Coverage Report

Created: 2026-02-14 06:59

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/ffmpeg/libavcodec/amrnbdec.c
Line
Count
Source
1
/*
2
 * AMR narrowband decoder
3
 * Copyright (c) 2006-2007 Robert Swain
4
 * Copyright (c) 2009 Colin McQuillan
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22
23
24
/**
25
 * @file
26
 * AMR narrowband decoder
27
 *
28
 * This decoder uses floats for simplicity and so is not bit-exact. One
29
 * difference is that differences in phase can accumulate. The test sequences
30
 * in 3GPP TS 26.074 can still be useful.
31
 *
32
 * - Comparing this file's output to the output of the ref decoder gives a
33
 *   PSNR of 30 to 80. Plotting the output samples shows a difference in
34
 *   phase in some areas.
35
 *
36
 * - Comparing both decoders against their input, this decoder gives a similar
37
 *   PSNR. If the test sequence homing frames are removed (this decoder does
38
 *   not detect them), the PSNR is at least as good as the reference on 140
39
 *   out of 169 tests.
40
 */
41
42
43
#include <string.h>
44
#include <math.h>
45
46
#include "libavutil/channel_layout.h"
47
#include "avcodec.h"
48
#include "libavutil/common.h"
49
#include "libavutil/avassert.h"
50
#include "celp_math.h"
51
#include "celp_filters.h"
52
#include "acelp_filters.h"
53
#include "acelp_vectors.h"
54
#include "acelp_pitch_delay.h"
55
#include "lsp.h"
56
#include "amr.h"
57
#include "codec_internal.h"
58
#include "decode.h"
59
60
#include "amrnbdata.h"
61
62
2.69M
#define AMR_BLOCK_SIZE              160   ///< samples per frame
63
191M
#define AMR_SAMPLE_BOUND        32768.0   ///< threshold for synthesis overflow
64
65
/**
66
 * Scale from constructed speech to [-1,1]
67
 *
68
 * AMR is designed to produce 16-bit PCM samples (3GPP TS 26.090 4.2) but
69
 * upscales by two (section 6.2.2).
70
 *
71
 * Fundamentally, this scale is determined by energy_mean through
72
 * the fixed vector contribution to the excitation vector.
73
 */
74
1.19M
#define AMR_SAMPLE_SCALE  (2.0 / 32768.0)
75
76
/** Prediction factor for 12.2kbit/s mode */
77
259k
#define PRED_FAC_MODE_12k2             0.65
78
79
12.4M
#define LSF_R_FAC          (8000.0 / 32768.0) ///< LSF residual tables to Hertz
80
1.21M
#define MIN_LSF_SPACING    (50.0488 / 8000.0) ///< Ensures stability of LPC filter
81
51.9k
#define PITCH_LAG_MIN_MODE_12k2          18   ///< Lower bound on decoded lag search in 12.2kbit/s mode
82
83
/** Initial energy in dB. Also used for bad frames (unimplemented). */
84
5.01k
#define MIN_ENERGY -14.0
85
86
/** Maximum sharpening factor
87
 *
88
 * The specification says 0.8, which should be 13107, but the reference C code
89
 * uses 13017 instead. (Amusingly the same applies to SHARP_MAX in g729dec.c.)
90
 */
91
2.89M
#define SHARP_MAX 0.79449462890625
92
93
/** Number of impulse response coefficients used for tilt factor */
94
14.2M
#define AMR_TILT_RESPONSE   22
95
/** Tilt factor = 1st reflection coefficient * gamma_t */
96
4.62M
#define AMR_TILT_GAMMA_T   0.8
97
/** Adaptive gain control factor used in post-filter */
98
4.76M
#define AMR_AGC_ALPHA      0.9
99
100
typedef struct AMRContext {
101
    AMRNBFrame                        frame; ///< decoded AMR parameters (lsf coefficients, codebook indexes, etc)
102
    uint8_t             bad_frame_indicator; ///< bad frame ? 1 : 0
103
    enum Mode                cur_frame_mode;
104
105
    int16_t     prev_lsf_r[LP_FILTER_ORDER]; ///< residual LSF vector from previous subframe
106
    double          lsp[4][LP_FILTER_ORDER]; ///< lsp vectors from current frame
107
    double   prev_lsp_sub4[LP_FILTER_ORDER]; ///< lsp vector for the 4th subframe of the previous frame
108
109
    float         lsf_q[4][LP_FILTER_ORDER]; ///< Interpolated LSF vector for fixed gain smoothing
110
    float          lsf_avg[LP_FILTER_ORDER]; ///< vector of averaged lsf vector
111
112
    float           lpc[4][LP_FILTER_ORDER]; ///< lpc coefficient vectors for 4 subframes
113
114
    uint8_t                   pitch_lag_int; ///< integer part of pitch lag from current subframe
115
116
    float excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1 + AMR_SUBFRAME_SIZE]; ///< current excitation and all necessary excitation history
117
    float                       *excitation; ///< pointer to the current excitation vector in excitation_buf
118
119
    float   pitch_vector[AMR_SUBFRAME_SIZE]; ///< adaptive code book (pitch) vector
120
    float   fixed_vector[AMR_SUBFRAME_SIZE]; ///< algebraic codebook (fixed) vector (must be kept zero between frames)
121
122
    float               prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
123
    float                     pitch_gain[5]; ///< quantified pitch gains for the current and previous four subframes
124
    float                     fixed_gain[5]; ///< quantified fixed gains for the current and previous four subframes
125
126
    float                              beta; ///< previous pitch_gain, bounded by [0.0,SHARP_MAX]
127
    uint8_t                      diff_count; ///< the number of subframes for which diff has been above 0.65
128
    uint8_t                      hang_count; ///< the number of subframes since a hangover period started
129
130
    float            prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness processing to determine "onset"
131
    uint8_t               prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
132
    uint8_t                 ir_filter_onset; ///< flag for impulse response filter strength
133
134
    float                postfilter_mem[10]; ///< previous intermediate values in the formant filter
135
    float                          tilt_mem; ///< previous input to tilt compensation filter
136
    float                    postfilter_agc; ///< previous factor used for adaptive gain control
137
    float                  high_pass_mem[2]; ///< previous intermediate values in the high-pass filter
138
139
    float samples_in[LP_FILTER_ORDER + AMR_SUBFRAME_SIZE]; ///< floating point samples
140
141
    ACELPFContext                     acelpf_ctx; ///< context for filters for ACELP-based codecs
142
    ACELPVContext                     acelpv_ctx; ///< context for vector operations for ACELP-based codecs
