDING*(ptrdiff_t)yhstride;
578
3.04k
  coffset=(OC_UMV_PADDING>>hdec)+(OC_UMV_PADDING>>vdec)*(ptrdiff_t)chstride;
579
  /*Although we guarantee the rows of the chroma planes are a multiple of 16
580
     bytes, the initial padding on the first row may only be 8 bytes.
581
    Compute the offset needed to the actual image data to a multiple of 16.*/
582
3.04k
  align=-coffset&15;
583
3.04k
  ref_frame_sz=yplane_sz+2*cplane_sz+16;
584
3.04k
  ref_frame_data_sz=_nrefs*ref_frame_sz;
585
  /*Check for overflow.
586
    The same caveats apply as for oc_state_frarray_init().*/
587
3.04k
  if(yplane_sz/yhstride!=(size_t)yheight||2*cplane_sz+16<cplane_sz||
588
3.04k
   ref_frame_sz<yplane_sz||ref_frame_data_sz/_nrefs!=ref_frame_sz){
589
0
    return TH_EIMPL;
590
0
  }
591
3.04k
  ref_frame_data=oc_aligned_malloc(ref_frame_data_sz,16);
592
3.04k
  frag_buf_offs=_state->frag_buf_offs=
593
3.04k
   _ogg_malloc(_state->nfrags*sizeof(*frag_buf_offs));
594
3.04k
  if(ref_frame_data==NULL||frag_buf_offs==NULL){
595
0
    _ogg_free(frag_buf_offs);
596
0
    oc_aligned_free(ref_frame_data);
597
0
    return TH_EFAULT;
598
0
  }
599
  /*Set up the width, height and stride for the image buffers.*/
600
3.04k
  _state->ref_frame_bufs[0][0].width=info->frame_width;
601
3.04k
  _state->ref_frame_bufs[0][0].height=info->frame_height;
602
3.04k
  _state->ref_frame_bufs[0][0].stride=yhstride;
603
3.04k
  _state->ref_frame_bufs[0][1].width=_state->ref_frame_bufs[0][2].width=
604
3.04k
   info->frame_width>>hdec;
605
3.04k
  _state->ref_frame_bufs[0][1].height=_state->ref_frame_bufs[0][2].height=
606
3.04k
   info->frame_height>>vdec;
607
3.04k
  _state->ref_frame_bufs[0][1].stride=_state->ref_frame_bufs[0][2].stride=
608
3.04k
   chstride;
609
18.2k
  for(rfi=1;rfi<_nrefs;rfi++){
610
15.2k
    memcpy(_state->ref_frame_bufs[rfi],_state->ref_frame_bufs[0],
611
15.2k
     sizeof(_state->ref_frame_bufs[0]));
612
15.2k
  }
613
3.04k
  _state->ref_frame_handle=ref_frame_data;
614
  /*Set up the data pointers for the image buffers.*/
615
21.3k
  for(rfi=0;rfi<_nrefs;rfi++){
616
18.2k
    _state->ref_frame_bufs[rfi][0].data=ref_frame_data+yoffset;
617
18.2k
    ref_frame_data+=yplane_sz+align;
618
18.2k
    _state->ref_frame_bufs[rfi][1].data=ref_frame_data+coffset;
619
18.2k
    ref_frame_data+=cplane_sz;
620
18.2k
    _state->ref_frame_bufs[rfi][2].data=ref_frame_data+coffset;
621
18.2k
    ref_frame_data+=cplane_sz+(16-align);
622
    /*Flip the buffer upside down.
