Coverage Report

Created: 2026-02-14 06:59

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/ffmpeg/libavcodec/mlpenc.c
Line
Count
Source
1
/**
2
 * MLP encoder
3
 * Copyright (c) 2008 Ramiro Polla
4
 * Copyright (c) 2016-2019 Jai Luthra
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22
23
#include "config_components.h"
24
25
#include "avcodec.h"
26
#include "codec_internal.h"
27
#include "encode.h"
28
#include "put_bits.h"
29
#include "audio_frame_queue.h"
30
#include "libavutil/avassert.h"
31
#include "libavutil/channel_layout.h"
32
#include "libavutil/crc.h"
33
#include "libavutil/avstring.h"
34
#include "libavutil/intmath.h"
35
#include "libavutil/opt.h"
36
#include "libavutil/samplefmt.h"
37
#include "libavutil/thread.h"
38
#include "mlp_parse.h"
39
#include "mlp.h"
40
#include "lpc.h"
41
42
0
#define MAX_NCHANNELS (MAX_CHANNELS + 2)
43
44
#define MIN_HEADER_INTERVAL    8
45
#define MAX_HEADER_INTERVAL  128
46
47
0
#define MLP_MIN_LPC_ORDER      1
48
0
#define MLP_MAX_LPC_ORDER      8
49
0
#define MLP_MIN_LPC_SHIFT      0
50
0
#define MLP_MAX_LPC_SHIFT     15
51
52
typedef struct RestartHeader {
53
    uint8_t         min_channel;         ///< The index of the first channel coded in this substream.
54
    uint8_t         max_channel;         ///< The index of the last channel coded in this substream.
55
    uint8_t         max_matrix_channel;  ///< The number of channels input into the rematrix stage.
56
57
    int8_t          max_shift;
58
    uint8_t         noise_shift;         ///< The left shift applied to random noise in 0x31ea substreams.
59
    uint32_t        noisegen_seed;       ///< The current seed value for the pseudorandom noise generator(s).
60
61
    uint8_t         data_check_present;  ///< Set if the substream contains extra info to check the size of VLC blocks.
62
63
    int32_t         lossless_check_data; ///< XOR of all output samples
64
65
    uint8_t         max_huff_lsbs;       ///< largest huff_lsbs
66
    uint8_t         max_output_bits;     ///< largest output bit-depth
67
} RestartHeader;
68
69
typedef struct MatrixParams {
70
    uint8_t         count;                  ///< number of matrices to apply
71
72
    uint8_t         outch[MAX_MATRICES];    ///< output channel for each matrix
73
    int32_t         forco[MAX_MATRICES][MAX_NCHANNELS];    ///< forward coefficients
74
    int32_t         coeff[MAX_MATRICES][MAX_NCHANNELS];    ///< decoding coefficients
75
    uint8_t         fbits[MAX_MATRICES];    ///< fraction bits
76
77
    int8_t          noise_shift[MAX_CHANNELS];
78
    uint8_t         lsb_bypass[MAX_MATRICES];
79
    int8_t          bypassed_lsbs[MAX_MATRICES][MAX_BLOCKSIZE];
80
} MatrixParams;
81
82
0
#define PARAMS_DEFAULT (0xff)
83
0
#define PARAM_PRESENCE_FLAGS (1 << 8)
84
85
typedef struct DecodingParams {
86
    uint16_t        blocksize;                  ///< number of PCM samples in current audio block
87
    uint8_t         quant_step_size[MAX_CHANNELS];  ///< left shift to apply to Huffman-decoded residuals
88
    int8_t          output_shift[MAX_CHANNELS]; ///< Left shift to apply to decoded PCM values to get final 24-bit output.
89
    uint8_t         max_order[MAX_CHANNELS];
90
91
    MatrixParams    matrix_params;
92
93
    uint8_t         param_presence_flags;       ///< Bitmask of which parameter sets are conveyed in a decoding parameter block.
94
    int32_t         sample_buffer[MAX_NCHANNELS][MAX_BLOCKSIZE];
95
} DecodingParams;
96
97
typedef struct BestOffset {
98
    int32_t offset;
99
    uint32_t bitcount;
100
    uint8_t lsb_bits;
101
    int32_t min;
102
    int32_t max;
103
} BestOffset;
104
105
0
#define HUFF_OFFSET_MIN    (-16384)
106
0
#define HUFF_OFFSET_MAX    ( 16383)
107
108
/** Number of possible codebooks (counting "no codebooks") */
109
0
#define NUM_CODEBOOKS       4
110
111
typedef struct MLPBlock {
112
    unsigned int    seq_size;
113
    ChannelParams   channel_params[MAX_CHANNELS];
114
    DecodingParams  decoding_params;
115
    int32_t         lossless_check_data;
116
    unsigned int    max_output_bits; ///< largest output bit-depth
117
    BestOffset      best_offset[MAX_CHANNELS][NUM_CODEBOOKS];
118
    ChannelParams   major_channel_params[MAX_CHANNELS]; ///< ChannelParams to be written to bitstream.
119
    DecodingParams  major_decoding_params;              ///< DecodingParams to be written to bitstream.
120
    int             major_params_changed;               ///< params_changed to be written to bitstream.
121
    int32_t         inout_buffer[MAX_NCHANNELS][MAX_BLOCKSIZE];
122
} MLPBlock;
123
124
typedef struct MLPSubstream {
125
    RestartHeader   restart_header;
126
    RestartHeader  *cur_restart_header;
127
    MLPBlock        b[MAX_HEADER_INTERVAL + 1];
128
    unsigned int    major_cur_subblock_index;
129
    unsigned int    major_filter_state_subblock;
130
    int32_t         coefs[MAX_CHANNELS][MAX_LPC_ORDER][MAX_LPC_ORDER];
131
} MLPSubstream;
132
133
typedef struct MLPEncodeContext {
134
    AVClass        *class;
135
    AVCodecContext *avctx;
136
137
    int             max_restart_interval;   ///< Max interval of access units in between two major frames.
138
    int             min_restart_interval;   ///< Min interval of access units in between two major frames.
139
    int             cur_restart_interval;
140
    int             lpc_coeff_precision;
141
    int             rematrix_precision;
142
    int             lpc_type;
143
    int             lpc_passes;
144
    int             prediction_order;
145
    int             max_codebook_search;
146
147
    int             num_substreams;         ///< Number of substreams contained within this stream.
148
149
    int             num_channels;   /**< Number of channels in major_scratch_buffer.
150
                                     *   Normal channels + noise channels. */
151
152
    int             coded_sample_fmt [2];   ///< sample format encoded for MLP
153
    int             coded_sample_rate[2];   ///< sample rate encoded for MLP
154
    int             coded_peak_bitrate;     ///< peak bitrate for this major sync header
155
156
    int             flags;                  ///< major sync info flags
157
158
    /* channel_meaning */
159
    int             substream_info;
160
    int             thd_substream_info;
161
    int             fs;
162
    int             wordlength;
163
    int             channel_occupancy;
164
    int             summary_info;
165
166
    int32_t         last_frames;            ///< Signal last frames.
167
168
    unsigned int    major_number_of_frames;
169
    unsigned int    next_major_number_of_frames;
170
171
    unsigned int    major_frame_size;       ///< Number of samples in current major frame being encoded.
172
    unsigned int    next_major_frame_size;  ///< Counter of number of samples for next major frame.
173
174
    unsigned int    frame_index;            ///< Index of current frame being encoded.
175
176
    unsigned int    restart_intervals;      ///< Number of possible major frame sizes.
177
178
    uint16_t        output_timing;          ///< Timestamp of current access unit.
179
    uint16_t        input_timing;           ///< Decoding timestamp of current access unit.
180
181
    uint8_t         noise_type;
182
    uint8_t         channel_arrangement;    ///< channel arrangement for MLP streams
183
    uint16_t        channel_arrangement8;   ///< 8 channel arrangement for THD streams
184
185
    uint8_t         multichannel_type6ch;   ///< channel modifier for TrueHD stream 0
186
    uint8_t         multichannel_type8ch;   ///< channel modifier for TrueHD stream 0
187
    uint8_t         ch2_presentation_mod;   ///< channel modifier for TrueHD stream 0
188
    uint8_t         ch6_presentation_mod;   ///< channel modifier for TrueHD stream 1
189
    uint8_t         ch8_presentation_mod;   ///< channel modifier for TrueHD stream 2
190
191
    MLPSubstream    s[2];
192
    int32_t         filter_state[NUM_FILTERS][MAX_HEADER_INTERVAL * MAX_BLOCKSIZE];
193
    int32_t         lpc_sample_buffer[MAX_HEADER_INTERVAL * MAX_BLOCKSIZE];
194
195
    AudioFrameQueue afq;
196
197
    /* Analysis stage. */
198
    unsigned int    number_of_frames;
199
    unsigned int    number_of_subblocks;
200
201
    int             shorten_by;
202
203
    LPCContext      lpc_ctx;
204
} MLPEncodeContext;
205
206
static ChannelParams   restart_channel_params[MAX_CHANNELS];
207
static DecodingParams  restart_decoding_params[MAX_SUBSTREAMS];
208
static const BestOffset restart_best_offset[NUM_CODEBOOKS] = {{0}};
209
210
0
#define SYNC_MAJOR      0xf8726f
211
0
#define MAJOR_SYNC_INFO_SIGNATURE   0xB752
212
213
/* must be set for DVD-A */
214
0
#define FLAGS_DVDA      0x4000
215
/* FIFO delay must be constant */
216
#define FLAGS_CONST     0x8000
217
218
0
#define SUBSTREAM_INFO_MAX_2_CHAN   0x01
219
0
#define SUBSTREAM_INFO_HIGH_RATE    0x02
220
0
#define SUBSTREAM_INFO_ALWAYS_SET   0x04
221
#define SUBSTREAM_INFO_2_SUBSTREAMS 0x08
222
223
/****************************************************************************
224
 ************ Functions that copy, clear, or compare parameters *************
225
 ****************************************************************************/
226
227
/** Compares two FilterParams structures and returns 1 if anything has
228
 *  changed. Returns 0 if they are both equal.
229
 */
230
static int compare_filter_params(const ChannelParams *prev_cp, const ChannelParams *cp, int filter)
231
0
{
232
0
    const FilterParams *prev = &prev_cp->filter_params[filter];
233
0
    const FilterParams *fp = &cp->filter_params[filter];
234
235
0
    if (prev->order != fp->order)
236
0
        return 1;
237
238
0
    if (!fp->order)
239
0
        return 0;
240
241
0
    if (prev->shift != fp->shift)
242
0
        return 1;
243
244
0
    for (int i = 0; i < fp->order; i++)
245
0
        if (prev_cp->coeff[filter][i] != cp->coeff[filter][i])
246
0
            return 1;
247
248
0
    return 0;
249
0
}
250
251
/** Compare two primitive matrices and returns 1 if anything has changed.