143
    CELPFContext                       celpf_ctx; ///< context for filters for CELP-based codecs
144
    CELPMContext                       celpm_ctx; ///< context for fixed point math operations
145
146
} AMRContext;
147
148
typedef struct AMRChannelsContext {
149
    AMRContext ch[2];
150
} AMRChannelsContext;
151
152
/** Double version of ff_weighted_vector_sumf() */
153
static void weighted_vector_sumd(double *out, const double *in_a,
154
                                 const double *in_b, double weight_coeff_a,
155
                                 double weight_coeff_b, int length)
156
51.9k
{
157
51.9k
    int i;
158
159
571k
    for (i = 0; i < length; i++)
160
519k
        out[i] = weight_coeff_a * in_a[i]
161
519k
               + weight_coeff_b * in_b[i];
162
51.9k
}
163
164
static av_cold int amrnb_decode_init(AVCodecContext *avctx)
165
1.27k
{
166
1.27k
    AMRChannelsContext *s = avctx->priv_data;
167
1.27k
    int i;
168
169
1.27k
    if (avctx->ch_layout.nb_channels > 2) {
170
57
        avpriv_report_missing_feature(avctx, ">2 channel AMR");
171
57
        return AVERROR_PATCHWELCOME;
172
57
    }
173
174
1.21k
    if (!avctx->ch_layout.nb_channels) {
175
1.12k
        av_channel_layout_uninit(&avctx->ch_layout);
176
1.12k
        avctx->ch_layout      = (AVChannelLayout)AV_CHANNEL_LAYOUT_MONO;
177
1.12k
    }
178
1.21k
    if (!avctx->sample_rate)
179
858
        avctx->sample_rate = 8000;
180
1.21k
    avctx->sample_fmt     = AV_SAMPLE_FMT_FLTP;
181
182
2.46k
    for (int ch = 0; ch < avctx->ch_layout.nb_channels; ch++) {
183
1.25k
        AMRContext *p = &s->ch[ch];
184
        // p->excitation always points to the same position in p->excitation_buf
185
1.25k
        p->excitation = &p->excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1];
186
187
13.7k
        for (i = 0; i < LP_FILTER_ORDER; i++) {
188
12.5k
            p->prev_lsp_sub4[i] =    lsp_sub4_init[i] * 1000 / (float)(1 << 15);
189
12.5k
            p->lsf_avg[i] = p->lsf_q[3][i] = lsp_avg_init[i] / (float)(1 << 15);
190
12.5k
        }
191
192
6.27k
        for (i = 0; i < 4; i++)
193
5.01k
            p->prediction_error[i] = MIN_ENERGY;
194
195
1.25k
        ff_acelp_filter_init(&p->acelpf_ctx);
196
1.25k
        ff_acelp_vectors_init(&p->acelpv_ctx);
197
1.25k
        ff_celp_filter_init(&p->celpf_ctx);
198
1.25k
        ff_celp_math_init(&p->celpm_ctx);
199
1.25k
    }
200
201
1.21k
    return 0;
202
1.27k
}
203
204
205
/**
206
 * Unpack an RFC4867 speech frame into the AMR frame mode and parameters.
207
 *
208
 * The order of speech bits is specified by 3GPP TS 26.101.
209
 *
210
 * @param p the context
211
 * @param buf               pointer to the input buffer
212
 * @param buf_size          size of the input buffer
213
 *
214
 * @return the frame mode
215
 */
216
static enum Mode unpack_bitstream(AMRContext *p, const uint8_t *buf,
217
                                  int buf_size)
218
1.72M
{
219
1.72M
    enum Mode mode;
220
221
    // Decode the first octet.
222
1.72M
    mode = buf[0] >> 3 & 0x0F;                      // frame type
223
1.72M
    p->bad_frame_indicator = (buf[0] & 0x4) != 0x4; // quality bit
224
225
1.72M
    if (mode >= N_MODES || buf_size < frame_sizes_nb[mode] + 1) {
226
522k
        return NO_DATA;
227
522k
    }
228
229
1.20M
    if (mode < MODE_DTX)
230
1.19M
        ff_amr_bit_reorder((uint16_t *) &p->frame, sizeof(AMRNBFrame), buf + 1,
231
1.19M
                           amr_unpacking_bitmaps_per_mode[mode]);
232
233
1.20M
    return mode;
234
1.72M
}
235
236
237
/// @name AMR pitch LPC coefficient decoding functions
238
/// @{
239
240
/**
241
 * Interpolate the LSF vector (used for fixed gain smoothing).
242
 * The interpolation is done over all four subframes even in MODE_12k2.
243
 *
244
 * @param[in]     ctx       The Context
245
 * @param[in,out] lsf_q     LSFs in [0,1] for each subframe
246
 * @param[in]     lsf_new   New LSFs in [0,1] for subframe 4
247
 */
248
static void interpolate_lsf(ACELPVContext *ctx, float lsf_q[4][LP_FILTER_ORDER], float *lsf_new)
249
1.19M
{
250
1.19M
    int i;
251
252
5.95M
    for (i = 0; i < 4; i++)
253
4.76M
        ctx->weighted_vector_sumf(lsf_q[i], lsf_q[3], lsf_new,
254
4.76M
                                0.25 * (3 - i), 0.25 * (i + 1),
255
4.76M
                                LP_FILTER_ORDER);
256
1.19M
}
257
258
/**
259
 * Decode a set of 5 split-matrix quantized lsf indexes into an lsp vector.
260
 *
261
 * @param p the context
262
 * @param lsp output LSP vector
263
 * @param lsf_no_r LSF vector without the residual vector added
264
 * @param lsf_quantizer pointers to LSF dictionary tables
265
 * @param quantizer_offset offset in tables
266
 * @param sign for the 3 dictionary table
267
 * @param update store data for computing the next frame's LSFs
268
 */
269
static void lsf2lsp_for_mode12k2(AMRContext *p, double lsp[LP_FILTER_ORDER],
270
                                 const float lsf_no_r[LP_FILTER_ORDER],
271
                                 const int16_t *lsf_quantizer[5],
272
                                 const int quantizer_offset,
273
                                 const int sign, const int update)
274
51.9k
{
275
51.9k
    int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
276
51.9k
    float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
277
51.9k
    int i;
278
279
311k
    for (i = 0; i < LP_FILTER_ORDER >> 1; i++)
280
259k
        memcpy(&lsf_r[i << 1], &lsf_quantizer[i][quantizer_offset],
281
259k
               2 * sizeof(*lsf_r));
282
283
51.9k
    if (sign) {
284
23.0k
        lsf_r[4] *= -1;
285
23.0k
        lsf_r[5] *= -1;
286
23.0k
    }
287
288
51.9k
    if (update)
289
25.9k
        memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
290
291
571k
    for (i = 0; i < LP_FILTER_ORDER; i++)
292
519k
        lsf_q[i] = lsf_r[i] * (LSF_R_FAC / 8000.0) + lsf_no_r[i] * (1.0 / 8000.0);
293
294
51.9k
    ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
295
296
51.9k
    if (update)
297
25.9k
        interpolate_lsf(&p->acelpv_ctx, p->lsf_q, lsf_q);
298
299
51.9k
    ff_acelp_lsf2lspd(lsp, lsf_q, LP_FILTER_ORDER);
300
51.9k
}
301
302
/**
303
 * Decode a set of 5 split-matrix quantized lsf indexes into 2 lsp vectors.