623
      This allows us to decode Theora's bottom-up frames in their natural
624
       order, yet return a top-down buffer with a positive stride to the user.*/
625
18.2k
    oc_ycbcr_buffer_flip(_state->ref_frame_bufs[rfi],
626
18.2k
     _state->ref_frame_bufs[rfi]);
627
18.2k
  }
628
3.04k
  _state->ref_ystride[0]=-yhstride;
629
3.04k
  _state->ref_ystride[1]=_state->ref_ystride[2]=-chstride;
630
  /*Initialize the fragment buffer offsets.*/
631
3.04k
  ref_frame_data=_state->ref_frame_bufs[0][0].data;
632
3.04k
  fragi=0;
633
12.1k
  for(pli=0;pli<3;pli++){
634
9.14k
    th_img_plane      *iplane;
635
9.14k
    oc_fragment_plane *fplane;
636
9.14k
    unsigned char     *vpix;
637
9.14k
    ptrdiff_t          stride;
638
9.14k
    ptrdiff_t          vfragi_end;
639
9.14k
    int                nhfrags;
640
9.14k
    iplane=_state->ref_frame_bufs[0]+pli;
641
9.14k
    fplane=_state->fplanes+pli;
642
9.14k
    vpix=iplane->data;
643
9.14k
    vfragi_end=fplane->froffset+fplane->nfrags;
644
9.14k
    nhfrags=fplane->nhfrags;
645
9.14k
    stride=iplane->stride;
646
1.03M
    while(fragi<vfragi_end){
647
1.02M
      ptrdiff_t      hfragi_end;
648
1.02M
      unsigned char *hpix;
649
1.02M
      hpix=vpix;
650
10.0M
      for(hfragi_end=fragi+nhfrags;fragi<hfragi_end;fragi++){
651
9.01M
        frag_buf_offs[fragi]=hpix-ref_frame_data;
652
9.01M
        hpix+=8;
653
9.01M
      }
654
1.02M
      vpix+=stride*8;
655
1.02M
    }
656
9.14k
  }
657
  /*Initialize the reference frame pointers and indices.*/
658
3.04k
  _state->ref_frame_idx[OC_FRAME_GOLD]=
659
3.04k
   _state->ref_frame_idx[OC_FRAME_PREV]=
660
3.04k
   _state->ref_frame_idx[OC_FRAME_GOLD_ORIG]=
661
3.04k
   _state->ref_frame_idx[OC_FRAME_PREV_ORIG]=
662
3.04k
   _state->ref_frame_idx[OC_FRAME_SELF]=
663
3.04k
   _state->ref_frame_idx[OC_FRAME_IO]=-1;
664
3.04k
  _state->ref_frame_data[OC_FRAME_GOLD]=
665
3.04k
   _state->ref_frame_data[OC_FRAME_PREV]=
666
3.04k
   _state->ref_frame_data[OC_FRAME_GOLD_ORIG]=
667
3.04k
   _state->ref_frame_data[OC_FRAME_PREV_ORIG]=
668
3.04k
   _state->ref_frame_data[OC_FRAME_SELF]=
669
3.04k
   _state->ref_frame_data[OC_FRAME_IO]=NULL;
670
3.04k
  return 0;
671
3.04k
}
672
673
3.04k
static void oc_state_ref_bufs_clear(oc_theora_state *_state){
674
3.04k
  _ogg_free(_state->frag_buf_offs);
675
3.04k
  oc_aligned_free(_state->ref_frame_handle);
676
3.04k
}
677
678
679
3.04k
void oc_state_accel_init_c(oc_theora_state *_state){
680
3.04k
  _state->cpu_flags=0;
681
#if defined(OC_STATE_USE_VTABLE)
682
  _state->opt_vtable.frag_copy=oc_frag_copy_c;
683
  _state->opt_vtable.frag_copy_list=oc_frag_copy_list_c;
684
  _state->opt_vtable.frag_recon_intra=oc_frag_recon_intra_c;
685
  _state->opt_vtable.frag_recon_inter=oc_frag_recon_inter_c;
686
  _state->opt_vtable.frag_recon_inter2=oc_frag_recon_inter2_c;
687
  _state->opt_vtable.idct8x8=oc_idct8x8_c;
688
  _state->opt_vtable.state_frag_recon=oc_state_frag_recon_c;
689
  _state->opt_vtable.loop_filter_init=oc_loop_filter_init_c;
690
  _state->opt_vtable.state_loop_filter_frag_rows=
691
   oc_state_loop_filter_frag_rows_c;
692
  _state->opt_vtable.restore_fpu=oc_restore_fpu_c;
693
#endif
694
3.04k
  _state->opt_data.dct_fzig_zag=OC_FZIG_ZAG;
695
3.04k
}
696
697
698
3.04k
int oc_state_init(oc_theora_state *_state,const th_info *_info,int _nrefs){
699
3.04k
  int ret;
700
  /*First validate the parameters.*/
701
3.04k
  if(_info==NULL)return TH_EFAULT;
702
  /*The width and height of the encoded frame must be multiples of 16.
703
    They must also, when divided by 16, fit into a 16-bit unsigned integer.
704
    The displayable frame offset coordinates must fit into an 8-bit unsigned
705
     integer.
706
    Note that the offset Y in the API is specified on the opposite side from
707
     how it is specified in the bitstream, because the Y axis is flipped in
708
     the bitstream.
709
    The displayable frame must fit inside the encoded frame.
710
    The color space must be one known by the encoder.
711
    The framerate ratio must not contain a zero value.*/
712
3.04k
  if((_info->frame_width&0xF)||(_info->frame_height&0xF)||
713
3.04k
   _info->frame_width<=0||_info->frame_width>=0x100000||
714
3.04k
   _info->frame_height<=0||_info->frame_height>=0x100000||
715
3.04k
   _info->pic_x+_info->pic_width>_info->frame_width||
716
3.04k
   _info->pic_y+_info->pic_height>_info->frame_height||
717
3.04k
   _info->pic_x>255||_info->frame_height-_info->pic_height-_info->pic_y>255||
718
   /*Note: the following <0 comparisons may generate spurious warnings on
719
      platforms where enums are unsigned.
720
     We could cast them to unsigned and just use the following >= comparison,
721
      but there are a number of compilers which will mis-optimize this.