252
 *  Returns 0 if they are both equal.
253
 */
254
static int compare_matrix_params(MLPEncodeContext *ctx, MLPSubstream *s,
255
                                 const MatrixParams *prev, const MatrixParams *mp)
256
0
{
257
0
    RestartHeader *rh = s->cur_restart_header;
258
259
0
    if (prev->count != mp->count)
260
0
        return 1;
261
262
0
    if (!mp->count)
263
0
        return 0;
264
265
0
    for (unsigned int mat = 0; mat < mp->count; mat++) {
266
0
        if (prev->outch[mat] != mp->outch[mat])
267
0
            return 1;
268
269
0
        if (prev->fbits[mat] != mp->fbits[mat])
270
0
            return 1;
271
272
0
        if (prev->noise_shift[mat] != mp->noise_shift[mat])
273
0
            return 1;
274
275
0
        if (prev->lsb_bypass[mat] != mp->lsb_bypass[mat])
276
0
            return 1;
277
278
0
        for (int ch = 0; ch <= rh->max_matrix_channel; ch++)
279
0
            if (prev->coeff[mat][ch] != mp->coeff[mat][ch])
280
0
                return 1;
281
0
    }
282
283
0
    return 0;
284
0
}
285
286
/** Compares two DecodingParams and ChannelParams structures to decide if a
287
 *  new decoding params header has to be written.
288
 */
289
static int compare_decoding_params(MLPEncodeContext *ctx,
290
                                   MLPSubstream *s,
291
                                   unsigned int index)
292
0
{
293
0
    const DecodingParams *prev = index ? &s->b[index-1].major_decoding_params : restart_decoding_params;
294
0
    DecodingParams *dp = &s->b[index].major_decoding_params;
295
0
    const MatrixParams *prev_mp = &prev->matrix_params;
296
0
    MatrixParams *mp = &dp->matrix_params;
297
0
    RestartHeader *rh = s->cur_restart_header;
298
0
    int retval = 0;
299
300
0
    if (prev->param_presence_flags != dp->param_presence_flags)
301
0
        retval |= PARAM_PRESENCE_FLAGS;
302
303
0
    if (prev->blocksize != dp->blocksize)
304
0
        retval |= PARAM_BLOCKSIZE;
305
306
0
    if (compare_matrix_params(ctx, s, prev_mp, mp))
307
0
        retval |= PARAM_MATRIX;
308
309
0
    for (int ch = 0; ch <= rh->max_matrix_channel; ch++)
310
0
        if (prev->output_shift[ch] != dp->output_shift[ch]) {
311
0
            retval |= PARAM_OUTSHIFT;
312
0
            break;
313
0
        }
314
315
0
    for (int ch = 0; ch <= rh->max_channel; ch++)
316
0
        if (prev->quant_step_size[ch] != dp->quant_step_size[ch]) {
317
0
            retval |= PARAM_QUANTSTEP;
318
0
            break;
319
0
        }
320
321
0
    for (int ch = rh->min_channel; ch <= rh->max_channel; ch++) {
322
0
        const ChannelParams *prev_cp = index ? &s->b[index-1].major_channel_params[ch] : &restart_channel_params[ch];
323
0
        ChannelParams *cp = &s->b[index].major_channel_params[ch];
324
325
0
        if (!(retval & PARAM_FIR) &&
326
0
            compare_filter_params(prev_cp, cp, FIR))
327
0
            retval |= PARAM_FIR;
328
329
0
        if (!(retval & PARAM_IIR) &&
330
0
            compare_filter_params(prev_cp, cp, IIR))
331
0
            retval |= PARAM_IIR;
332
333
0
        if (prev_cp->huff_offset != cp->huff_offset)
334
0
            retval |= PARAM_HUFFOFFSET;
335
336
0
        if (prev_cp->codebook    != cp->codebook  ||
337
0
            prev_cp->huff_lsbs   != cp->huff_lsbs  )
338
0
            retval |= PARAM_PRESENCE;
339
0
    }
340
341
0
    return retval;
342
0
}
343
344
static void copy_filter_params(ChannelParams *dst_cp, ChannelParams *src_cp, int filter)
345
0
{
346
0
    FilterParams *dst = &dst_cp->filter_params[filter];
347
0
    FilterParams *src = &src_cp->filter_params[filter];
348
349
0
    dst->order = src->order;
350
351
0
    if (dst->order) {
352
0
        dst->shift = src->shift;
353
354
0
        dst->coeff_shift = src->coeff_shift;
355
0
        dst->coeff_bits = src->coeff_bits;
356
0
    }
357
358
0
    for (int order = 0; order < dst->order; order++)
359
0
        dst_cp->coeff[filter][order] = src_cp->coeff[filter][order];
360
0
}
361
362
static void copy_matrix_params(MatrixParams *dst, MatrixParams *src)
363
0
{
364
0
    dst->count = src->count;
365
366
0
    if (!dst->count)
367
0
        return;
368
369
0
    for (int count = 0; count < MAX_MATRICES; count++) {
370
0
        dst->outch[count] = src->outch[count];
371
0
        dst->fbits[count] = src->fbits[count];
372
0
        dst->noise_shift[count] = src->noise_shift[count];
373
0
        dst->lsb_bypass[count] = src->lsb_bypass[count];
374
375
0
        for (int channel = 0; channel < MAX_NCHANNELS; channel++)
376
0
            dst->coeff[count][channel] = src->coeff[count][channel];
377
0
    }
378
0
}
379
380
static void copy_restart_frame_params(MLPEncodeContext *ctx, MLPSubstream *s)
381
0
{
382
0
    RestartHeader *rh = s->cur_restart_header;
383
384
0
    for (unsigned int index = 0; index < ctx->number_of_subblocks; index++) {
385
0
        DecodingParams *dp = &s->b[index].decoding_params;
386
387
0
        copy_matrix_params(&dp->matrix_params, &s->b[1].decoding_params.matrix_params);
388
389
0
        for (int ch = 0; ch <= rh->max_matrix_channel; ch++)
390
0
            dp->output_shift[ch] = s->b[1].decoding_params.output_shift[ch];
391
392
0
        for (int ch = 0; ch <= rh->max_channel; ch++) {
393
0
            ChannelParams *cp = &s->b[index].channel_params[ch];
394
395
0
            dp->quant_step_size[ch] = s->b[1].decoding_params.quant_step_size[ch];
396
397
0
            if (index)
398
0
                for (unsigned int filter = 0; filter < NUM_FILTERS; filter++)
399
0
                    copy_filter_params(cp, &s->b[1].channel_params[ch], filter);
400
0
        }
401
0
    }
402
0
}
403
404
/** Clears a DecodingParams struct the way it should be after a restart header. */
405
static void clear_decoding_params(DecodingParams *decoding_params)
406
0
{
407
0
    DecodingParams *dp = decoding_params;
408
409
0
    dp->param_presence_flags   = 0xff;
410
0
    dp->blocksize              = 0;
411
412
0
    memset(&dp->matrix_params,  0, sizeof(dp->matrix_params  ));
413
0
    memset(dp->quant_step_size, 0, sizeof(dp->quant_step_size));
414
0
    memset(dp->sample_buffer,   0, sizeof(dp->sample_buffer  ));
415
0
    memset(dp->output_shift,    0, sizeof(dp->output_shift   ));
416
0
    memset(dp->max_order, MAX_FIR_ORDER, sizeof(dp->max_order));
417
0
}
418
419
/** Clears a ChannelParams struct the way it should be after a restart header. */
420
static void clear_channel_params(ChannelParams *channel_params, int nb_channels)
421
0
{
422
0
    for (unsigned channel = 0; channel < nb_channels; channel++) {
423
0
        ChannelParams *cp = &channel_params[channel];
424
425
0
        memset(&cp->filter_params, 0, sizeof(cp->filter_params));
426
427
        /* Default audio coding is 24-bit raw PCM. */
428
0
        cp->huff_offset      =  0;
429
0
        cp->codebook         =  0;
430
0
        cp->huff_lsbs        = 24;
431
0
    }
432
0
}
433
434
/** Sets default vales in our encoder for a DecodingParams struct. */
435
static void default_decoding_params(MLPEncodeContext *ctx, DecodingParams *dp)
436
0
{
437
0
    uint8_t param_presence_flags = 0;
438
439
0
    clear_decoding_params(dp);
440
441
0
    param_presence_flags |= PARAM_BLOCKSIZE;
442
0
    param_presence_flags |= PARAM_MATRIX;
443
0
    param_presence_flags |= PARAM_OUTSHIFT;
444
0
    param_presence_flags |= PARAM_QUANTSTEP;
445
0
    param_presence_flags |= PARAM_FIR;
446
0
    param_presence_flags |= PARAM_IIR;
447
0
    param_presence_flags |= PARAM_HUFFOFFSET;
448
0
    param_presence_flags |= PARAM_PRESENCE;
449
450
0
    dp->param_presence_flags = param_presence_flags;
451
0
}
452
453
/****************************************************************************/
454
455
/** Calculates the smallest number of bits it takes to encode a given signed
456
 *  value in two's complement.