304
 *
305
 * @param p                 pointer to the AMRContext
306
 */
307
static void lsf2lsp_5(AMRContext *p)
308
25.9k
{
309
25.9k
    const uint16_t *lsf_param = p->frame.lsf;
310
25.9k
    float lsf_no_r[LP_FILTER_ORDER]; // LSFs without the residual vector
311
25.9k
    const int16_t *lsf_quantizer[5];
312
25.9k
    int i;
313
314
25.9k
    lsf_quantizer[0] = lsf_5_1[lsf_param[0]];
315
25.9k
    lsf_quantizer[1] = lsf_5_2[lsf_param[1]];
316
25.9k
    lsf_quantizer[2] = lsf_5_3[lsf_param[2] >> 1];
317
25.9k
    lsf_quantizer[3] = lsf_5_4[lsf_param[3]];
318
25.9k
    lsf_quantizer[4] = lsf_5_5[lsf_param[4]];
319
320
285k
    for (i = 0; i < LP_FILTER_ORDER; i++)
321
259k
        lsf_no_r[i] = p->prev_lsf_r[i] * LSF_R_FAC * PRED_FAC_MODE_12k2 + lsf_5_mean[i];
322
323
25.9k
    lsf2lsp_for_mode12k2(p, p->lsp[1], lsf_no_r, lsf_quantizer, 0, lsf_param[2] & 1, 0);
324
25.9k
    lsf2lsp_for_mode12k2(p, p->lsp[3], lsf_no_r, lsf_quantizer, 2, lsf_param[2] & 1, 1);
325
326
    // interpolate LSP vectors at subframes 1 and 3
327
25.9k
    weighted_vector_sumd(p->lsp[0], p->prev_lsp_sub4, p->lsp[1], 0.5, 0.5, LP_FILTER_ORDER);
328
25.9k
    weighted_vector_sumd(p->lsp[2], p->lsp[1]       , p->lsp[3], 0.5, 0.5, LP_FILTER_ORDER);
329
25.9k
}
330
331
/**
332
 * Decode a set of 3 split-matrix quantized lsf indexes into an lsp vector.
333
 *
334
 * @param p                 pointer to the AMRContext
335
 */
336
static void lsf2lsp_3(AMRContext *p)
337
1.16M
{
338
1.16M
    const uint16_t *lsf_param = p->frame.lsf;
339
1.16M
    int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
340
1.16M
    float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
341
1.16M
    const int16_t *lsf_quantizer;
342
1.16M
    int i, j;
343
344
1.16M
    lsf_quantizer = (p->cur_frame_mode == MODE_7k95 ? lsf_3_1_MODE_7k95 : lsf_3_1)[lsf_param[0]];
345
1.16M
    memcpy(lsf_r, lsf_quantizer, 3 * sizeof(*lsf_r));
346
347
1.16M
    lsf_quantizer = lsf_3_2[lsf_param[1] << (p->cur_frame_mode <= MODE_5k15)];
348
1.16M
    memcpy(lsf_r + 3, lsf_quantizer, 3 * sizeof(*lsf_r));
349
350
1.16M
    lsf_quantizer = (p->cur_frame_mode <= MODE_5k15 ? lsf_3_3_MODE_5k15 : lsf_3_3)[lsf_param[2]];
351
1.16M
    memcpy(lsf_r + 6, lsf_quantizer, 4 * sizeof(*lsf_r));
352
353
    // calculate mean-removed LSF vector and add mean
354
12.8M
    for (i = 0; i < LP_FILTER_ORDER; i++)
355
11.6M
        lsf_q[i] = (lsf_r[i] + p->prev_lsf_r[i] * pred_fac[i]) * (LSF_R_FAC / 8000.0) + lsf_3_mean[i] * (1.0 / 8000.0);
356
357
1.16M
    ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
358
359
    // store data for computing the next frame's LSFs
360
1.16M
    interpolate_lsf(&p->acelpv_ctx, p->lsf_q, lsf_q);
361
1.16M
    memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
362
363
1.16M
    ff_acelp_lsf2lspd(p->lsp[3], lsf_q, LP_FILTER_ORDER);
364
365
    // interpolate LSP vectors at subframes 1, 2 and 3
366
4.66M
    for (i = 1; i <= 3; i++)
367
38.4M
        for(j = 0; j < LP_FILTER_ORDER; j++)
368
34.9M
            p->lsp[i-1][j] = p->prev_lsp_sub4[j] +
369
34.9M
                (p->lsp[3][j] - p->prev_lsp_sub4[j]) * 0.25 * i;
370
1.16M
}
371
372
/// @}
373
374
375
/// @name AMR pitch vector decoding functions
376
/// @{
377
378
/**
379
 * Like ff_decode_pitch_lag(), but with 1/6 resolution
380
 */
381
static void decode_pitch_lag_1_6(int *lag_int, int *lag_frac, int pitch_index,
382
                                 const int prev_lag_int, const int subframe)
383
103k
{
384
103k
    if (subframe == 0 || subframe == 2) {
385
51.9k
        if (pitch_index < 463) {
386
50.9k
            *lag_int  = (pitch_index + 107) * 10923 >> 16;
387
50.9k
            *lag_frac = pitch_index - *lag_int * 6 + 105;
388
50.9k
        } else {
389
1.04k
            *lag_int  = pitch_index - 368;
390
1.04k
            *lag_frac = 0;
391
1.04k
        }
392
51.9k
    } else {
393
51.9k
        *lag_int  = ((pitch_index + 5) * 10923 >> 16) - 1;
394
51.9k
        *lag_frac = pitch_index - *lag_int * 6 - 3;
395
51.9k
        *lag_int += av_clip(prev_lag_int - 5, PITCH_LAG_MIN_MODE_12k2,
396
51.9k
                            PITCH_DELAY_MAX - 9);
397
51.9k
    }
398
103k
}
399
400
static void decode_pitch_vector(AMRContext *p,
401
                                const AMRNBSubframe *amr_subframe,
402
                                const int subframe)
403
4.76M
{
404
4.76M
    int pitch_lag_int, pitch_lag_frac;
405
4.76M
    enum Mode mode = p->cur_frame_mode;
406
407
4.76M
    if (p->cur_frame_mode == MODE_12k2) {
408
103k
        decode_pitch_lag_1_6(&pitch_lag_int, &pitch_lag_frac,
409
103k
                             amr_subframe->p_lag, p->pitch_lag_int,
410
103k
                             subframe);
411
4.66M
    } else {
412
4.66M
        ff_decode_pitch_lag(&pitch_lag_int, &pitch_lag_frac,
413
4.66M
                            amr_subframe->p_lag,
414
4.66M
                            p->pitch_lag_int, subframe,
415
4.66M
                            mode != MODE_4k75 && mode != MODE_5k15,
416
4.66M
                            mode <= MODE_6k7 ? 4 : (mode == MODE_7k95 ? 5 : 6));
417
4.66M
        pitch_lag_frac *= 2;
418
4.66M
    }
419
420
4.76M
    p->pitch_lag_int = pitch_lag_int; // store previous lag in a uint8_t
421
422
4.76M
    pitch_lag_int += pitch_lag_frac > 0;
423
424
    /* Calculate the pitch vector by interpolating the past excitation at the
425
       pitch lag using a b60 hamming windowed sinc function.   */
426
4.76M
    p->acelpf_ctx.acelp_interpolatef(p->excitation,
427
4.76M
                          p->excitation + 1 - pitch_lag_int,
428
4.76M
                          ff_b60_sinc, 6,
429
4.76M
                          pitch_lag_frac + 6 - 6*(pitch_lag_frac > 0),
430
4.76M
                          10, AMR_SUBFRAME_SIZE);
431
432
4.76M
    memcpy(p->pitch_vector, p->excitation, AMR_SUBFRAME_SIZE * sizeof(float));
433
4.76M
}
434
435
/// @}
436
437
438
/// @name AMR algebraic code book (fixed) vector decoding functions
439
/// @{
440
441
/**
442
 * Decode a 10-bit algebraic codebook index from a 10.2 kbit/s frame.