722
     It's better to live with the spurious warnings.*/
723
3.04k
   _info->colorspace<0||_info->colorspace>=TH_CS_NSPACES||
724
3.04k
   _info->pixel_fmt<0||_info->pixel_fmt>=TH_PF_NFORMATS||
725
3.04k
   _info->fps_numerator<1||_info->fps_denominator<1){
726
0
    return TH_EINVAL;
727
0
  }
728
3.04k
  memset(_state,0,sizeof(*_state));
729
3.04k
  memcpy(&_state->info,_info,sizeof(*_info));
730
  /*Invert the sense of pic_y to match Theora's right-handed coordinate
731
     system.*/
732
3.04k
  _state->info.pic_y=_info->frame_height-_info->pic_height-_info->pic_y;
733
3.04k
  _state->frame_type=OC_UNKWN_FRAME;
734
3.04k
  oc_state_accel_init(_state);
735
3.04k
  ret=oc_state_frarray_init(_state);
736
3.04k
  if(ret>=0)ret=oc_state_ref_bufs_init(_state,_nrefs);
737
3.04k
  if(ret<0){
738
0
    oc_state_frarray_clear(_state);
739
0
    return ret;
740
0
  }
741
  /*If the keyframe_granule_shift is out of range, use the maximum allowable
742
     value.*/
743
3.04k
  if(_info->keyframe_granule_shift<0||_info->keyframe_granule_shift>31){
744
0
    _state->info.keyframe_granule_shift=31;
745
0
  }
746
3.04k
  _state->keyframe_num=0;
747
3.04k
  _state->curframe_num=-1;
748
  /*3.2.0 streams mark the frame index instead of the frame count.
749
    This was changed with stream version 3.2.1 to conform to other Ogg
750
     codecs.
751
    We add an extra bias when computing granule positions for new streams.*/
752
3.04k
  _state->granpos_bias=TH_VERSION_CHECK(_info,3,2,1);
753
3.04k
  return 0;
754
3.04k
}
755
756
3.04k
void oc_state_clear(oc_theora_state *_state){
757
3.04k
  oc_state_ref_bufs_clear(_state);
758
3.04k
  oc_state_frarray_clear(_state);
759
3.04k
}
760
761
762
/*Duplicates the pixels on the border of the image plane out into the
763
   surrounding padding for use by unrestricted motion vectors.
764
  This function only adds the left and right borders, and only for the fragment
765
   rows specified.
766
  _refi: The index of the reference buffer to pad.
767
  _pli:  The color plane.
768
  _y0:   The Y coordinate of the first row to pad.
769
  _yend: The Y coordinate of the row to stop padding at.*/
770
void oc_state_borders_fill_rows(oc_theora_state *_state,int _refi,int _pli,
771
769k
 int _y0,int _yend){
772
769k
  th_img_plane  *iplane;
773
769k
  unsigned char *apix;
774
769k
  unsigned char *bpix;
775
769k
  unsigned char *epix;
776
769k
  int            stride;
777
769k
  int            hpadding;
778
769k
  hpadding=OC_UMV_PADDING>>(_pli!=0&&!(_state->info.pixel_fmt&1));
779
769k
  iplane=_state->ref_frame_bufs[_refi]+_pli;
780
769k
  stride=iplane->stride;
781
769k
  apix=iplane->data+_y0*(ptrdiff_t)stride;
782
769k
  bpix=apix+iplane->width-1;
783
769k
  epix=iplane->data+_yend*(ptrdiff_t)stride;
784
  /*Note the use of != instead of <, which allows the stride to be negative.*/
785
30.5M
  while(apix!=epix){
786
29.7M
    memset(apix-hpadding,apix[0],hpadding);
787
29.7M
    memset(bpix+1,bpix[0],hpadding);
788
29.7M
    apix+=stride;
789
29.7M
    bpix+=stride;
790
29.7M
  }
791
769k
}
792
793
/*Duplicates the pixels on the border of the image plane out into the
794
   surrounding padding for use by unrestricted motion vectors.
795
  This function only adds the top and bottom borders, and must be called after
796
   the left and right borders are added.
797
  _refi:      The index of the reference buffer to pad.
798
  _pli:       The color plane.*/
799
326k
void oc_state_borders_fill_caps(oc_theora_state *_state,int _refi,int _pli){
800
326k
  th_img_plane  *iplane;
801
326k
  unsigned char *apix;
802
326k
  unsigned char *bpix;
803
326k
  unsigned char *epix;
804
326k
  int            stride;
805
326k
  int            hpadding;
806
326k
  int            vpadding;
807
326k
  int            fullw;
808
326k
  hpadding=OC_UMV_PADDING>>(_pli!=0&&!(_state->info.pixel_fmt&1));
809
326k
  vpadding=OC_UMV_PADDING>>(_pli!=0&&!(_state->info.pixel_fmt&2));
810
326k
  iplane=_state->ref_frame_bufs[_refi]+_pli;
811
326k
  stride=iplane->stride;
812
326k
  fullw=iplane->width+(hpadding<<1);
813
326k
  apix=iplane->data-hpadding;
814
326k
  bpix=iplane->data+(iplane->height-1)*(ptrdiff_t)stride-hpadding;
815
326k
  epix=apix-stride*(ptrdiff_t)vpadding;
816
3.85M
  while(apix!=epix){
817
3.53M
    memcpy(apix-stride,apix,fullw);
818
3.53M
    memcpy(bpix+stride,bpix,fullw);
819
3.53M
    apix-=stride;
820
3.53M
    bpix+=stride;
821
3.53M
  }
822
326k
}
823
824
/*Duplicates the pixels on the border of the given reference image out into
825
   the surrounding padding for use by unrestricted motion vectors.