457
 */
458
static int inline number_sbits(int32_t n)
459
0
{
460
0
    return 33 - ff_clz(FFABS(n)|1) - !n;
461
0
}
462
463
enum InputBitDepth {
464
    BITS_16,
465
    BITS_20,
466
    BITS_24,
467
};
468
469
static int mlp_peak_bitrate(int peak_bitrate, int sample_rate)
470
0
{
471
0
    return ((peak_bitrate << 4) - 8) / sample_rate;
472
0
}
473
474
static av_cold void mlp_encode_init_static(void)
475
0
{
476
0
    clear_channel_params (restart_channel_params,  MAX_CHANNELS);
477
0
    clear_decoding_params(restart_decoding_params);
478
0
    ff_mlp_init_crc();
479
0
}
480
481
static av_cold int mlp_encode_init(AVCodecContext *avctx)
482
0
{
483
0
    static AVOnce init_static_once = AV_ONCE_INIT;
484
0
    MLPEncodeContext *ctx = avctx->priv_data;
485
0
    uint64_t channels_present;
486
0
    int ret;
487
488
0
    ctx->avctx = avctx;
489
490
0
    switch (avctx->sample_rate) {
491
0
    case 44100 << 0:
492
0
        avctx->frame_size         = 40  << 0;
493
0
        ctx->coded_sample_rate[0] = 0x08 + 0;
494
0
        ctx->fs                   = 0x08 + 1;
495
0
        break;
496
0
    case 44100 << 1:
497
0
        avctx->frame_size         = 40  << 1;
498
0
        ctx->coded_sample_rate[0] = 0x08 + 1;
499
0
        ctx->fs                   = 0x0C + 1;
500
0
        break;
501
0
    case 44100 << 2:
502
0
        ctx->substream_info      |= SUBSTREAM_INFO_HIGH_RATE;
503
0
        avctx->frame_size         = 40  << 2;
504
0
        ctx->coded_sample_rate[0] = 0x08 + 2;
505
0
        ctx->fs                   = 0x10 + 1;
506
0
        break;
507
0
    case 48000 << 0:
508
0
        avctx->frame_size         = 40  << 0;
509
0
        ctx->coded_sample_rate[0] = 0x00 + 0;
510
0
        ctx->fs                   = 0x08 + 2;
511
0
        break;
512
0
    case 48000 << 1:
513
0
        avctx->frame_size         = 40  << 1;
514
0
        ctx->coded_sample_rate[0] = 0x00 + 1;
515
0
        ctx->fs                   = 0x0C + 2;
516
0
        break;
517
0
    case 48000 << 2:
518
0
        ctx->substream_info      |= SUBSTREAM_INFO_HIGH_RATE;
519
0
        avctx->frame_size         = 40  << 2;
520
0
        ctx->coded_sample_rate[0] = 0x00 + 2;
521
0
        ctx->fs                   = 0x10 + 2;
522
0
        break;
523
0
    default:
524
0
        av_unreachable("Checked via CODEC_SAMPLERATES");
525
0
    }
526
0
    ctx->coded_sample_rate[1] = -1 & 0xf;
527
528
0
    ctx->coded_peak_bitrate = mlp_peak_bitrate(9600000, avctx->sample_rate);
529
530
0
    ctx->substream_info |= SUBSTREAM_INFO_ALWAYS_SET;
531
0
    if (avctx->ch_layout.nb_channels <= 2)
532
0
        ctx->substream_info |= SUBSTREAM_INFO_MAX_2_CHAN;
533
534
0
    switch (avctx->sample_fmt) {
535
0
    case AV_SAMPLE_FMT_S16P:
536
0
        ctx->coded_sample_fmt[0] = BITS_16;
537
0
        ctx->wordlength = 16;
538
0
        avctx->bits_per_raw_sample = 16;
539
0
        break;
540
    /* TODO 20 bits: */
541
0
    case AV_SAMPLE_FMT_S32P:
542
0
        ctx->coded_sample_fmt[0] = BITS_24;
543
0
        ctx->wordlength = 24;
544
0
        avctx->bits_per_raw_sample = 24;
545
0
        break;
546
0
    default:
547
0
        av_unreachable("Checked via CODEC_SAMPLEFMTS");
548
0
    }
549
0
    ctx->coded_sample_fmt[1] = -1 & 0xf;
550
551
0
    ctx->input_timing = -avctx->frame_size;
552
553
0
    ctx->num_channels = avctx->ch_layout.nb_channels + 2; /* +2 noise channels */
554
555
0
    ctx->min_restart_interval = ctx->cur_restart_interval = ctx->max_restart_interval;
556
0
    ctx->restart_intervals = ctx->max_restart_interval / ctx->min_restart_interval;
557
558
0
    ctx->num_substreams = 1;
559
560
0
    channels_present = av_channel_layout_subset(&avctx->ch_layout, ~(uint64_t)0);
561
0
    if (ctx->avctx->codec_id == AV_CODEC_ID_MLP) {
562
0
        static const uint64_t layout_arrangement[] = {
563
0
            AV_CH_LAYOUT_MONO,         AV_CH_LAYOUT_STEREO,
564
0
            AV_CH_LAYOUT_2_1,          AV_CH_LAYOUT_QUAD,
565
0
            AV_CH_LAYOUT_2POINT1,      0, 0,
566
0
            AV_CH_LAYOUT_SURROUND,     AV_CH_LAYOUT_4POINT0,
567
0
            AV_CH_LAYOUT_5POINT0_BACK, AV_CH_LAYOUT_3POINT1,
568
0
            AV_CH_LAYOUT_4POINT1,      AV_CH_LAYOUT_5POINT1_BACK,
569
0
        };
570
0
        int i;
571
572
0
        for (i = 0;; i++) {
573
0
            av_assert1(i < FF_ARRAY_ELEMS(layout_arrangement) ||
574
0
                       !"Impossible channel layout");
575
0
            if (channels_present == layout_arrangement[i])
576
0
                break;
577
0
        }
578
0
        ctx->channel_arrangement = i;
579
0
        ctx->flags = FLAGS_DVDA;
580
0
        ctx->channel_occupancy = ff_mlp_ch_info[ctx->channel_arrangement].channel_occupancy;
581
0
        ctx->summary_info      = ff_mlp_ch_info[ctx->channel_arrangement].summary_info     ;
582
0
    } else {
583
        /* TrueHD */
584
0
        ctx->num_substreams = 1 + (avctx->ch_layout.nb_channels > 2);
585
0
        switch (channels_present) {
586
0
        case AV_CH_LAYOUT_MONO:
587
0
            ctx->ch2_presentation_mod= 3;
588
0
            ctx->ch6_presentation_mod= 3;
589
0
            ctx->ch8_presentation_mod= 3;
590
0
            ctx->thd_substream_info  = 0x14;
591
0
            break;
592
0
        case AV_CH_LAYOUT_STEREO:
593
0
            ctx->ch2_presentation_mod= 1;
594
0
            ctx->ch6_presentation_mod= 1;
595
0
            ctx->ch8_presentation_mod= 1;
596
0
            ctx->thd_substream_info  = 0x14;
597
0
            break;
598
0
        case AV_CH_LAYOUT_2POINT1:
599
0
        case AV_CH_LAYOUT_SURROUND:
600
0
        case AV_CH_LAYOUT_3POINT1:
601
0
        case AV_CH_LAYOUT_4POINT0:
602
0
        case AV_CH_LAYOUT_4POINT1:
603
0
        case AV_CH_LAYOUT_5POINT0:
604
0
        case AV_CH_LAYOUT_5POINT1:
605
0
            ctx->ch2_presentation_mod= 0;
606
0
            ctx->ch6_presentation_mod= 0;
607
0
            ctx->ch8_presentation_mod= 0;
608
0
            ctx->thd_substream_info  = 0x3C;
609
0
            break;
610
0
        default:
611
0
            av_unreachable("Checked via CODEC_CH_LAYOUTS");
612
0
        }
613
0
        ctx->flags = 0;
614
0
        ctx->channel_occupancy = 0;
615
0
        ctx->summary_info = 0;
616
0
        ctx->channel_arrangement =
617
0
        ctx->channel_arrangement8 = layout_truehd(channels_present);
618
0
    }
619
620
0
    for (unsigned int index = 0; index < ctx->restart_intervals; index++) {
621
0
        for (int n = 0; n < ctx->num_substreams; n++)
622
0
            ctx->s[n].b[index].seq_size = ((index + 1) * ctx->min_restart_interval) + 1;
623
0
    }
624
625
626
    /* TODO see if noisegen_seed is really worth it. */
627
0
    if (ctx->avctx->codec_id == AV_CODEC_ID_MLP) {
628
0
        RestartHeader *const rh = &ctx->s[0].restart_header;
629
630
0
        rh->noisegen_seed      = 0;
631
0
        rh->min_channel        = 0;
632
0
        rh->max_channel        = avctx->ch_layout.nb_channels - 1;
633
0
        rh->max_matrix_channel = rh->max_channel;
634
0
    } else {
635
0
        RestartHeader *rh = &ctx->s[0].restart_header;
636
637
0
        rh->noisegen_seed      = 0;
638
0
        rh->min_channel        = 0;
639
0
        rh->max_channel        = FFMIN(avctx->ch_layout.nb_channels, 2) - 1;
640
0
        rh->max_matrix_channel = rh->max_channel;
641
642
0
        if (avctx->ch_layout.nb_channels > 2) {
643
0
            rh = &ctx->s[1].restart_header;
644
645
0
            rh->noisegen_seed      = 0;
646
0
            rh->min_channel        = 2;
647
0
            rh->max_channel        = avctx->ch_layout.nb_channels - 1;
648
0
            rh->max_matrix_channel = rh->max_channel;
649
0
        }
650
0
    }
651
652
0
    if ((ret = ff_lpc_init(&ctx->lpc_ctx, ctx->avctx->frame_size,
653
0
                           MLP_MAX_LPC_ORDER, ctx->lpc_type)) < 0)
654
0
        return ret;
655
656
0
    ff_af_queue_init(avctx, &ctx->afq);
657
658
0
    ff_thread_once(&init_static_once, mlp_encode_init_static);
659
660
0
    return 0;
661
0
}
662
663
/****************************************************************************
664
 ****************** Functions that write to the bitstream *******************
665
 ****************************************************************************/
666
667
/** Writes a major sync header to the bitstream. */
668
static void write_major_sync(MLPEncodeContext *ctx, uint8_t *buf, int buf_size)
669
0
{
670