443
 */
444
static void decode_10bit_pulse(int code, int pulse_position[8],
445
                               int i1, int i2, int i3)
446
210k
{
447
    // coded using 7+3 bits with the 3 LSBs being, individually, the LSB of 1 of
448
    // the 3 pulses and the upper 7 bits being coded in base 5
449
210k
    const uint8_t *positions = base_five_table[code >> 3];
450
210k
    pulse_position[i1] = (positions[2] << 1) + ( code       & 1);
451
210k
    pulse_position[i2] = (positions[1] << 1) + ((code >> 1) & 1);
452
210k
    pulse_position[i3] = (positions[0] << 1) + ((code >> 2) & 1);
453
210k
}
454
455
/**
456
 * Decode the algebraic codebook index to pulse positions and signs and
457
 * construct the algebraic codebook vector for MODE_10k2.
458
 *
459
 * @param fixed_index          positions of the eight pulses
460
 * @param fixed_sparse         pointer to the algebraic codebook vector
461
 */
462
static void decode_8_pulses_31bits(const int16_t *fixed_index,
463
                                   AMRFixed *fixed_sparse)
464
105k
{
465
105k
    int pulse_position[8];
466
105k
    int i, temp;
467
468
105k
    decode_10bit_pulse(fixed_index[4], pulse_position, 0, 4, 1);
469
105k
    decode_10bit_pulse(fixed_index[5], pulse_position, 2, 6, 5);
470
471
    // coded using 5+2 bits with the 2 LSBs being, individually, the LSB of 1 of
472
    // the 2 pulses and the upper 5 bits being coded in base 5
473
105k
    temp = ((fixed_index[6] >> 2) * 25 + 12) >> 5;
474
105k
    pulse_position[3] = temp % 5;
475
105k
    pulse_position[7] = temp / 5;
476
105k
    if (pulse_position[7] & 1)
477
46.0k
        pulse_position[3] = 4 - pulse_position[3];
478
105k
    pulse_position[3] = (pulse_position[3] << 1) + ( fixed_index[6]       & 1);
479
105k
    pulse_position[7] = (pulse_position[7] << 1) + ((fixed_index[6] >> 1) & 1);
480
481
105k
    fixed_sparse->n = 8;
482
526k
    for (i = 0; i < 4; i++) {
483
421k
        const int pos1   = (pulse_position[i]     << 2) + i;
484
421k
        const int pos2   = (pulse_position[i + 4] << 2) + i;
485
421k
        const float sign = fixed_index[i] ? -1.0 : 1.0;
486
421k
        fixed_sparse->x[i    ] = pos1;
487
421k
        fixed_sparse->x[i + 4] = pos2;
488
421k
        fixed_sparse->y[i    ] = sign;
489
421k
        fixed_sparse->y[i + 4] = pos2 < pos1 ? -sign : sign;
490
421k
    }
491
105k
}
492
493
/**
494
 * Decode the algebraic codebook index to pulse positions and signs,
495
 * then construct the algebraic codebook vector.
496
 *
497
 *                              nb of pulses | bits encoding pulses
498
 * For MODE_4k75 or MODE_5k15,             2 | 1-3, 4-6, 7
499
 *                  MODE_5k9,              2 | 1,   2-4, 5-6, 7-9
500
 *                  MODE_6k7,              3 | 1-3, 4,   5-7, 8,  9-11
501
 *      MODE_7k4 or MODE_7k95,             4 | 1-3, 4-6, 7-9, 10, 11-13
502
 *
503
 * @param fixed_sparse pointer to the algebraic codebook vector
504
 * @param pulses       algebraic codebook indexes
505
 * @param mode         mode of the current frame
506
 * @param subframe     current subframe number
507
 */
508
static void decode_fixed_sparse(AMRFixed *fixed_sparse, const uint16_t *pulses,
509
                                const enum Mode mode, const int subframe)
510
4.76M
{
511
4.76M
    av_assert1(MODE_4k75 <= (signed)mode && mode <= MODE_12k2);
512
513
4.76M
    if (mode == MODE_12k2) {
514
103k
        ff_decode_10_pulses_35bits(pulses, fixed_sparse, gray_decode, 5, 3);
515
4.66M
    } else if (mode == MODE_10k2) {
516
105k
        decode_8_pulses_31bits(pulses, fixed_sparse);
517
4.55M
    } else {
518
4.55M
        int *pulse_position = fixed_sparse->x;
519
4.55M
        int i, pulse_subset;
520
4.55M
        const int fixed_index = pulses[0];
521
522
4.55M
        if (mode <= MODE_5k15) {
523
4.37M
            pulse_subset      = ((fixed_index >> 3) & 8)     + (subframe << 1);
524
4.37M
            pulse_position[0] = ( fixed_index       & 7) * 5 + track_position[pulse_subset];
525
4.37M
            pulse_position[1] = ((fixed_index >> 3) & 7) * 5 + track_position[pulse_subset + 1];
526
4.37M
            fixed_sparse->n = 2;
527
4.37M
        } else if (mode == MODE_5k9) {
528
21.5k
            pulse_subset      = ((fixed_index & 1) << 1) + 1;
529
21.5k
            pulse_position[0] = ((fixed_index >> 1) & 7) * 5 + pulse_subset;
530
21.5k
            pulse_subset      = (fixed_index  >> 4) & 3;
531
21.5k
            pulse_position[1] = ((fixed_index >> 6) & 7) * 5 + pulse_subset + (pulse_subset == 3 ? 1 : 0);
532
21.5k
            fixed_sparse->n = pulse_position[0] == pulse_position[1] ? 1 : 2;
533
158k
        } else if (mode == MODE_6k7) {
534
119k
            pulse_position[0] = (fixed_index        & 7) * 5;
535
119k
            pulse_subset      = (fixed_index  >> 2) & 2;
536
119k
            pulse_position[1] = ((fixed_index >> 4) & 7) * 5 + pulse_subset + 1;
537
119k
            pulse_subset      = (fixed_index  >> 6) & 2;
538
119k
            pulse_position[2] = ((fixed_index >> 8) & 7) * 5 + pulse_subset + 2;
539
119k
            fixed_sparse->n = 3;
540
119k
        } else { // mode <= MODE_7k95
541
39.0k
            pulse_position[0] = gray_decode[ fixed_index        & 7];
542
39.0k
            pulse_position[1] = gray_decode[(fixed_index >> 3)  & 7] + 1;
543
39.0k
            pulse_position[2] = gray_decode[(fixed_index >> 6)  & 7] + 2;
544
39.0k
            pulse_subset      = (fixed_index >> 9) & 1;
545
39.0k
            pulse_position[3] = gray_decode[(fixed_index >> 10) & 7] + pulse_subset + 3;
546
39.0k
            fixed_sparse->n = 4;
547
39.0k
        }
548
13.8M
        for (i = 0; i < fixed_sparse->n; i++)
549
9.30M
            fixed_sparse->y[i] = (pulses[1] >> i) & 1 ? 1.0 : -1.0;
550
4.55M
    }
551
4.76M
}
552
553
/**
554
 * Apply pitch lag to obtain the sharpened fixed vector (section 6.1.2)
555
 *
556
 * @param p the context
557
 * @param subframe unpacked amr subframe
558
 * @param mode mode of the current frame
559
 * @param fixed_sparse sparse representation of the fixed vector
560
 */
561
static void pitch_sharpening(AMRContext *p, int subframe, enum Mode mode,
562
                             AMRFixed *fixed_sparse)
563
4.76M
{
564
    // The spec suggests the current pitch gain is always used, but in other
565
    // modes the pitch and codebook gains are jointly quantized (sec 5.8.2)
566
    // so the codebook gain cannot depend on the quantized pitch gain.