826
  _state: The context containing the reference buffers.
827
  _refi:  The index of the reference buffer to pad.*/
828
0
void oc_state_borders_fill(oc_theora_state *_state,int _refi){
829
0
  int pli;
830
0
  for(pli=0;pli<3;pli++){
831
0
    oc_state_borders_fill_rows(_state,_refi,pli,0,
832
0
     _state->ref_frame_bufs[_refi][pli].height);
833
0
    oc_state_borders_fill_caps(_state,_refi,pli);
834
0
  }
835
0
}
836
837
/*Determines the offsets in an image buffer to use for motion compensation.
838
  _state:   The Theora state the offsets are to be computed with.
839
  _offsets: Returns the offset for the buffer(s).
840
            _offsets[0] is always set.
841
            _offsets[1] is set if the motion vector has non-zero fractional
842
             components.
843
  _pli:     The color plane index.
844
  _mv:      The motion vector.
845
  Return: The number of offsets returned: 1 or 2.*/
846
int oc_state_get_mv_offsets(const oc_theora_state *_state,int _offsets[2],
847
6.99M
 int _pli,oc_mv _mv){
848
  /*Here is a brief description of how Theora handles motion vectors:
849
    Motion vector components are specified to half-pixel accuracy in
850
     undecimated directions of each plane, and quarter-pixel accuracy in
851
     decimated directions.
852
    Integer parts are extracted by dividing (not shifting) by the
853
     appropriate amount, with truncation towards zero.
854
    These integer values are used to calculate the first offset.
855
856
    If either of the fractional parts are non-zero, then a second offset is
857
     computed.
858
    No third or fourth offsets are computed, even if both components have
859
     non-zero fractional parts.
860
    The second offset is computed by dividing (not shifting) by the
861
     appropriate amount, always truncating _away_ from zero.*/
862
#if 0
863
  /*This version of the code doesn't use any tables, but is slower.*/
864
  int ystride;
865
  int xprec;
866
  int yprec;
867
  int xfrac;
868
  int yfrac;
869
  int offs;
870
  int dx;
871
  int dy;
872
  ystride=_state->ref_ystride[_pli];
873
  /*These two variables decide whether we are in half- or quarter-pixel
874
     precision in each component.*/
875
  xprec=1+(_pli!=0&&!(_state->info.pixel_fmt&1));
876
  yprec=1+(_pli!=0&&!(_state->info.pixel_fmt&2));
877
  dx=OC_MV_X(_mv);
878
  dy=OC_MV_Y(_mv);
879
  /*These two variables are either 0 if all the fractional bits are zero or -1
880
     if any of them are non-zero.*/
881
  xfrac=OC_SIGNMASK(-(dx&(xprec|1)));
882
  yfrac=OC_SIGNMASK(-(dy&(yprec|1)));
883
  offs=(dx>>xprec)+(dy>>yprec)*ystride;
884
  if(xfrac||yfrac){
885
    int xmask;
886
    int ymask;
887
    xmask=OC_SIGNMASK(dx);
888
    ymask=OC_SIGNMASK(dy);
889
    yfrac&=ystride;
890
    _offsets[0]=offs-(xfrac&xmask)+(yfrac&ymask);
891
    _offsets[1]=offs-(xfrac&~xmask)+(yfrac&~ymask);
892
    return 2;
893
  }
894
  else{
895
    _offsets[0]=offs;
896
    return 1;
897
  }
898
#else
899
  /*Using tables simplifies the code, and there's enough arithmetic to hide the
900
     latencies of the memory references.*/
901
6.99M
  static const signed char OC_MVMAP[2][64]={
902
6.99M
    {
903
6.99M
          -15,-15,-14,-14,-13,-13,-12,-12,-11,-11,-10,-10, -9, -9, -8,
904
6.99M
       -8, -7, -7, -6, -6, -5, -5, -4, -4, -3, -3, -2, -2, -1, -1,  0,
905
6.99M
        0,  0,  1,  1,  2,  2,  3,  3,  4,  4,  5,  5,  6,  6,  7,  7,
906
6.99M
        8,  8,  9,  9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15
907
6.99M
    },
908
6.99M
    {
909
6.99M