0
    PutBitContext pb;
671
672
0
    init_put_bits(&pb, buf, buf_size);
673
674
0
    put_bits(&pb, 24, SYNC_MAJOR               );
675
676
0
    if (ctx->avctx->codec_id == AV_CODEC_ID_MLP) {
677
0
        put_bits(&pb,  8, SYNC_MLP                 );
678
0
        put_bits(&pb,  4, ctx->coded_sample_fmt [0]);
679
0
        put_bits(&pb,  4, ctx->coded_sample_fmt [1]);
680
0
        put_bits(&pb,  4, ctx->coded_sample_rate[0]);
681
0
        put_bits(&pb,  4, ctx->coded_sample_rate[1]);
682
0
        put_bits(&pb,  4, 0                        ); /* ignored */
683
0
        put_bits(&pb,  4, 0                        ); /* multi_channel_type */
684
0
        put_bits(&pb,  3, 0                        ); /* ignored */
685
0
        put_bits(&pb,  5, ctx->channel_arrangement );
686
0
    } else if (ctx->avctx->codec_id == AV_CODEC_ID_TRUEHD) {
687
0
        put_bits(&pb,  8, SYNC_TRUEHD              );
688
0
        put_bits(&pb,  4, ctx->coded_sample_rate[0]);
689
0
        put_bits(&pb,  1, ctx->multichannel_type6ch);
690
0
        put_bits(&pb,  1, ctx->multichannel_type8ch);
691
0
        put_bits(&pb,  2, 0                        ); /* ignored */
692
0
        put_bits(&pb,  2, ctx->ch2_presentation_mod);
693
0
        put_bits(&pb,  2, ctx->ch6_presentation_mod);
694
0
        put_bits(&pb,  5, ctx->channel_arrangement );
695
0
        put_bits(&pb,  2, ctx->ch8_presentation_mod);
696
0
        put_bits(&pb, 13, ctx->channel_arrangement8);
697
0
    }
698
699
0
    put_bits(&pb, 16, MAJOR_SYNC_INFO_SIGNATURE);
700
0
    put_bits(&pb, 16, ctx->flags               );
701
0
    put_bits(&pb, 16, 0                        ); /* ignored */
702
0
    put_bits(&pb,  1, 1                        ); /* is_vbr */
703
0
    put_bits(&pb, 15, ctx->coded_peak_bitrate  );
704
0
    put_bits(&pb,  4, ctx->num_substreams      );
705
0
    put_bits(&pb,  2, 0                        ); /* ignored */
706
0
    put_bits(&pb,  2, 0                        ); /* extended substream info */
707
708
    /* channel_meaning */
709
0
    if (ctx->avctx->codec_id == AV_CODEC_ID_MLP) {
710
0
        put_bits(&pb,  8, ctx->substream_info      );
711
0
        put_bits(&pb,  5, ctx->fs                  );
712
0
        put_bits(&pb,  5, ctx->wordlength          );
713
0
        put_bits(&pb,  6, ctx->channel_occupancy   );
714
0
        put_bits(&pb,  3, 0                        ); /* ignored */
715
0
        put_bits(&pb, 10, 0                        ); /* speaker_layout */
716
0
        put_bits(&pb,  3, 0                        ); /* copy_protection */
717
0
        put_bits(&pb, 16, 0x8080                   ); /* ignored */
718
0
        put_bits(&pb,  7, 0                        ); /* ignored */
719
0
        put_bits(&pb,  4, 0                        ); /* source_format */
720
0
        put_bits(&pb,  5, ctx->summary_info        );
721
0
    } else if (ctx->avctx->codec_id == AV_CODEC_ID_TRUEHD) {
722
0
        put_bits(&pb,  8, ctx->thd_substream_info  );
723
0
        put_bits(&pb,  6, 0                        ); /* reserved */
724
0
        put_bits(&pb,  1, 0                        ); /* 2ch control enabled */
725
0
        put_bits(&pb,  1, 0                        ); /* 6ch control enabled */
726
0
        put_bits(&pb,  1, 0                        ); /* 8ch control enabled */
727
0
        put_bits(&pb,  1, 0                        ); /* reserved */
728
0
        put_bits(&pb,  7, 0                        ); /* drc start up gain */
729
0
        put_bits(&pb,  6, 0                        ); /* 2ch dialogue norm */
730
0
        put_bits(&pb,  6, 0                        ); /* 2ch mix level */
731
0
        put_bits(&pb,  5, 0                        ); /* 6ch dialogue norm */
732
0
        put_bits(&pb,  6, 0                        ); /* 6ch mix level */
733
0
        put_bits(&pb,  5, 0                        ); /* 6ch source format */
734
0
        put_bits(&pb,  5, 0                        ); /* 8ch dialogue norm */
735
0
        put_bits(&pb,  6, 0                        ); /* 8ch mix level */
736
0
        put_bits(&pb,  6, 0                        ); /* 8ch source format */
737
0
        put_bits(&pb,  1, 0                        ); /* reserved */
738
0
        put_bits(&pb,  1, 0                        ); /* extra channel meaning present */
739
0
    }
740
741
0
    flush_put_bits(&pb);
742
743
0
    AV_WL16(buf+26, ff_mlp_checksum16(buf, 26));
744
0
}
745
746
/** Writes a restart header to the bitstream. Damaged streams can start being
747
 *  decoded losslessly again after such a header and the subsequent decoding
748
 *  params header.
749
 */
750
static void write_restart_header(MLPEncodeContext *ctx, MLPSubstream *s,
751
                                 PutBitContext *pb)
752
0
{
753
0
    RestartHeader *rh = s->cur_restart_header;
754
0
    uint8_t lossless_check = xor_32_to_8(rh->lossless_check_data);
755
0
    unsigned int start_count = put_bits_count(pb);
756
0
    PutBitContext tmpb;
757
0
    uint8_t checksum;
758
759
0
    put_bits(pb, 14, 0x31ea                ); /* TODO 0x31eb */
760
0
    put_bits(pb, 16, ctx->output_timing    );
761
0
    put_bits(pb,  4, rh->min_channel       );
762
0
    put_bits(pb,  4, rh->max_channel       );
763
0
    put_bits(pb,  4, rh->max_matrix_channel);
764
0
    put_bits(pb,  4, rh->noise_shift       );
765
0
    put_bits(pb, 23, rh->noisegen_seed     );
766
0
    put_bits(pb,  4, rh->max_shift         );
767
0
    put_bits(pb,  5, rh->max_huff_lsbs     );
768
0
    put_bits(pb,  5, rh->max_output_bits   );
769
0
    put_bits(pb,  5, rh->max_output_bits   );
770
0
    put_bits(pb,  1, rh->data_check_present);
771
0
    put_bits(pb,  8, lossless_check        );
772
0
    put_bits(pb, 16, 0                     ); /* ignored */
773
774
0
    for (int ch = 0; ch <= rh->max_matrix_channel; ch++)
775
0
        put_bits(pb, 6, ch);
776
777
    /* Data must be flushed for the checksum to be correct. */
778
0
    tmpb = *pb;
779
0
    flush_put_bits(&tmpb);
780
781
0
    checksum = ff_mlp_restart_checksum(pb->buf, put_bits_count(pb) - start_count);
782
783
0
    put_bits(pb,  8, checksum);
784
0
}
785
786
/** Writes matrix params for all primitive matrices to the bitstream. */
787
static void write_matrix_params(MLPEncodeContext *ctx,
788
                                MLPSubstream *s,
789
                                DecodingParams *dp,
790
                                PutBitContext *pb)
791
0
{
792
0
    RestartHeader *rh = s->cur_restart_header;
793
0
    MatrixParams *mp = &dp->matrix_params;
794
0
    int max_channel = rh->max_matrix_channel;
795
796
0
    put_bits(pb, 4, mp->count);
797
798
0
    if (!ctx->noise_type)
799
0
        max_channel += 2;
800
801
0
    for (unsigned int mat = 0; mat < mp->count; mat++) {
802
0
        put_bits(pb, 4, mp->outch[mat]); /* matrix_out_ch */
803
0
        put_bits(pb, 4, mp->fbits[mat]);
804
0
        put_bits(pb, 1, mp->lsb_bypass[mat]);
805
806
0
        for (int ch = 0; ch <= max_channel; ch++) {
807
0
            int32_t coeff = mp->coeff[mat][ch];
808
809
0
            if (coeff) {
810
0
                put_bits(pb, 1, 1);
811
812
0
                coeff >>= 14 - mp->fbits[mat];
813
814
0
                put_sbits(pb, mp->fbits[mat] + 2, coeff);
815
0
            } else {
816
0
                put_bits(pb, 1, 0);
817
0
            }
818
0
        }
819
0
    }
820
0
}
821
822
/** Writes filter parameters for one filter to the bitstream. */
823
static void write_filter_params(MLPEncodeContext *ctx,
824
                                ChannelParams *cp,
825
                                PutBitContext *pb,
826
                                int channel, unsigned int filter)
827
0
{
828
0
    FilterParams *fp = &cp->filter_params[filter];
829
830
0
    put_bits(pb, 4, fp->order);
831
832
0
    if (fp->order > 0) {
833
0
        int32_t *fcoeff = cp->coeff[filter];
834
835
0
        put_bits(pb, 4, fp->shift      );
836
0
        put_bits(pb, 5, fp->coeff_bits );
837
0
        put_bits(pb, 3, fp->coeff_shift);
838
839
0
        for (int i = 0; i < fp->order; i++) {
840
0
            put_sbits(pb, fp->coeff_bits, fcoeff[i] >> fp->coeff_shift);
841
0
        }
842
843
        /* TODO state data for IIR filter. */
844
0
        put_bits(pb, 1, 0);
845
0
    }
846
0
}
847
848
/** Writes decoding parameters to the bitstream. These change very often,
849
 *  usually at almost every frame.