567
4.76M
    if (mode == MODE_12k2)
568
103k
        p->beta = FFMIN(p->pitch_gain[4], 1.0);
569
570
4.76M
    fixed_sparse->pitch_lag  = p->pitch_lag_int;
571
4.76M
    fixed_sparse->pitch_fac  = p->beta;
572
573
    // Save pitch sharpening factor for the next subframe
574
    // MODE_4k75 only updates on the 2nd and 4th subframes - this follows from
575
    // the fact that the gains for two subframes are jointly quantized.
576
4.76M
    if (mode != MODE_4k75 || subframe & 1)
577
2.89M
        p->beta = av_clipf(p->pitch_gain[4], 0.0, SHARP_MAX);
578
4.76M
}
579
/// @}
580
581
582
/// @name AMR gain decoding functions
583
/// @{
584
585
/**
586
 * fixed gain smoothing
587
 * Note that where the spec specifies the "spectrum in the q domain"
588
 * in section 6.1.4, in fact frequencies should be used.
589
 *
590
 * @param p the context
591
 * @param lsf LSFs for the current subframe, in the range [0,1]
592
 * @param lsf_avg averaged LSFs
593
 * @param mode mode of the current frame
594
 *
595
 * @return fixed gain smoothed
596
 */
597
static float fixed_gain_smooth(AMRContext *p , const float *lsf,
598
                               const float *lsf_avg, const enum Mode mode)
599
4.76M
{
600
4.76M
    float diff = 0.0;
601
4.76M
    int i;
602
603
52.4M
    for (i = 0; i < LP_FILTER_ORDER; i++)
604
47.6M
        diff += fabs(lsf_avg[i] - lsf[i]) / lsf_avg[i];
605
606
    // If diff is large for ten subframes, disable smoothing for a 40-subframe
607
    // hangover period.
608
4.76M
    p->diff_count++;
609
4.76M
    if (diff <= 0.65)
610
3.98M
        p->diff_count = 0;
611
612
4.76M
    if (p->diff_count > 10) {
613
110k
        p->hang_count = 0;
614
110k
        p->diff_count--; // don't let diff_count overflow
615
110k
    }
616
617
4.76M
    if (p->hang_count < 40) {
618
489k
        p->hang_count++;
619
4.27M
    } else if (mode < MODE_7k4 || mode == MODE_10k2) {
620
4.15M
        const float smoothing_factor = av_clipf(4.0 * diff - 1.6, 0.0, 1.0);
621
4.15M
        const float fixed_gain_mean = (p->fixed_gain[0] + p->fixed_gain[1] +
622
4.15M
                                       p->fixed_gain[2] + p->fixed_gain[3] +
623
4.15M
                                       p->fixed_gain[4]) * 0.2;
624
4.15M
        return smoothing_factor * p->fixed_gain[4] +
625
4.15M
               (1.0 - smoothing_factor) * fixed_gain_mean;
626
4.15M
    }
627
604k
    return p->fixed_gain[4];
628
4.76M
}
629
630
/**
631
 * Decode pitch gain and fixed gain factor (part of section 6.1.3).
632
 *
633
 * @param p the context
634
 * @param amr_subframe unpacked amr subframe
635
 * @param mode mode of the current frame
636
 * @param subframe current subframe number
637
 * @param fixed_gain_factor decoded gain correction factor
638
 */
639
static void decode_gains(AMRContext *p, const AMRNBSubframe *amr_subframe,
640
                         const enum Mode mode, const int subframe,
641
                         float *fixed_gain_factor)
642
4.76M
{
643
4.76M
    if (mode == MODE_12k2 || mode == MODE_7k95) {
644
122k
        p->pitch_gain[4]   = qua_gain_pit [amr_subframe->p_gain    ]
645
122k
            * (1.0 / 16384.0);
646
122k
        *fixed_gain_factor = qua_gain_code[amr_subframe->fixed_gain]
647
122k
            * (1.0 /  2048.0);
648
4.64M
    } else {
649
4.64M
        const uint16_t *gains;
650
651
4.64M
        if (mode >= MODE_6k7) {
652
245k
            gains = gains_high[amr_subframe->p_gain];
653
4.39M
        } else if (mode >= MODE_5k15) {
654
653k
            gains = gains_low [amr_subframe->p_gain];
655
3.74M
        } else {
656
            // gain index is only coded in subframes 0,2 for MODE_4k75
657
3.74M
            gains = gains_MODE_4k75[(p->frame.subframe[subframe & 2].p_gain << 1) + (subframe & 1)];
658
3.74M
        }
659
660
4.64M
        p->pitch_gain[4]   = gains[0] * (1.0 / 16384.0);
661
4.64M
        *fixed_gain_factor = gains[1] * (1.0 /  4096.0);
662
4.64M
    }
663
4.76M
}
664
665
/// @}
666
667
668
/// @name AMR preprocessing functions
669
/// @{
670
671
/**
672
 * Circularly convolve a sparse fixed vector with a phase dispersion impulse
673
 * response filter (D.6.2 of G.729 and 6.1.5 of AMR).
674
 *
675
 * @param out vector with filter applied
676
 * @param in source vector
677
 * @param filter phase filter coefficients
678
 *
679
 *  out[n] = sum(i,0,len-1){ in[i] * filter[(len + n - i)%len] }
680
 */
681
static void apply_ir_filter(float *out, const AMRFixed *in,
682
                            const float *filter)
683
570k
{
684
570k
    float filter1[AMR_SUBFRAME_SIZE],     ///< filters at pitch lag*1 and *2
685
570k
          filter2[AMR_SUBFRAME_SIZE];
686
570k
    int   lag = in->pitch_lag;
687
570k
    float fac = in->pitch_fac;
688
570k
    int i;
689
690
570k
    if (lag < AMR_SUBFRAME_SIZE) {
691
480k
        ff_celp_circ_addf(filter1, filter, filter, lag, fac,
692
480k
                          AMR_SUBFRAME_SIZE);
693
694
480k
        if (lag < AMR_SUBFRAME_SIZE >> 1)
695
61.7k
            ff_celp_circ_addf(filter2, filter, filter1, lag, fac,
696
61.7k
                              AMR_SUBFRAME_SIZE);
697
480k
    }
698
699
570k
    memset(out, 0, sizeof(float) * AMR_SUBFRAME_SIZE);
700
1.77M
    for (i = 0; i < in->n; i++) {
701
1.20M
        int   x = in->x[i];
702
1.20M
        float y = in->y[i];
703
1.20M
        const float *filterp;
704
705
1.20M
        if (x >= AMR_SUBFRAME_SIZE - lag) {
706
452k
            filterp = filter;
707
755k
        } else if (x >= AMR_SUBFRAME_SIZE - (lag << 1)) {
708
712k
            filterp = filter1;
709
712k
        } else
710
43.3k
            filterp = filter2;
711
712
1.20M
        ff_celp_circ_addf(out, out, filterp, x, y, AMR_SUBFRAME_SIZE);
713
1.20M
    }
714
570k
}
715
716
/**
717
 * Reduce fixed vector sparseness by smoothing with one of three IR filters.