           -7, -7, -7, -7, -6, -6, -6, -6, -5, -5, -5, -5, -4, -4, -4,
910
6.99M
       -4, -3, -3, -3, -3, -2, -2, -2, -2, -1, -1, -1, -1,  0,  0,  0,
911
6.99M
        0,  0,  0,  0,  1,  1,  1,  1,  2,  2,  2,  2,  3,  3,  3,  3,
912
6.99M
        4,  4,  4,  4,  5,  5,  5,  5,  6,  6,  6,  6,  7,  7,  7,  7
913
6.99M
    }
914
6.99M
  };
915
6.99M
  static const signed char OC_MVMAP2[2][64]={
916
6.99M
    {
917
6.99M
        -1, 0,-1,  0,-1, 0,-1,  0,-1, 0,-1,  0,-1, 0,-1,
918
6.99M
      0,-1, 0,-1,  0,-1, 0,-1,  0,-1, 0,-1,  0,-1, 0,-1,
919
6.99M
      0, 1, 0, 1,  0, 1, 0, 1,  0, 1, 0, 1,  0, 1, 0, 1,
920
6.99M
      0, 1, 0, 1,  0, 1, 0, 1,  0, 1, 0, 1,  0, 1, 0, 1
921
6.99M
    },
922
6.99M
    {
923
6.99M
        -1,-1,-1,  0,-1,-1,-1,  0,-1,-1,-1,  0,-1,-1,-1,
924
6.99M
      0,-1,-1,-1,  0,-1,-1,-1,  0,-1,-1,-1,  0,-1,-1,-1,
925
6.99M
      0, 1, 1, 1,  0, 1, 1, 1,  0, 1, 1, 1,  0, 1, 1, 1,
926
6.99M
      0, 1, 1, 1,  0, 1, 1, 1,  0, 1, 1, 1,  0, 1, 1, 1
927
6.99M
    }
928
6.99M
  };
929
6.99M
  int ystride;
930
6.99M
  int qpx;
931
6.99M
  int qpy;
932
6.99M
  int mx;
933
6.99M
  int my;
934
6.99M
  int mx2;
935
6.99M
  int my2;
936
6.99M
  int offs;
937
6.99M
  int dx;
938
6.99M
  int dy;
939
6.99M
  ystride=_state->ref_ystride[_pli];
940
6.99M
  qpy=_pli!=0&&!(_state->info.pixel_fmt&2);
941
6.99M
  dx=OC_MV_X(_mv);
942
6.99M
  dy=OC_MV_Y(_mv);
943
6.99M
  my=OC_MVMAP[qpy][dy+31];
944
6.99M
  my2=OC_MVMAP2[qpy][dy+31];
945
6.99M
  qpx=_pli!=0&&!(_state->info.pixel_fmt&1);
946
6.99M
  mx=OC_MVMAP[qpx][dx+31];
947
6.99M
  mx2=OC_MVMAP2[qpx][dx+31];
948
6.99M
  offs=my*ystride+mx;
949
6.99M
  if(mx2||my2){
950
2.23M
    _offsets[1]=offs+my2*ystride+mx2;
951
2.23M
    _offsets[0]=offs;
952
2.23M
    return 2;
953
2.23M
  }
954
4.75M
  _offsets[0]=offs;
955
4.75M
  return 1;
956
6.99M
#endif
957
6.99M
}
958
959
void oc_state_frag_recon_c(const oc_theora_state *_state,ptrdiff_t _fragi,
960
0
 int _pli,ogg_int16_t _dct_coeffs[128],int _last_zzi,ogg_uint16_t _dc_quant){
961
0
  unsigned char *dst;
962
0
  ptrdiff_t      frag_buf_off;
963
0
  int            ystride;
964
0
  int            refi;
965
  /*Apply the inverse transform.*/
966
  /*Special case only having a DC component.*/
967
0
  if(_last_zzi<2){
968
0
    ogg_int16_t p;
969
0
    int         ci;
970
    /*We round this dequant product (and not any of the others) because there's
971
       no iDCT rounding.*/
972
0
    p=(ogg_int16_t)(_dct_coeffs[0]*(ogg_int32_t)_dc_quant+15>>5);
973
    /*LOOP VECTORIZES.*/
974
0
    for(ci=0;ci<64;ci++)_dct_coeffs[64+ci]=p;
975
0
  }
976
0
  else{
977
    /*First, dequantize the DC coefficient.*/
978
0
    _dct_coeffs[0]=(ogg_int16_t)(_dct_coeffs[0]*(int)_dc_quant);
979
0
    oc_idct8x8(_state,_dct_coeffs+64,_dct_coeffs,_last_zzi);
980
0
  }
981
  /*Fill in the target buffer.*/
982
0
  frag_buf_off=_state->frag_buf_offs[_fragi];
983
0
  refi=_state->frags[_fragi].refi;
984
0
  ystride=_state->ref_ystride[_pli];
985
0
  dst=_state->ref_frame_data[OC_FRAME_SELF]+frag_buf_off;
986
0
  if(refi==OC_FRAME_SELF)oc_frag_recon_intra(_state,dst,ystride,_dct_coeffs+64);
987
0
  else{
988
0
    const unsigned char *ref;
989
0
    int                  mvoffsets[2];
990
0
    ref=_state->ref_frame_data[refi]+frag_buf_off;
991
0
    if(oc_state_get_mv_offsets(_state,mvoffsets,_pli,
992
0
     _state->frag_mvs[_fragi])>1){
993
0
      oc_frag_recon_inter2(_state,
994
0
       dst,ref+mvoffsets[0],ref+mvoffsets[1],ystride,_dct_coeffs+64);
995
0
    }
996
0
    else{
997
0
      oc_frag_recon_inter(_state,dst,ref+mvoffsets[0],ystride,_dct_coeffs+64);