850
 */
851
static void write_decoding_params(MLPEncodeContext *ctx, MLPSubstream *s,
852
                                  PutBitContext *pb, int params_changed,
853
                                  unsigned int subblock_index)
854
0
{
855
0
    DecodingParams *dp = &s->b[subblock_index].major_decoding_params;
856
0
    RestartHeader *rh = s->cur_restart_header;
857
858
0
    if (dp->param_presence_flags != PARAMS_DEFAULT &&
859
0
        params_changed & PARAM_PRESENCE_FLAGS) {
860
0
        put_bits(pb, 1, 1);
861
0
        put_bits(pb, 8, dp->param_presence_flags);
862
0
    } else {
863
0
        put_bits(pb, 1, 0);
864
0
    }
865
866
0
    if (dp->param_presence_flags & PARAM_BLOCKSIZE) {
867
0
        if (params_changed       & PARAM_BLOCKSIZE) {
868
0
            put_bits(pb, 1, 1);
869
0
            put_bits(pb, 9, dp->blocksize);
870
0
        } else {
871
0
            put_bits(pb, 1, 0);
872
0
        }
873
0
    }
874
875
0
    if (dp->param_presence_flags & PARAM_MATRIX) {
876
0
        if (params_changed       & PARAM_MATRIX) {
877
0
            put_bits(pb, 1, 1);
878
0
            write_matrix_params(ctx, s, dp, pb);
879
0
        } else {
880
0
            put_bits(pb, 1, 0);
881
0
        }
882
0
    }
883
884
0
    if (dp->param_presence_flags & PARAM_OUTSHIFT) {
885
0
        if (params_changed       & PARAM_OUTSHIFT) {
886
0
            put_bits(pb, 1, 1);
887
0
            for (int ch = 0; ch <= rh->max_matrix_channel; ch++)
888
0
                put_sbits(pb, 4, dp->output_shift[ch]);
889
0
        } else {
890
0
            put_bits(pb, 1, 0);
891
0
        }
892
0
    }
893
894
0
    if (dp->param_presence_flags & PARAM_QUANTSTEP) {
895
0
        if (params_changed       & PARAM_QUANTSTEP) {
896
0
            put_bits(pb, 1, 1);
897
0
            for (int ch = 0; ch <= rh->max_channel; ch++)
898
0
                put_bits(pb, 4, dp->quant_step_size[ch]);
899
0
        } else {
900
0
            put_bits(pb, 1, 0);
901
0
        }
902
0
    }
903
904
0
    for (int ch = rh->min_channel; ch <= rh->max_channel; ch++) {
905
0
        ChannelParams *cp = &s->b[subblock_index].major_channel_params[ch];
906
907
0
        if (dp->param_presence_flags & 0xF) {
908
0
            put_bits(pb, 1, 1);
909
910
0
            if (dp->param_presence_flags & PARAM_FIR) {
911
0
                if (params_changed       & PARAM_FIR) {
912
0
                    put_bits(pb, 1, 1);
913
0
                    write_filter_params(ctx, cp, pb, ch, FIR);
914
0
                } else {
915
0
                    put_bits(pb, 1, 0);
916
0
                }
917
0
            }
918
919
0
            if (dp->param_presence_flags & PARAM_IIR) {
920
0
                if (params_changed       & PARAM_IIR) {
921
0
                    put_bits(pb, 1, 1);
922
0
                    write_filter_params(ctx, cp, pb, ch, IIR);
923
0
                } else {
924
0
                    put_bits(pb, 1, 0);
925
0
                }
926
0
            }
927
928
0
            if (dp->param_presence_flags & PARAM_HUFFOFFSET) {
929
0
                if (params_changed       & PARAM_HUFFOFFSET) {
930
0
                    put_bits (pb,  1, 1);
931
0
                    put_sbits(pb, 15, cp->huff_offset);
932
0
                } else {
933
0
                    put_bits(pb, 1, 0);
934
0
                }
935
0
            }
936
0
            if (cp->codebook > 0 && cp->huff_lsbs > 24) {
937
0
                av_log(ctx->avctx, AV_LOG_ERROR, "Invalid Huff LSBs %d\n", cp->huff_lsbs);
938
0
            }
939
940
0
            put_bits(pb, 2, cp->codebook );
941
0
            put_bits(pb, 5, cp->huff_lsbs);
942
0
        } else {
943
0
            put_bits(pb, 1, 0);
944
0
        }
945
0
    }
946
0
}
947
948
/** Writes the residuals to the bitstream. That is, the VLC codes from the
949
 *  codebooks (if any is used), and then the residual.
950
 */
951
static void write_block_data(MLPEncodeContext *ctx, MLPSubstream *s,
952
                             PutBitContext *pb, unsigned int subblock_index)
953
0
{
954
0
    RestartHeader *rh = s->cur_restart_header;
955
0
    DecodingParams *dp = &s->b[subblock_index].major_decoding_params;
956
0
    MatrixParams *mp = &dp->matrix_params;
957
0
    int32_t sign_huff_offset[MAX_CHANNELS];
958
0
    int codebook_index      [MAX_CHANNELS];
959
0
    int lsb_bits            [MAX_CHANNELS];
960
961
0
    for (int ch = rh->min_channel; ch <= rh->max_channel; ch++) {
962
0
        ChannelParams *cp = &s->b[subblock_index].major_channel_params[ch];
963
0
        int sign_shift;
964
965
0
        lsb_bits        [ch] = cp->huff_lsbs - dp->quant_step_size[ch];
966
0
        codebook_index  [ch] = cp->codebook  - 1;
967
0
        sign_huff_offset[ch] = cp->huff_offset;
968
969
0
        sign_shift = lsb_bits[ch] + (cp->codebook ? 2 - cp->codebook : -1);
970
971
0
        if (cp->codebook > 0)
972
0
            sign_huff_offset[ch] -= 7 << lsb_bits[ch];
973
974
        /* Unsign if needed. */
975
0
        if (sign_shift >= 0)
976
0
            sign_huff_offset[ch] -= 1 << sign_shift;
977
0
    }
978
979
0
    for (unsigned int i = 0; i < dp->blocksize; i++) {
980
0
        for (unsigned int mat = 0; mat < mp->count; mat++) {
981
0
            if (mp->lsb_bypass[mat]) {
982
0
                const int8_t *bypassed_lsbs = mp->bypassed_lsbs[mat];
983
984
0
                put_bits(pb, 1, bypassed_lsbs[i]);
985
0
            }
986
0
        }
987
988
0
        for (int ch = rh->min_channel; ch <= rh->max_channel; ch++) {
989
0
            int32_t *sample_buffer = dp->sample_buffer[ch];
990
0
            int32_t sample = sample_buffer[i] >> dp->quant_step_size[ch];
991
0
            sample -= sign_huff_offset[ch];
992
993
0
            if (codebook_index[ch] >= 0) {
994
0
                int vlc = sample >> lsb_bits[ch];
995
0
                put_bits(pb, ff_mlp_huffman_tables[codebook_index[ch]][vlc][1],
996
0
                             ff_mlp_huffman_tables[codebook_index[ch]][vlc][0]);
997
0
                sample &= ((1 << lsb_bits[ch]) - 1);
998
0
            }
999
1000
0
            put_bits(pb, lsb_bits[ch], sample);
1001
0
        }
1002
0
    }
1003
0
}
1004
1005
/** Writes the substream data to the bitstream. */
1006
static uint8_t *write_substr(MLPEncodeContext *ctx,
1007
                             MLPSubstream *s,
1008
                             uint8_t *buf, int buf_size,
1009
                             int restart_frame,
1010
                             uint16_t *substream_data_len)
1011
0
{
1012
0
    int32_t *lossless_check_data = &s->b[ctx->frame_index].lossless_check_data;
1013
0
    unsigned int cur_subblock_index = s->major_cur_subblock_index;
1014
0
    unsigned int num_subblocks = s->major_filter_state_subblock;
1015
0
    RestartHeader *rh = &s->restart_header;
1016
0
    int substr_restart_frame = restart_frame;
1017
0
    uint8_t parity, checksum;
1018
0
    PutBitContext pb;
1019
0
    int params_changed;
1020
1021
0
    s->cur_restart_header = rh;
1022
1023
0
    init_put_bits(&pb, buf, buf_size);
1024
1025
0
    for (unsigned int subblock = 0; subblock <= num_subblocks; subblock++) {
1026
0
        unsigned int subblock_index = cur_subblock_index++;
1027
1028
0
        params_changed = s->b[subblock_index].major_params_changed;
1029
1030
0
        if (substr_restart_frame || params_changed) {
1031
0
            put_bits(&pb, 1, 1);
1032
1033
0
            if (substr_restart_frame) {
1034
0
                put_bits(&pb, 1, 1);
1035
1036
0
                write_restart_header(ctx, s, &pb);
1037
0
                rh->lossless_check_data = 0;
1038
0
            } else {
1039
0
                put_bits(&pb, 1, 0);
1040
0
            }
1041
1042
0
            write_decoding_params(ctx, s, &pb, params_changed,
1043
0
                                  subblock_index);
1044
0
        } else {
1045
0
            put_bits(&pb, 1, 0);
1046
0
        }
1047
1048
0
        write_block_data(ctx, s, &pb, subblock_index);
1049
1050
0
        put_bits(&pb, 1, !substr_restart_frame);
1051
1052
0
        substr_restart_frame = 0;
1053
0
    }
1054
1055
0
    put_bits(&pb, (-put_bits_count(&pb)) & 15, 0);
1056
1057
0
    rh->lossless_check_data ^= lossless_check_data[0];
1058
1059
0
    if (ctx->last_frames == 0 && ctx->shorten_by) {
1060
0
        if (ctx->avctx->codec_id == AV_CODEC_ID_TRUEHD) {
1061
0
            put_bits(&pb, 16, END_OF_STREAM & 0xFFFF);
1062
0
            put_bits(&pb, 16, (ctx->shorten_by & 0x1FFF) | 0xE000);
1063
0
        } else {
1064
0
            put_bits32(&pb, END_OF_STREAM);
1065
0
        }
1066
0
    }
1067
1068
    /* Data must be flushed for the checksum and parity to be correct;
1069
     * notice that we already are word-aligned here. */
1070
0
    flush_put_bits(&pb);
1071
1072
0
    parity   = ff_mlp_calculate_parity(buf, put_bytes_output(&pb)) ^ 0xa9;
1073
0
    checksum = ff_mlp_checksum8       (buf, put_bytes_output(&pb));
1074
1075
0
    put_bits(&pb, 8, parity  );
1076
0
    put_bits(&pb, 8, checksum);
1077
1078
0
    flush_put_bits(&pb);
1079
1080
0
    substream_data_len[0] = put_bytes_output(&pb);
1081
1082
0
    buf += substream_data_len[0];
1083
1084
0
    s->major_cur_subblock_index += s->major_filter_state_subblock + 1;
1085
0
    s->major_filter_state_subblock = 0;
1086
1087
0
    return buf;
1088
0
}
1089
1090
/** Writes the access unit and substream headers to the bitstream. */
1091
static void write_frame_headers(MLPEncodeContext *ctx, uint8_t *frame_header,
1092
                                uint8_t *substream_headers, unsigned int length,
1093
                                int restart_frame,
1094
                                uint16_t substream_data_len[MAX_SUBSTREAMS])
1095
0
{
1096
0
    uint16_t access_unit_header = 0;
1097
0
    uint16_t substream_data_end = 0;
1098
0
    uint16_t parity_nibble = 0;
1099
1100
0
    parity_nibble  = ctx->input_timing;
1101
0
    parity_nibble ^= length;
1102
1103
0
    for (unsigned int substr = 0; substr < ctx->num_substreams; substr++) {
1104
0
        uint16_t substr_hdr = 0;
1105
1106
0
        substream_data_end += substream_data_len[substr];
1107
1108
0
        substr_hdr |= (0 << 15); /* extraword */
1109
0
        substr_hdr |= (!restart_frame << 14); /* !restart_frame */
1110
0
        substr_hdr |= (1 << 13); /* checkdata */
1111
0
        substr_hdr |= (0 << 12); /* ??? */
1112
0
        substr_hdr |= (substream_data_end / 2) & 0x0FFF;
1113
1114
0
        AV_WB16(substream_headers, substr_hdr);
1115
1116
0
        parity_nibble ^= *substream_headers++;
1117
0
        parity_nibble ^= *substream_headers++;
1118
0
    }
1119
1120
0
    parity_nibble ^= parity_nibble >> 8;
1121
0
    parity_nibble ^= parity_nibble >> 4;
1122
0
    parity_nibble &= 0xF;
1123
1124
0
    access_unit_header |= (parity_nibble ^ 0xF) << 12;
1125
0
    access_unit_header |= length & 0xFFF;
1126
1127
0
    AV_WB16(frame_header  , access_unit_header);
1128
0
    AV_WB16(frame_header+2, ctx->input_timing );
1129
0
}
1130
1131
/** Writes an entire access unit to the bitstream. */
1132
static int write_access_unit(MLPEncodeContext *ctx, uint8_t *buf,
1133
                             int buf_size, int restart_frame)
1134
0
{
1135
0
    uint16_t substream_data_len[MAX_SUBSTREAMS];
1136
0
    uint8_t *buf1, *buf0 = buf;
1137
0
    int total_length;
1138
1139
    /* Frame header will be written at the end. */
1140
0
    buf      += 4;
1141
0
    buf_size -= 4;
1142
1143
0
    if (restart_frame) {
1144
0
        write_major_sync(ctx, buf, buf_size);
1145
0
        buf      += 28;
1146
0
        buf_size -= 28;
1147
0
    }
1148
1149
0
    buf1 = buf;
1150
1151
    /* Substream headers will be written at the end. */
1152
0
    for (unsigned int substr = 0; substr < ctx->num_substreams; substr++) {
1153
0
        buf      += 2;
1154
0
        buf_size -= 2;
1155
0
    }
1156
1157
0
    for (int substr = 0; substr < ctx->num_substreams; substr++) {
1158
0
        MLPSubstream *s = &ctx->s[substr];
1159
0
        uint8_t *buf0 = buf;
1160
1161
0
        buf = write_substr(ctx, s, buf, buf_size, restart_frame, &substream_data_len[substr]);
1162
0
        buf_size -= buf - buf0;
1163
0
    }
1164
1165
0
    total_length = buf - buf0;
1166
1167
0
    write_frame_headers(ctx, buf0, buf1, total_length / 2, restart_frame, substream_data_len);
1168
1169
0
    return total_length;
1170
0
}
1171
1172
/****************************************************************************
1173
 ****************** Functions that input data to context ********************
1174
 ****************************************************************************/
1175
1176
/** Inputs data from the samples passed by lavc into the context, shifts them
1177
 *  appropriately depending on the bit-depth, and calculates the
1178
 *  lossless_check_data that will be written to the restart header.