718
 * Also know as "adaptive phase dispersion".
719
 *
720
 * This implements 3GPP TS 26.090 section 6.1(5).
721
 *
722
 * @param p the context
723
 * @param fixed_sparse algebraic codebook vector
724
 * @param fixed_vector unfiltered fixed vector
725
 * @param fixed_gain smoothed gain
726
 * @param out space for modified vector if necessary
727
 */
728
static const float *anti_sparseness(AMRContext *p, AMRFixed *fixed_sparse,
729
                                    const float *fixed_vector,
730
                                    float fixed_gain, float *out)
731
4.76M
{
732
4.76M
    int ir_filter_nr;
733
734
4.76M
    if (p->pitch_gain[4] < 0.6) {
735
3.91M
        ir_filter_nr = 0;      // strong filtering
736
3.91M
    } else if (p->pitch_gain[4] < 0.9) {
737
369k
        ir_filter_nr = 1;      // medium filtering
738
369k
    } else
739
478k
        ir_filter_nr = 2;      // no filtering
740
741
    // detect 'onset'
742
4.76M
    if (fixed_gain > 2.0 * p->prev_sparse_fixed_gain) {
743
502k
        p->ir_filter_onset = 2;
744
4.26M
    } else if (p->ir_filter_onset)
745
403k
        p->ir_filter_onset--;
746
747
4.76M
    if (!p->ir_filter_onset) {
748
4.04M
        int i, count = 0;
749
750
24.2M
        for (i = 0; i < 5; i++)
751
20.2M
            if (p->pitch_gain[i] < 0.6)
752
17.4M
                count++;
753
4.04M
        if (count > 2)
754
3.46M
            ir_filter_nr = 0;
755
756
4.04M
        if (ir_filter_nr > p->prev_ir_filter_nr + 1)
757
82.7k
            ir_filter_nr--;
758
4.04M
    } else if (ir_filter_nr < 2)
759
594k
        ir_filter_nr++;
760
761
    // Disable filtering for very low level of fixed_gain.
762
    // Note this step is not specified in the technical description but is in
763
    // the reference source in the function Ph_disp.
764
4.76M
    if (fixed_gain < 5.0)
765
3.62M
        ir_filter_nr = 2;
766
767
4.76M
    if (p->cur_frame_mode != MODE_7k4 && p->cur_frame_mode < MODE_10k2
768
4.53M
         && ir_filter_nr < 2) {
769
570k
        apply_ir_filter(out, fixed_sparse,
770
570k
                        (p->cur_frame_mode == MODE_7k95 ?
771
5.81k
                             ir_filters_lookup_MODE_7k95 :
772
570k
                             ir_filters_lookup)[ir_filter_nr]);
773
570k
        fixed_vector = out;
774
570k
    }
775
776
    // update ir filter strength history
777
4.76M
    p->prev_ir_filter_nr       = ir_filter_nr;
778
4.76M
    p->prev_sparse_fixed_gain  = fixed_gain;
779
780
4.76M
    return fixed_vector;
781
4.76M
}
782
783
/// @}
784
785
786
/// @name AMR synthesis functions
787
/// @{
788
789
/**
790
 * Conduct 10th order linear predictive coding synthesis.
791
 *
792
 * @param p             pointer to the AMRContext
793
 * @param lpc           pointer to the LPC coefficients
794
 * @param fixed_gain    fixed codebook gain for synthesis
795
 * @param fixed_vector  algebraic codebook vector
796
 * @param samples       pointer to the output speech samples
797
 * @param overflow      16-bit overflow flag
798
 */
799
static int synthesis(AMRContext *p, float *lpc,
800
                     float fixed_gain, const float *fixed_vector,
801
                     float *samples, uint8_t overflow)
802
4.80M
{
803
4.80M
    int i;
804
4.80M
    float excitation[AMR_SUBFRAME_SIZE];
805
806
    // if an overflow has been detected, the pitch vector is scaled down by a
807
    // factor of 4
808
4.80M
    if (overflow)
809
1.85M
        for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
810
1.80M
            p->pitch_vector[i] *= 0.25;
811
812
4.80M
    p->acelpv_ctx.weighted_vector_sumf(excitation, p->pitch_vector, fixed_vector,
813
4.80M
                            p->pitch_gain[4], fixed_gain, AMR_SUBFRAME_SIZE);
814
815
    // emphasize pitch vector contribution
816
4.80M
    if (p->pitch_gain[4] > 0.5 && !overflow) {
817
989k
        float energy = p->celpm_ctx.dot_productf(excitation, excitation,
818
989k
                                                    AMR_SUBFRAME_SIZE);
819
989k
        float pitch_factor =
820
989k
            p->pitch_gain[4] *
821
989k
            (p->cur_frame_mode == MODE_12k2 ?
822
70.9k
                0.25 * FFMIN(p->pitch_gain[4], 1.0) :
823
989k
                0.5  * FFMIN(p->pitch_gain[4], SHARP_MAX));
824
825
40.5M
        for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
826
39.5M
            excitation[i] += pitch_factor * p->pitch_vector[i];
827
828
989k
        ff_scale_vector_to_given_sum_of_squares(excitation, excitation, energy,
829
989k
                                                AMR_SUBFRAME_SIZE);
830
989k
    }
831
832
4.80M
    p->celpf_ctx.celp_lp_synthesis_filterf(samples, lpc, excitation,
833
4.80M
                                 AMR_SUBFRAME_SIZE,
834
4.80M
                                 LP_FILTER_ORDER);
835
836
    // detect overflow
837
195M
    for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
838
191M
        if (fabsf(samples[i]) > AMR_SAMPLE_BOUND) {
839
59.0k
            return 1;
840
59.0k
        }
841
842
4.75M
    return 0;
843
4.80M
}
844
845
/// @}
846
847
848
/// @name AMR update functions
849
/// @{
850
851
/**
852
 * Update buffers and history at the end of decoding a subframe.