998
0
    }
999
0
  }
1000
0
}
1001
1002
0
static void loop_filter_h(unsigned char *_pix,int _ystride,signed char *_bv){
1003
0
  int y;
1004
0
  _pix-=2;
1005
0
  for(y=0;y<8;y++){
1006
0
    int f;
1007
0
    f=_pix[0]-_pix[3]+3*(_pix[2]-_pix[1]);
1008
    /*The _bv array is used to compute the function
1009
      f=OC_CLAMPI(OC_MINI(-_2flimit-f,0),f,OC_MAXI(_2flimit-f,0));
1010
      where _2flimit=_state->loop_filter_limits[_state->qis[0]]<<1;*/
1011
0
    f=*(_bv+(f+4>>3));
1012
0
    _pix[1]=OC_CLAMP255(_pix[1]+f);
1013
0
    _pix[2]=OC_CLAMP255(_pix[2]-f);
1014
0
    _pix+=_ystride;
1015
0
  }
1016
0
}
1017
1018
0
static void loop_filter_v(unsigned char *_pix,int _ystride,signed char *_bv){
1019
0
  int x;
1020
0
  _pix-=_ystride*2;
1021
0
  for(x=0;x<8;x++){
1022
0
    int f;
1023
0
    f=_pix[x]-_pix[_ystride*3+x]+3*(_pix[_ystride*2+x]-_pix[_ystride+x]);
1024
    /*The _bv array is used to compute the function
1025
      f=OC_CLAMPI(OC_MINI(-_2flimit-f,0),f,OC_MAXI(_2flimit-f,0));
1026
      where _2flimit=_state->loop_filter_limits[_state->qis[0]]<<1;*/
1027
0
    f=*(_bv+(f+4>>3));
1028
0
    _pix[_ystride+x]=OC_CLAMP255(_pix[_ystride+x]+f);
1029
0
    _pix[_ystride*2+x]=OC_CLAMP255(_pix[_ystride*2+x]-f);
1030
0
  }
1031
0
}
1032
1033
/*Initialize the bounding values array used by the loop filter.
1034
  _bv: Storage for the array.
1035
  _flimit: The filter limit as defined in Section 7.10 of the spec.*/
1036
0
void oc_loop_filter_init_c(signed char _bv[256],int _flimit){
1037
0
  int i;
1038
0
  memset(_bv,0,sizeof(_bv[0])*256);
1039
0
  for(i=0;i<_flimit;i++){
1040
0
    if(127-i-_flimit>=0)_bv[127-i-_flimit]=(signed char)(i-_flimit);
1041
0
    _bv[127-i]=(signed char)(-i);
1042
0
    _bv[127+i]=(signed char)(i);
1043
0
    if(127+i+_flimit<256)_bv[127+i+_flimit]=(signed char)(_flimit-i);
1044
0
  }
1045
0
}
1046
1047
/*Apply the loop filter to a given set of fragment rows in the given plane.
1048
  The filter may be run on the bottom edge, affecting pixels in the next row of
1049
   fragments, so this row also needs to be available.
1050
  _bv:        The bounding values array.
1051
  _refi:      The index of the frame buffer to filter.
1052
  _pli:       The color plane to filter.
1053
  _fragy0:    The Y coordinate of the first fragment row to filter.
1054
  _fragy_end: The Y coordinate of the fragment row to stop filtering at.*/
1055
void oc_state_loop_filter_frag_rows_c(const oc_theora_state *_state,
1056
0
 signed char _bvarray[256],int _refi,int _pli,int _fragy0,int _fragy_end){
1057
0
  const oc_fragment_plane *fplane;
1058
0
  const oc_fragment       *frags;
1059
0
  const ptrdiff_t         *frag_buf_offs;
1060
0
  unsigned char           *ref_frame_data;
1061
0
  ptrdiff_t                fragi_top;
1062
0
  ptrdiff_t                fragi_bot;
1063
0
  ptrdiff_t                fragi0;
1064
0
  ptrdiff_t                fragi0_end;
1065
0
  int                      ystride;
1066
0
  int                      nhfrags;
1067
0
  signed char             *_bv = &_bvarray[127];
1068
0
  fplane=_state->fplanes+_pli;
1069
0
  nhfrags=fplane->nhfrags;
1070
0
  fragi_top=fplane->froffset;
1071
0
  fragi_bot=fragi_top+fplane->nfrags;
1072
0
  fragi0=fragi_top+_fragy0*(ptrdiff_t)nhfrags;
1073
0
  fragi0_end=fragi_top+_fragy_end*(ptrdiff_t)nhfrags;
1074
0
  ystride=_state->ref_ystride[_pli];
1075
0
  frags=_state->frags;
1076
0
  frag_buf_offs=_state->frag_buf_offs;
1077
0
  ref_frame_data=_state->ref_frame_data[_refi];
1078
  /*The following loops are constructed somewhat non-intuitively on purpose.