1179
 */
1180
static void input_data_internal(MLPEncodeContext *ctx, MLPSubstream *s,
1181
                                uint8_t **const samples,
1182
                                int nb_samples, int is24)
1183
0
{
1184
0
    int32_t *lossless_check_data = &s->b[ctx->frame_index].lossless_check_data;
1185
0
    RestartHeader *rh = &s->restart_header;
1186
0
    int32_t temp_lossless_check_data = 0;
1187
0
    uint32_t bits = 0;
1188
1189
0
    for (int i = 0; i < nb_samples; i++) {
1190
0
        for (int ch = 0; ch <= rh->max_channel; ch++) {
1191
0
            const int32_t *samples_32 = (const int32_t *)samples[ch];
1192
0
            const int16_t *samples_16 = (const int16_t *)samples[ch];
1193
0
            int32_t *sample_buffer = s->b[ctx->frame_index].inout_buffer[ch];
1194
0
            int32_t sample;
1195
1196
0
            sample = is24 ? samples_32[i] >> 8 : samples_16[i] * 256;
1197
1198
0
            bits = FFMAX(number_sbits(sample), bits);
1199
1200
0
            temp_lossless_check_data ^= (sample & 0x00ffffff) << ch;
1201
0
            sample_buffer[i] = sample;
1202
0
        }
1203
0
    }
1204
1205
0
    for (int ch = 0; ch <= rh->max_channel; ch++) {
1206
0
        for (int i = nb_samples; i < ctx->avctx->frame_size; i++) {
1207
0
            int32_t *sample_buffer = s->b[ctx->frame_index].inout_buffer[ch];
1208
1209
0
            sample_buffer[i] = 0;
1210
0
        }
1211
0
    }
1212
1213
0
    s->b[ctx->frame_index].max_output_bits = bits;
1214
1215
0
    lossless_check_data[0] = temp_lossless_check_data;
1216
0
}
1217
1218
/** Wrapper function for inputting data in two different bit-depths. */
1219
static void input_data(MLPEncodeContext *ctx, MLPSubstream *s, uint8_t **const samples, int nb_samples)
1220
0
{
1221
0
    input_data_internal(ctx, s, samples, nb_samples, ctx->avctx->sample_fmt == AV_SAMPLE_FMT_S32P);
1222
0
}
1223
1224
static void input_to_sample_buffer(MLPEncodeContext *ctx, MLPSubstream *s)
1225
0
{
1226
0
    RestartHeader *rh = &s->restart_header;
1227
1228
0
    for (unsigned int index = 0; index < ctx->number_of_frames; index++) {
1229
0
        unsigned int cur_index = (ctx->frame_index + index + 1) % ctx->cur_restart_interval;
1230
0
        DecodingParams *dp = &s->b[index+1].decoding_params;
1231
1232
0
        for (int ch = 0; ch <= rh->max_channel; ch++) {
1233
0
            const int32_t *input_buffer = s->b[cur_index].inout_buffer[ch];
1234
0
            int32_t *sample_buffer = dp->sample_buffer[ch];
1235
0
            int off = 0;
1236
1237
0
            if (dp->blocksize < ctx->avctx->frame_size) {
1238
0
                DecodingParams *dp = &s->b[index].decoding_params;
1239
0
                int32_t *sample_buffer = dp->sample_buffer[ch];
1240
0
                for (unsigned int i = 0; i < dp->blocksize; i++)
1241
0
                    sample_buffer[i] = input_buffer[i];
1242
0
                off = dp->blocksize;
1243
0
            }
1244
1245
0
            for (unsigned int i = 0; i < dp->blocksize; i++)
1246
0
                sample_buffer[i] = input_buffer[i + off];
1247
0
        }
1248
0
    }
1249
0
}
1250
1251
/****************************************************************************
1252
 ********* Functions that analyze the data and set the parameters ***********
1253
 ****************************************************************************/
1254
1255
/** Counts the number of trailing zeroes in a value */
1256
static int number_trailing_zeroes(int32_t sample, unsigned int max, unsigned int def)
1257
0
{
1258
0
    return sample ? FFMIN(max, ff_ctz(sample)) : def;
1259
0
}
1260
1261
static void determine_output_shift(MLPEncodeContext *ctx, MLPSubstream *s)
1262
0
{
1263
0
    RestartHeader *rh = s->cur_restart_header;
1264
0
    DecodingParams *dp1 = &s->b[1].decoding_params;
1265
0
    int32_t sample_mask[MAX_CHANNELS];
1266
1267
0
    memset(sample_mask, 0, sizeof(sample_mask));
1268
1269
0
    for (int j = 0; j <= ctx->cur_restart_interval; j++) {
1270
0
        DecodingParams *dp = &s->b[j].decoding_params;
1271
1272
0
        for (int ch = 0; ch <= rh->max_matrix_channel; ch++) {
1273
0
            int32_t *sample_buffer = dp->sample_buffer[ch];
1274
1275
0
            for (int i = 0; i < dp->blocksize; i++)
1276
0
                sample_mask[ch] |= sample_buffer[i];
1277
0
        }
1278
0
    }
1279
1280
0
    for (int ch = 0; ch <= rh->max_matrix_channel; ch++)
1281
0
        dp1->output_shift[ch] = number_trailing_zeroes(sample_mask[ch], 7, 0);
1282
1283
0
    for (int j = 0; j <= ctx->cur_restart_interval; j++) {
1284
0
        DecodingParams *dp = &s->b[j].decoding_params;
1285
1286
0
        for (int ch = 0; ch <= rh->max_matrix_channel; ch++) {
1287
0
            int32_t *sample_buffer = dp->sample_buffer[ch];
1288
0
            const int shift = dp1->output_shift[ch];
1289
1290
0
            for (int i = 0; i < dp->blocksize; i++)
1291
0
                sample_buffer[i] >>= shift;
1292
0
        }
1293
0
    }
1294
0
}
1295
1296
/** Determines how many bits are zero at the end of all samples so they can be
1297
 *  shifted out.
1298
 */
1299
static void determine_quant_step_size(MLPEncodeContext *ctx, MLPSubstream *s)
1300
0
{
1301
0
    RestartHeader *rh = s->cur_restart_header;
1302
0
    DecodingParams *dp1 = &s->b[1].decoding_params;
1303
0
    int32_t sample_mask[MAX_CHANNELS];
1304
1305
0
    memset(sample_mask, 0, sizeof(sample_mask));
1306
1307
0
    for (int j = 0; j <= ctx->cur_restart_interval; j++) {
1308
0
        DecodingParams *dp = &s->b[j].decoding_params;
1309
1310
0
        for (int ch = 0; ch <= rh->max_channel; ch++) {
1311
0
            int32_t *sample_buffer = dp->sample_buffer[ch];
1312
1313
0
            for (int i = 0; i < dp->blocksize; i++)
1314
0
                sample_mask[ch] |= sample_buffer[i];
1315
0
        }
1316
0
    }
1317
1318
0
    for (int ch = 0; ch <= rh->max_channel; ch++)
1319
0
        dp1->quant_step_size[ch] = number_trailing_zeroes(sample_mask[ch], 15, 0);
1320
0
}
1321
1322
/** Determines the smallest number of bits needed to encode the filter
1323
 *  coefficients, and if it's possible to right-shift their values without
1324
 *  losing any precision.
1325
 */
1326
static void code_filter_coeffs(MLPEncodeContext *ctx, FilterParams *fp, const int32_t *fcoeff)
1327
0
{
1328
0
    uint32_t coeff_mask = 0;
1329
0
    int bits = 0, shift;
1330
1331
0
    for (int order = 0; order < fp->order; order++) {
1332
0
        int32_t coeff = fcoeff[order];
1333
1334
0
        bits = FFMAX(number_sbits(coeff), bits);
1335
1336
0
        coeff_mask |= coeff;
1337
0
    }
1338
1339
0
    shift = FFMIN(7, coeff_mask ? ff_ctz(coeff_mask) : 0);
1340
1341
0
    fp->coeff_bits  = FFMAX(1, bits - shift);
1342
0
    fp->coeff_shift = FFMIN(shift, 16 - fp->coeff_bits);
1343
0
}
1344
1345
/** Determines the best filter parameters for the given data and writes the
1346
 *  necessary information to the context.