853
 *
854
 * @param p             pointer to the AMRContext
855
 */
856
static void update_state(AMRContext *p)
857
4.76M
{
858
4.76M
    memcpy(p->prev_lsp_sub4, p->lsp[3], LP_FILTER_ORDER * sizeof(p->lsp[3][0]));
859
860
4.76M
    memmove(&p->excitation_buf[0], &p->excitation_buf[AMR_SUBFRAME_SIZE],
861
4.76M
            (PITCH_DELAY_MAX + LP_FILTER_ORDER + 1) * sizeof(float));
862
863
4.76M
    memmove(&p->pitch_gain[0], &p->pitch_gain[1], 4 * sizeof(float));
864
4.76M
    memmove(&p->fixed_gain[0], &p->fixed_gain[1], 4 * sizeof(float));
865
866
4.76M
    memmove(&p->samples_in[0], &p->samples_in[AMR_SUBFRAME_SIZE],
867
4.76M
            LP_FILTER_ORDER * sizeof(float));
868
4.76M
}
869
870
/// @}
871
872
873
/// @name AMR Postprocessing functions
874
/// @{
875
876
/**
877
 * Get the tilt factor of a formant filter from its transfer function
878
 *
879
 * @param p     The Context
880
 * @param lpc_n LP_FILTER_ORDER coefficients of the numerator
881
 * @param lpc_d LP_FILTER_ORDER coefficients of the denominator
882
 */
883
static float tilt_factor(AMRContext *p, float *lpc_n, float *lpc_d)
884
4.76M
{
885
4.76M
    float rh0, rh1; // autocorrelation at lag 0 and 1
886
887
    // LP_FILTER_ORDER prior zeros are needed for ff_celp_lp_synthesis_filterf
888
4.76M
    float impulse_buffer[LP_FILTER_ORDER + AMR_TILT_RESPONSE] = { 0 };
889
4.76M
    float *hf = impulse_buffer + LP_FILTER_ORDER; // start of impulse response
890
891
4.76M
    hf[0] = 1.0;
892
4.76M
    memcpy(hf + 1, lpc_n, sizeof(float) * LP_FILTER_ORDER);
893
4.76M
    p->celpf_ctx.celp_lp_synthesis_filterf(hf, lpc_d, hf,
894
4.76M
                                 AMR_TILT_RESPONSE,
895
4.76M
                                 LP_FILTER_ORDER);
896
897
4.76M
    rh0 = p->celpm_ctx.dot_productf(hf, hf,     AMR_TILT_RESPONSE);
898
4.76M
    rh1 = p->celpm_ctx.dot_productf(hf, hf + 1, AMR_TILT_RESPONSE - 1);
899
900
    // The spec only specifies this check for 12.2 and 10.2 kbit/s
901
    // modes. But in the ref source the tilt is always non-negative.
902
4.76M
    return rh1 >= 0.0 ? rh1 / rh0 * AMR_TILT_GAMMA_T : 0.0;
903
4.76M
}
904
905
/**
906
 * Perform adaptive post-filtering to enhance the quality of the speech.
907
 * See section 6.2.1.
908
 *
909
 * @param p             pointer to the AMRContext
910
 * @param lpc           interpolated LP coefficients for this subframe
911
 * @param buf_out       output of the filter
912
 */
913
static void postfilter(AMRContext *p, float *lpc, float *buf_out)
914
4.76M
{
915
4.76M
    int i;
916
4.76M
    float *samples          = p->samples_in + LP_FILTER_ORDER; // Start of input
917
918
4.76M
    float speech_gain       = p->celpm_ctx.dot_productf(samples, samples,
919
4.76M
                                                           AMR_SUBFRAME_SIZE);
920
921
4.76M
    float pole_out[AMR_SUBFRAME_SIZE + LP_FILTER_ORDER];  // Output of pole filter
922
4.76M
    const float *gamma_n, *gamma_d;                       // Formant filter factor table
923
4.76M
    float lpc_n[LP_FILTER_ORDER], lpc_d[LP_FILTER_ORDER]; // Transfer function coefficients
924
925
4.76M
    if (p->cur_frame_mode == MODE_12k2 || p->cur_frame_mode == MODE_10k2) {
926
209k
        gamma_n = ff_pow_0_7;
927
209k
        gamma_d = ff_pow_0_75;
928
4.55M
    } else {
929
4.55M
        gamma_n = ff_pow_0_55;
930
4.55M
        gamma_d = ff_pow_0_7;
931
4.55M
    }
932
933
52.4M
    for (i = 0; i < LP_FILTER_ORDER; i++) {
934
47.6M
         lpc_n[i] = lpc[i] * gamma_n[i];
935
47.6M
         lpc_d[i] = lpc[i] * gamma_d[i];
936
47.6M
    }
937
938
4.76M
    memcpy(pole_out, p->postfilter_mem, sizeof(float) * LP_FILTER_ORDER);
939
4.76M
    p->celpf_ctx.celp_lp_synthesis_filterf(pole_out + LP_FILTER_ORDER, lpc_d, samples,
940
4.76M
                                 AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
941
4.76M
    memcpy(p->postfilter_mem, pole_out + AMR_SUBFRAME_SIZE,
942
4.76M
           sizeof(float) * LP_FILTER_ORDER);
943
944
4.76M
    p->celpf_ctx.celp_lp_zero_synthesis_filterf(buf_out, lpc_n,
945
4.76M
                                      pole_out + LP_FILTER_ORDER,
946
4.76M
                                      AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
947
948
4.76M
    ff_tilt_compensation(&p->tilt_mem, tilt_factor(p, lpc_n, lpc_d), buf_out,
949
4.76M
                         AMR_SUBFRAME_SIZE);
950
951
4.76M
    ff_adaptive_gain_control(buf_out, buf_out, speech_gain, AMR_SUBFRAME_SIZE,
952
4.76M
                             AMR_AGC_ALPHA, &p->postfilter_agc);
953
4.76M
}
954
955
/// @}
956
957
static int amrnb_decode_frame(AVCodecContext *avctx, AVFrame *frame,
958
                              int *got_frame_ptr, AVPacket *avpkt)
959
1.50M
{
960
961
1.50M
    AMRChannelsContext *s = avctx->priv_data;        // pointer to private data
962
1.50M
    const uint8_t *buf = avpkt->data;
963
1.50M
    int buf_size       = avpkt->size;
964
1.50M
    int ret;
965
966
    /* get output buffer */
967
1.50M
    frame->nb_samples = AMR_BLOCK_SIZE;
968
1.50M
    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
969
0
        return ret;
970
971
2.69M
    for (int ch = 0; ch < avctx->ch_layout.nb_channels; ch++) {
972
1.72M
        AMRContext *p = &s->ch[ch];
973
1.72M
        float fixed_gain_factor;
974
1.72M
        AMRFixed fixed_sparse = {0};             // fixed vector up to anti-sparseness processing
975
1.72M
        float spare_vector[AMR_SUBFRAME_SIZE];   // extra stack space to hold result from anti-sparseness processing
976
1.72M
        float synth_fixed_gain;                  // the fixed gain that synthesis should use
977
1.72M
        const float *synth_fixed_vector;         // pointer to the fixed vector that synthesis should use
978
1.72M
        float *buf_out = (float *)frame->extended_data[ch];
979
1.72M
        int channel_size;
980
1.72M
        int i, subframe;
981
982
1.72M
        p->cur_frame_mode = unpack_bitstream(p, buf, buf_size);
983
1.72M
        if (p->cur_frame_mode == NO_DATA) {
984
522k
            av_log(avctx, AV_LOG_ERROR, "Corrupt bitstream\n");
985
522k
            return AVERROR_INVALIDDATA;
986
522k
        }
987
1.20M
        if (p->cur_frame_mode == MODE_DTX) {
988
10.8k
            avpriv_report_missing_feature(avctx, "dtx mode");
989
10.8k
            av_log(avctx, AV_LOG_INFO, "Note: libopencore_amrnb supports dtx\n");
990
10.8k
            return AVERROR_PATCHWELCOME;
991
10.8k
        }
992
993
1.19M
        channel_size = frame_sizes_nb[p->cur_frame_mode] + 1; // +7 for rounding and +8 for TOC
994
1.19M
        if (p->cur_frame_mode == MODE_12k2) {
995
25.9k
            lsf2lsp_5(p);
996
25.9k
        } else
997
1.16M
            lsf2lsp_3(p);
998
999
5.95M
        for (i = 0; i < 4; i++)
1000
4.76M
            ff_acelp_lspd2lpc(p->lsp[i], p->lpc[i], 5);
1001
1002
5.95M
        for (subframe = 0; subframe < 4; subframe++) {
1003
4.76M
            const AMRNBSubframe *amr_subframe = &p->frame.subframe[subframe];
1004
1005
4.76M
            decode_pitch_vector(p, amr_subframe, subframe);
1006
1007
4.76M
            decode_fixed_sparse(&fixed_sparse, amr_subframe->pulses,
1008
4.76M
                                p->cur_frame_mode, subframe);
1009
1010
            // The fixed gain (section 6.1.3) depends on the fixed vector
1011
            // (section 6.1.2), but the fixed vector calculation uses
1012
            // pitch sharpening based on the on the pitch gain (section 6.1.3).