1079
    The main idea is: if a block boundary has at least one coded fragment on
1080
     it, the filter is applied to it.
1081
    However, the order that the filters are applied in matters, and VP3 chose
1082
     the somewhat strange ordering used below.*/
1083
0
  while(fragi0<fragi0_end){
1084
0
    ptrdiff_t fragi;
1085
0
    ptrdiff_t fragi_end;
1086
0
    fragi=fragi0;
1087
0
    fragi_end=fragi+nhfrags;
1088
0
    while(fragi<fragi_end){
1089
0
      if(frags[fragi].coded){
1090
0
        unsigned char *ref;
1091
0
        ref=ref_frame_data+frag_buf_offs[fragi];
1092
0
        if(fragi>fragi0)loop_filter_h(ref,ystride,_bv);
1093
0
        if(fragi0>fragi_top)loop_filter_v(ref,ystride,_bv);
1094
0
        if(fragi+1<fragi_end&&!frags[fragi+1].coded){
1095
0
          loop_filter_h(ref+8,ystride,_bv);
1096
0
        }
1097
0
        if(fragi+nhfrags<fragi_bot&&!frags[fragi+nhfrags].coded){
1098
0
          loop_filter_v(ref+(ystride*8),ystride,_bv);
1099
0
        }
1100
0
      }
1101
0
      fragi++;
1102
0
    }
1103
0
    fragi0+=nhfrags;
1104
0
  }
1105
0
}
1106
1107
#if defined(OC_DUMP_IMAGES)
1108
int oc_state_dump_frame(const oc_theora_state *_state,int _frame,
1109
 const char *_suf){
1110
  /*Dump a PNG of the reconstructed image.*/
1111
  png_structp    png;
1112
  png_infop      info;
1113
  png_bytep     *image;
1114
  FILE          *fp;
1115
  char           fname[16];
1116
  unsigned char *y_row;
1117
  unsigned char *u_row;
1118
  unsigned char *v_row;
1119
  unsigned char *y;
1120
  unsigned char *u;
1121
  unsigned char *v;
1122
  ogg_int64_t    iframe;
1123
  ogg_int64_t    pframe;
1124
  int            y_stride;
1125
  int            u_stride;
1126
  int            v_stride;
1127
  int            framei;
1128
  int            width;
1129
  int            height;
1130
  int            imgi;
1131
  int            imgj;
1132
  width=_state->info.frame_width;
1133
  height=_state->info.frame_height;
1134
  iframe=_state->granpos>>_state->info.keyframe_granule_shift;
1135
  pframe=_state->granpos-(iframe<<_state->info.keyframe_granule_shift);
1136
  sprintf(fname,"%08i%s.png",(int)(iframe+pframe),_suf);
1137
  fp=fopen(fname,"wb");
1138
  if(fp==NULL)return TH_EFAULT;
1139
  image=(png_bytep *)oc_malloc_2d(height,6*width,sizeof(**image));
1140
  if(image==NULL){
1141
    fclose(fp);
1142
    return TH_EFAULT;
1143
  }
1144
  png=png_create_write_struct(PNG_LIBPNG_VER_STRING,NULL,NULL,NULL);
1145
  if(png==NULL){
1146
    oc_free_2d(image);
1147
    fclose(fp);
1148
    return TH_EFAULT;
1149
  }
1150
  info=png_create_info_struct(png);
1151
  if(info==NULL){
1152
    png_destroy_write_struct(&png,NULL);
1153
    oc_free_2d(image);
1154
    fclose(fp);
1155
    return TH_EFAULT;
1156
  }
1157
  if(setjmp(png_jmpbuf(png))){
1158
    png_destroy_write_struct(&png,&info);
1159
    oc_free_2d(image);
1160
    fclose(fp);
1161
    return TH_EFAULT;
1162
  }
1163
  framei=_state->ref_frame_idx[_frame];
1164
  y_row=_state->ref_frame_bufs[framei][0].data;
1165
  u_row=_state->ref_frame_bufs[framei][1].data;
1166
  v_row=_state->ref_frame_bufs[framei][2].data;
1167
  y_stride=_state->ref_frame_bufs[framei][0].stride;
1168
  u_stride=_state->ref_frame_bufs[framei][1].stride;
1169
  v_stride=_state->ref_frame_bufs[framei][2].stride;
1170
  /*Chroma up-sampling is just done with a box filter.
1171
    This is very likely what will actually be used in practice on a real
1172
     display, and also removes one more layer to search in for the source of
1173
     artifacts.