1347
 */
1348
static void set_filter(MLPEncodeContext *ctx, MLPSubstream *s,
1349
                       int channel, int retry_filter)
1350
0
{
1351
0
    ChannelParams *cp = &s->b[1].channel_params[channel];
1352
0
    DecodingParams *dp1 = &s->b[1].decoding_params;
1353
0
    FilterParams *fp = &cp->filter_params[FIR];
1354
1355
0
    if (retry_filter)
1356
0
        dp1->max_order[channel]--;
1357
1358
0
    if (dp1->max_order[channel] == 0) {
1359
0
        fp->order = 0;
1360
0
    } else {
1361
0
        int32_t *lpc_samples = ctx->lpc_sample_buffer;
1362
0
        int32_t *fcoeff = cp->coeff[FIR];
1363
0
        int shift[MAX_LPC_ORDER];
1364
0
        int order;
1365
1366
0
        for (unsigned int j = 0; j <= ctx->cur_restart_interval; j++) {
1367
0
            DecodingParams *dp = &s->b[j].decoding_params;
1368
0
            int32_t *sample_buffer = dp->sample_buffer[channel];
1369
1370
0
            for (unsigned int i = 0; i < dp->blocksize; i++)
1371
0
                lpc_samples[i] = sample_buffer[i];
1372
0
            lpc_samples += dp->blocksize;
1373
0
        }
1374
1375
0
        order = ff_lpc_calc_coefs(&ctx->lpc_ctx, ctx->lpc_sample_buffer,
1376
0
                                  lpc_samples - ctx->lpc_sample_buffer,
1377
0
                                  MLP_MIN_LPC_ORDER, dp1->max_order[channel],
1378
0
                                  ctx->lpc_coeff_precision,
1379
0
                                  s->coefs[channel], shift, ctx->lpc_type, ctx->lpc_passes,
1380
0
                                  ctx->prediction_order, MLP_MIN_LPC_SHIFT,
1381
0
                                  MLP_MAX_LPC_SHIFT, 0);
1382
1383
0
        fp->order = order;
1384
0
        fp->shift = order ? shift[order-1] : 0;
1385
1386
0
        for (unsigned int i = 0; i < order; i++)
1387
0
            fcoeff[i] = s->coefs[channel][order-1][i];
1388
1389
0
        code_filter_coeffs(ctx, fp, fcoeff);
1390
0
    }
1391
0
}
1392
1393
/** Tries to determine a good prediction filter, and applies it to the samples
1394
 *  buffer if the filter is good enough. Sets the filter data to be cleared if
1395
 *  no good filter was found.
1396
 */
1397
static void determine_filters(MLPEncodeContext *ctx, MLPSubstream *s)
1398
0
{
1399
0
    RestartHeader *rh = s->cur_restart_header;
1400
1401
0
    for (int ch = rh->min_channel; ch <= rh->max_channel; ch++)
1402
0
        set_filter(ctx, s, ch, 0);
1403
0
}
1404
1405
static int estimate_coeff(MLPEncodeContext *ctx, MLPSubstream *s,
1406
                          MatrixParams *mp,
1407
                          int ch0, int ch1)
1408
0
{
1409
0
    int32_t maxl = INT32_MIN, maxr = INT32_MIN, minl = INT32_MAX, minr = INT32_MAX;
1410
0
    int64_t summ = 0, sums = 0, suml = 0, sumr = 0, enl = 0, enr = 0;
1411
0
    const int shift = 14 - ctx->rematrix_precision;
1412
0
    int32_t cf0, cf1, e[4], d[4];
1413
0
    int64_t ml, mr;
1414
0
    int i, count = 0;
1415
1416
0
    for (int j = 0; j <= ctx->cur_restart_interval; j++) {
1417
0
        DecodingParams *dp = &s->b[j].decoding_params;
1418
0
        const int32_t *ch[2];
1419
1420
0
        ch[0] = dp->sample_buffer[ch0];
1421
0
        ch[1] = dp->sample_buffer[ch1];
1422
1423
0
        for (int i = 0; i < dp->blocksize; i++) {
1424
0
            int32_t lm = ch[0][i], rm = ch[1][i];
1425
1426
0
            enl  += FFABS(lm);
1427
0
            enr  += FFABS(rm);
1428
1429
0
            summ += FFABS(lm + rm);
1430
0
            sums += FFABS(lm - rm);
1431
1432
0
            suml += lm;
1433
0
            sumr += rm;
1434
1435
0
            maxl = FFMAX(maxl, lm);
1436
0
            maxr = FFMAX(maxr, rm);
1437
1438
0
            minl = FFMIN(minl, lm);
1439
0
            minr = FFMIN(minr, rm);
1440
0
        }
1441
0
    }
1442
1443
0
    summ -= FFABS(suml + sumr);
1444
0
    sums -= FFABS(suml - sumr);
1445
1446
0
    ml = maxl - (int64_t)minl;
1447
0
    mr = maxr - (int64_t)minr;
1448
1449
0
    if (!summ && !sums)
1450
0
        return 0;
1451
1452
0
    if (!ml || !mr)
1453
0
        return 0;
1454
1455
0
    if ((FFABS(ml) + FFABS(mr)) >= (1 << 24))
1456
0
        return 0;
1457
1458
0
    cf0 = (FFMIN(FFABS(mr), FFABS(ml)) * (1LL << 14)) / FFMAX(FFABS(ml), FFABS(mr));
1459
0
    cf0 = (cf0 >> shift) << shift;
1460
0
    cf1 = -cf0;
1461
1462
0
    if (sums > summ)
1463
0
        FFSWAP(int32_t, cf0, cf1);
1464
1465
0
    count = 1;
1466
0
    i = enl < enr;
1467
0
    mp->outch[0] = ch0 + i;
1468
1469
0
    d[!i] = cf0;
1470
0
    d[ i] = 1 << 14;
1471
0
    e[!i] = cf1;
1472
0
    e[ i] = 1 << 14;
1473
1474
0
    mp->coeff[0][ch0] = av_clip_intp2(d[0], 15);
1475
0
    mp->coeff[0][ch1] = av_clip_intp2(d[1], 15);
1476
1477
0
    mp->forco[0][ch0] = av_clip_intp2(e[0], 15);
1478
0
    mp->forco[0][ch1] = av_clip_intp2(e[1], 15);
1479
1480
0
    return count;
1481
0
}
1482
1483
/** Determines how many fractional bits are needed to encode matrix
1484
 *  coefficients. Also shifts the coefficients to fit within 2.14 bits.
1485
 */
1486
static void code_matrix_coeffs(MLPEncodeContext *ctx, MLPSubstream *s,
1487
                               DecodingParams *dp,
1488
                               unsigned int mat)
1489
0
{
1490
0
    RestartHeader *rh = s->cur_restart_header;
1491
0
    MatrixParams *mp = &dp->matrix_params;
1492
0
    int32_t coeff_mask = 0;
1493
1494
0
    for (int ch = 0; ch <= rh->max_matrix_channel; ch++)
1495
0
        coeff_mask |= mp->coeff[mat][ch];
1496
1497
0
    mp->fbits[mat] = 14 - number_trailing_zeroes(coeff_mask, 14, 14);
1498
0
}
1499
1500
/** Determines best coefficients to use for the lossless matrix. */
1501
static void lossless_matrix_coeffs(MLPEncodeContext *ctx, MLPSubstream *s)
1502
0
{
1503
0
    RestartHeader *rh = s->cur_restart_header;
1504
0
    DecodingParams *dp = &s->b[1].decoding_params;
1505
0
    MatrixParams *mp = &dp->matrix_params;
1506
1507
0
    mp->count = 0;
1508
0
    if (ctx->num_channels - 2 != 2)
1509
0
        return;
1510
1511
0
    mp->count = estimate_coeff(ctx, s, mp,
1512
0
                               rh->min_channel, rh->max_channel);
1513
1514
0
    for (int mat = 0; mat < mp->count; mat++)
1515
0
        code_matrix_coeffs(ctx, s, dp, mat);
1516
0
}
1517
1518
/** Min and max values that can be encoded with each codebook. The values for
1519
 *  the third codebook take into account the fact that the sign shift for this
1520
 *  codebook is outside the coded value, so it has one more bit of precision.
1521
 *  It should actually be -7 -> 7, shifted down by 0.5.
1522
 */
1523
static const int8_t codebook_extremes[3][2] = {
1524
    {-9, 8}, {-8, 7}, {-15, 14},
1525
};
1526
1527
/** Determines the amount of bits needed to encode the samples using no
1528
 *  codebooks and a specified offset.
1529
 */
1530
static void no_codebook_bits_offset(MLPEncodeContext *ctx,
1531
                                    DecodingParams *dp,
1532
                                    int channel, int32_t offset,
1533
                                    int32_t min, int32_t max,
1534
                                    BestOffset *bo)
1535
0
{
1536
0
    int32_t unsign = 0;
1537
0
    int lsb_bits;
1538
1539
0
    min -= offset;
1540
0
    max -= offset;
1541
1542
0
    lsb_bits = FFMAX(number_sbits(min), number_sbits(max)) - 1;
1543
1544
0
    lsb_bits += !!lsb_bits;
1545
1546
0
    if (lsb_bits > 0)
1547
0
        unsign = 1U << (lsb_bits - 1);
1548
1549
0
    bo->offset   = offset;
1550
0
    bo->lsb_bits = lsb_bits;
1551
0
    bo->bitcount = lsb_bits * dp->blocksize;
1552
0
    bo->min      = offset - unsign + 1;
1553
0
    bo->max      = offset + unsign;
1554
0
}
1555
1556
/** Determines the least amount of bits needed to encode the samples using no
1557
 *  codebooks.