1013
            // So the correct order is: pitch gain, pitch sharpening, fixed gain.
1014
4.76M
            decode_gains(p, amr_subframe, p->cur_frame_mode, subframe,
1015
4.76M
                         &fixed_gain_factor);
1016
1017
4.76M
            pitch_sharpening(p, subframe, p->cur_frame_mode, &fixed_sparse);
1018
1019
4.76M
            if (fixed_sparse.pitch_lag == 0) {
1020
0
                av_log(avctx, AV_LOG_ERROR, "The file is corrupted, pitch_lag = 0 is not allowed\n");
1021
0
                return AVERROR_INVALIDDATA;
1022
0
            }
1023
4.76M
            ff_set_fixed_vector(p->fixed_vector, &fixed_sparse, 1.0,
1024
4.76M
                                AMR_SUBFRAME_SIZE);
1025
1026
4.76M
            p->fixed_gain[4] =
1027
4.76M
                ff_amr_set_fixed_gain(fixed_gain_factor,
1028
4.76M
                                      p->celpm_ctx.dot_productf(p->fixed_vector,
1029
4.76M
                                                                p->fixed_vector,
1030
4.76M
                                                                AMR_SUBFRAME_SIZE) /
1031
4.76M
                                      AMR_SUBFRAME_SIZE,
1032
4.76M
                                      p->prediction_error,
1033
4.76M
                                      energy_mean[p->cur_frame_mode], energy_pred_fac);
1034
1035
            // The excitation feedback is calculated without any processing such
1036
            // as fixed gain smoothing. This isn't mentioned in the specification.
1037
195M
            for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
1038
190M
                p->excitation[i] *= p->pitch_gain[4];
1039
4.76M
            ff_set_fixed_vector(p->excitation, &fixed_sparse, p->fixed_gain[4],
1040
4.76M
                                AMR_SUBFRAME_SIZE);
1041
1042
            // In the ref decoder, excitation is stored with no fractional bits.
1043
            // This step prevents buzz in silent periods. The ref encoder can
1044
            // emit long sequences with pitch factor greater than one. This
1045
            // creates unwanted feedback if the excitation vector is nonzero.
1046
            // (e.g. test sequence T19_795.COD in 3GPP TS 26.074)
1047
195M
            for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
1048
190M
                p->excitation[i] = truncf(p->excitation[i]);
1049
1050
            // Smooth fixed gain.
1051
            // The specification is ambiguous, but in the reference source, the
1052
            // smoothed value is NOT fed back into later fixed gain smoothing.
1053
4.76M
            synth_fixed_gain = fixed_gain_smooth(p, p->lsf_q[subframe],
1054
4.76M
                                                 p->lsf_avg, p->cur_frame_mode);
1055
1056
4.76M
            synth_fixed_vector = anti_sparseness(p, &fixed_sparse, p->fixed_vector,
1057
4.76M
                                                 synth_fixed_gain, spare_vector);
1058
1059
4.76M
            if (synthesis(p, p->lpc[subframe], synth_fixed_gain,
1060
4.76M
                          synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 0))
1061
                // overflow detected -> rerun synthesis scaling pitch vector down
1062
                // by a factor of 4, skipping pitch vector contribution emphasis
1063
                // and adaptive gain control
1064
45.1k
                synthesis(p, p->lpc[subframe], synth_fixed_gain,
1065
45.1k
                          synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 1);
1066
1067
4.76M
            postfilter(p, p->lpc[subframe], buf_out + subframe * AMR_SUBFRAME_SIZE);
1068
1069
            // update buffers and history
1070
4.76M
            ff_clear_fixed_vector(p->fixed_vector, &fixed_sparse, AMR_SUBFRAME_SIZE);
1071
4.76M
            update_state(p);
1072
4.76M
        }
1073
1074
1.19M
        p->acelpf_ctx.acelp_apply_order_2_transfer_function(buf_out,
1075
1.19M
                                                            buf_out, highpass_zeros,
1076
1.19M
                                                            highpass_poles,
1077
1.19M
                                                            highpass_gain * AMR_SAMPLE_SCALE,
1078
1.19M
                                                            p->high_pass_mem, AMR_BLOCK_SIZE);
1079
1080
        /* Update averaged lsf vector (used for fixed gain smoothing).
1081
         *
1082
         * Note that lsf_avg should not incorporate the current frame's LSFs
1083
         * for fixed_gain_smooth.
1084
         * The specification has an incorrect formula: the reference decoder uses
1085
         * qbar(n-1) rather than qbar(n) in section 6.1(4) equation 71. */
1086
1.19M
        p->acelpv_ctx.weighted_vector_sumf(p->lsf_avg, p->lsf_avg, p->lsf_q[3],
1087
1.19M
                                           0.84, 0.16, LP_FILTER_ORDER);
1088
1.19M
        buf += channel_size;
1089
1.19M
        buf_size -= channel_size;
1090
1.19M
    }
1091
1092
970k
    *got_frame_ptr = 1;
1093
1094
970k
    return buf - avpkt->data;
1095
1.50M
}
1096
1097
1098
const FFCodec ff_amrnb_decoder = {
1099
    .p.name         = "amrnb",
1100
    CODEC_LONG_NAME("AMR-NB (Adaptive Multi-Rate NarrowBand)"),
1101
    .p.type         = AVMEDIA_TYPE_AUDIO,
1102
    .p.id           = AV_CODEC_ID_AMR_NB,
1103
    .priv_data_size = sizeof(AMRChannelsContext),
1104
    .init           = amrnb_decode_init,
1105
    FF_CODEC_DECODE_CB(amrnb_decode_frame),
1106
    .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF,
1107
};