1174
    As an added bonus, it's dead simple.*/
1175
  for(imgi=height;imgi-->0;){
1176
    int dc;
1177
    y=y_row;
1178
    u=u_row;
1179
    v=v_row;
1180
    for(imgj=0;imgj<6*width;){
1181
      float    yval;
1182
      float    uval;
1183
      float    vval;
1184
      unsigned rval;
1185
      unsigned gval;
1186
      unsigned bval;
1187
      /*This is intentionally slow and very accurate.*/
1188
      yval=(*y-16)*(1.0F/219);
1189
      uval=(*u-128)*(2*(1-0.114F)/224);
1190
      vval=(*v-128)*(2*(1-0.299F)/224);
1191
      rval=OC_CLAMPI(0,(int)(65535*(yval+vval)+0.5F),65535);
1192
      gval=OC_CLAMPI(0,(int)(65535*(
1193
       yval-uval*(0.114F/0.587F)-vval*(0.299F/0.587F))+0.5F),65535);
1194
      bval=OC_CLAMPI(0,(int)(65535*(yval+uval)+0.5F),65535);
1195
      image[imgi][imgj++]=(unsigned char)(rval>>8);
1196
      image[imgi][imgj++]=(unsigned char)(rval&0xFF);
1197
      image[imgi][imgj++]=(unsigned char)(gval>>8);
1198
      image[imgi][imgj++]=(unsigned char)(gval&0xFF);
1199
      image[imgi][imgj++]=(unsigned char)(bval>>8);
1200
      image[imgi][imgj++]=(unsigned char)(bval&0xFF);
1201
      dc=(y-y_row&1)|(_state->info.pixel_fmt&1);
1202
      y++;
1203
      u+=dc;
1204
      v+=dc;
1205
    }
1206
    dc=-((height-1-imgi&1)|_state->info.pixel_fmt>>1);
1207
    y_row+=y_stride;
1208
    u_row+=dc&u_stride;
1209
    v_row+=dc&v_stride;
1210
  }
1211
  png_init_io(png,fp);
1212
  png_set_compression_level(png,Z_BEST_COMPRESSION);
1213
  png_set_IHDR(png,info,width,height,16,PNG_COLOR_TYPE_RGB,
1214
   PNG_INTERLACE_NONE,PNG_COMPRESSION_TYPE_DEFAULT,PNG_FILTER_TYPE_DEFAULT);
1215
  switch(_state->info.colorspace){
1216
    case TH_CS_ITU_REC_470M:{
1217
      png_set_gAMA(png,info,2.2);
1218
      png_set_cHRM_fixed(png,info,31006,31616,
1219
       67000,32000,21000,71000,14000,8000);
1220
    }break;
1221
    case TH_CS_ITU_REC_470BG:{
1222
      png_set_gAMA(png,info,2.67);
1223
      png_set_cHRM_fixed(png,info,31271,32902,
1224
       64000,33000,29000,60000,15000,6000);
1225
    }break;
1226
    default:break;
1227
  }
1228
  png_set_pHYs(png,info,_state->info.aspect_numerator,
1229
   _state->info.aspect_denominator,0);
1230
  png_set_rows(png,info,image);
1231
  png_write_png(png,info,PNG_TRANSFORM_IDENTITY,NULL);
1232
  png_write_end(png,info);
1233
  png_destroy_write_struct(&png,&info);
1234
  oc_free_2d(image);
1235
  fclose(fp);
1236
  return 0;
1237
}
1238
#endif
1239
1240
1241
1242
43.3k
ogg_int64_t th_granule_frame(void *_encdec,ogg_int64_t _granpos){
1243
43.3k
  oc_theora_state *state;
1244
43.3k
  state=(oc_theora_state *)_encdec;
1245
43.3k
  if(_granpos>=0){
1246
43.3k
    ogg_int64_t iframe;
1247
43.3k
    ogg_int64_t pframe;
1248
43.3k
    iframe=_granpos>>state->info.keyframe_granule_shift;
1249
43.3k
    pframe=_granpos-(iframe<<state->info.keyframe_granule_shift);
1250
    /*3.2.0 streams store the frame index in the granule position.
1251
      3.2.1 and later store the frame count.
1252
      We return the index, so adjust the value if we have a 3.2.1 or later
1253
       stream.*/
1254
43.3k
    return iframe+pframe-TH_VERSION_CHECK(&state->info,3,2,1);
1255
43.3k
  }
1256
0
  return -1;
1257
43.3k
}
1258
1259
0
double th_granule_time(void *_encdec,ogg_int64_t _granpos){
1260
0
  oc_theora_state *state;
1261
0
  state=(oc_theora_state *)_encdec;
1262
0
  if(_granpos>=0){
1263
0
    return (th_granule_frame(_encdec, _granpos)+1)*(
1264
0
     (double)state->info.fps_denominator/state->info.fps_numerator);
1265
0
  }
1266
0
  return -1;
1267
0
}