1558
 */
1559
static void no_codebook_bits(MLPEncodeContext *ctx,
1560
                             DecodingParams *dp,
1561
                             int channel,
1562
                             int32_t min, int32_t max,
1563
                             BestOffset *bo)
1564
0
{
1565
0
    int32_t offset, unsign = 0;
1566
0
    uint8_t lsb_bits;
1567
1568
    /* Set offset inside huffoffset's boundaries by adjusting extremes
1569
     * so that more bits are used, thus shifting the offset. */
1570
0
    if (min < HUFF_OFFSET_MIN)
1571
0
        max = FFMAX(max, 2 * HUFF_OFFSET_MIN - min + 1);
1572
0
    if (max > HUFF_OFFSET_MAX)
1573
0
        min = FFMIN(min, 2 * HUFF_OFFSET_MAX - max - 1);
1574
1575
0
    lsb_bits = FFMAX(number_sbits(min), number_sbits(max));
1576
1577
0
    if (lsb_bits > 0)
1578
0
        unsign = 1 << (lsb_bits - 1);
1579
1580
    /* If all samples are the same (lsb_bits == 0), offset must be
1581
     * adjusted because of sign_shift. */
1582
0
    offset = min + (max - min) / 2 + !!lsb_bits;
1583
1584
0
    bo->offset   = offset;
1585
0
    bo->lsb_bits = lsb_bits;
1586
0
    bo->bitcount = lsb_bits * dp->blocksize;
1587
0
    bo->min      = max - unsign + 1;
1588
0
    bo->max      = min + unsign;
1589
0
    bo->min      = FFMAX(bo->min, HUFF_OFFSET_MIN);
1590
0
    bo->max      = FFMIN(bo->max, HUFF_OFFSET_MAX);
1591
0
}
1592
1593
/** Determines the least amount of bits needed to encode the samples using a
1594
 *  given codebook and a given offset.
1595
 */
1596
static inline void codebook_bits_offset(MLPEncodeContext *ctx,
1597
                                        DecodingParams *dp,
1598
                                        int channel, int codebook,
1599
                                        int32_t sample_min, int32_t sample_max,
1600
                                        int32_t offset, BestOffset *bo)
1601
0
{
1602
0
    int32_t codebook_min = codebook_extremes[codebook][0];
1603
0
    int32_t codebook_max = codebook_extremes[codebook][1];
1604
0
    int32_t *sample_buffer = dp->sample_buffer[channel];
1605
0
    int codebook_offset  = 7 + (2 - codebook);
1606
0
    int32_t unsign_offset = offset;
1607
0
    uint32_t bitcount = 0;
1608
0
    int lsb_bits = 0;
1609
0
    int offset_min = INT_MAX, offset_max = INT_MAX;
1610
0
    int unsign, mask;
1611
1612
0
    sample_min -= offset;
1613
0
    sample_max -= offset;
1614
1615
0
    while (sample_min < codebook_min || sample_max > codebook_max) {
1616
0
        lsb_bits++;
1617
0
        sample_min >>= 1;
1618
0
        sample_max >>= 1;
1619
0
    }
1620
1621
0
    unsign = 1 << lsb_bits;
1622
0
    mask   = unsign - 1;
1623
1624
0
    if (codebook == 2) {
1625
0
        unsign_offset -= unsign;
1626
0
        lsb_bits++;
1627
0
    }
1628
1629
0
    for (int i = 0; i < dp->blocksize; i++) {
1630
0
        int32_t sample = sample_buffer[i] >> dp->quant_step_size[channel];
1631
0
        int temp_min, temp_max;
1632
1633
0
        sample -= unsign_offset;
1634
1635
0
        temp_min = sample & mask;
1636
0
        if (temp_min < offset_min)
1637
0
            offset_min = temp_min;
1638
1639
0
        temp_max = unsign - temp_min - 1;
1640
0
        if (temp_max < offset_max)
1641
0
            offset_max = temp_max;
1642
1643
0
        sample >>= lsb_bits;
1644
1645
0
        bitcount += ff_mlp_huffman_tables[codebook][sample + codebook_offset][1];
1646
0
    }
1647
1648
0
    bo->offset   = offset;
1649
0
    bo->lsb_bits = lsb_bits;
1650
0
    bo->bitcount = lsb_bits * dp->blocksize + bitcount;
1651
0
    bo->min      = FFMAX(offset - offset_min, HUFF_OFFSET_MIN);
1652
0
    bo->max      = FFMIN(offset + offset_max, HUFF_OFFSET_MAX);
1653
0
}
1654
1655
/** Determines the least amount of bits needed to encode the samples using a
1656
 *  given codebook. Searches for the best offset to minimize the bits.
1657
 */
1658
static inline void codebook_bits(MLPEncodeContext *ctx,
1659
                                 DecodingParams *dp,
1660
                                 int channel, int codebook,
1661
                                 int offset, int32_t min, int32_t max,
1662
                                 BestOffset *bo, int direction)
1663
0
{
1664
0
    uint32_t previous_count = UINT32_MAX;
1665
0
    int offset_min, offset_max;
1666
0
    int is_greater = 0;
1667
1668
0
    offset_min = FFMAX(min, HUFF_OFFSET_MIN);
1669
0
    offset_max = FFMIN(max, HUFF_OFFSET_MAX);
1670
1671
0
    while (offset <= offset_max && offset >= offset_min) {
1672
0
        BestOffset temp_bo;
1673
1674
0
        codebook_bits_offset(ctx, dp, channel, codebook,
1675
0
                             min, max, offset,
1676
0
                             &temp_bo);
1677
1678
0
        if (temp_bo.bitcount < previous_count) {
1679
0
            if (temp_bo.bitcount < bo->bitcount)
1680
0
                *bo = temp_bo;
1681
1682
0
            is_greater = 0;
1683
0
        } else if (++is_greater >= ctx->max_codebook_search)
1684
0
            break;
1685
1686
0
        previous_count = temp_bo.bitcount;
1687
1688
0
        if (direction) {
1689
0
            offset = temp_bo.max + 1;
1690
0
        } else {
1691
0
            offset = temp_bo.min - 1;
1692
0
        }
1693
0
    }
1694
0
}
1695
1696
/** Determines the least amount of bits needed to encode the samples using
1697
 *  any or no codebook.
1698
 */
1699
static void determine_bits(MLPEncodeContext *ctx, MLPSubstream *s)
1700
0
{
1701
0
    RestartHeader *rh = s->cur_restart_header;
1702
0
    for (unsigned int index = 0; index < ctx->number_of_subblocks; index++) {
1703
0
        DecodingParams *dp = &s->b[index].decoding_params;
1704
1705
0
        for (int ch = rh->min_channel; ch <= rh->max_channel; ch++) {
1706
0
            ChannelParams *cp = &s->b[index].channel_params[ch];
1707
0
            int32_t *sample_buffer = dp->sample_buffer[ch];
1708
0
            int32_t min = INT32_MAX, max = INT32_MIN;
1709
0
            int no_filters_used = !cp->filter_params[FIR].order;
1710
0
            int average = 0;
1711
0
            int offset = 0;
1712
1713
            /* Determine extremes and average. */
1714
0
            for (int i = 0; i < dp->blocksize; i++) {
1715
0
                int32_t sample = sample_buffer[i] >> dp->quant_step_size[ch];
1716
0
                if (sample < min)
1717
0
                    min = sample;
1718
0
                if (sample > max)
1719
0
                    max = sample;
1720
0
                average += sample;
1721
0
            }
1722
0
            average /= dp->blocksize;
1723
1724
            /* If filtering is used, we always set the offset to zero, otherwise
1725
             * we search for the offset that minimizes the bitcount. */
1726
0
            if (no_filters_used) {
1727
0
                no_codebook_bits(ctx, dp, ch, min, max, &s->b[index].best_offset[ch][0]);
1728
0
                offset = av_clip(average, HUFF_OFFSET_MIN, HUFF_OFFSET_MAX);
1729
0
            } else {
1730
0
                no_codebook_bits_offset(ctx, dp, ch, offset, min, max, &s->b[index].best_offset[ch][0]);
1731
0
            }
1732
1733
0
            for (int i = 1; i < NUM_CODEBOOKS; i++) {
1734
0
                BestOffset temp_bo = { 0, UINT32_MAX, 0, 0, 0, };
1735
0
                int32_t offset_max;
1736
1737
0
                codebook_bits_offset(ctx, dp, ch, i - 1,
1738
0
                                     min, max, offset,
1739
0
                                     &temp_bo);
1740
1741
0
                if (no_filters_used) {
1742
0
                    offset_max = temp_bo.max;
1743
1744
0
                    codebook_bits(ctx, dp, ch, i - 1, temp_bo.min - 1,
1745
0
                                  min, max, &temp_bo, 0);
1746
0
                    codebook_bits(ctx, dp, ch, i - 1, offset_max + 1,
1747
0
                                  min, max, &temp_bo, 1);
1748
0
                }
1749
1750
0
                s->b[index].best_offset[ch][i] = temp_bo;
1751
0
            }
1752
0
        }
1753
0
    }
1754
0
}
1755
1756
/****************************************************************************
1757
 *************** Functions that process the data in some way ****************
1758
 ****************************************************************************/
1759
1760
0
#define SAMPLE_MAX(bitdepth) ((1 << (bitdepth - 1)) - 1)
1761
0
#define SAMPLE_MIN(bitdepth) (~SAMPLE_MAX(bitdepth))
1762
1763
0
#define MSB_MASK(bits)  (-(int)(1u << (bits)))
1764
1765
/** Applies the filter to the current samples, and saves the residual back
1766
 *  into the samples buffer. If the filter is too bad and overflows the
1767
 *  maximum amount of bits allowed (24), the samples buffer is left as is and
1768
 *  the function returns -1.
1769
 */
1770
static int apply_filter(MLPEncodeContext *ctx, MLPSubstream *s, int channel)
1771
0
{
1772
0
    DecodingParams *dp = &s->b[1].decoding_params;
1773
0
    ChannelParams *cp = &s->b[1].channel_params[channel];
1774
0
    FilterParams *fp[NUM_FILTERS] = { &cp->filter_params[FIR],
1775
0
                                      &cp->filter_params[IIR], };
1776
0
    const uint8_t codebook = cp->codebook;
1777
0
    int32_t mask = MSB_MASK(dp->quant_step_size[channel]);
1778
0
    int32_t *sample_buffer = s->b[0].decoding_params.sample_buffer[channel];
1779
0
    unsigned int filter_shift = fp[FIR]->shift;
1780
0
    int32_t *filter_state[NUM_FILTERS] = { ctx->filter_state[FIR],
1781
0
                                           ctx->filter_state[IIR], };
1782
0
    int i, j = 1, k = 0;
1783
1784
0
    for (i = 0; i < 8; i++) {
1785
0
        filter_state[FIR][i] = sample_buffer[i];
1786
0
        filter_state[IIR][i] = sample_buffer[i];
1787
0
    }
1788
1789
0
    while (1) {
1790
0
        int32_t *sample_buffer = s->b[j].decoding_params.sample_buffer[channel];
1791
0
        unsigned int blocksize = s->b[j].decoding_params.blocksize;
1792
0
        int32_t sample, residual;
1793
0
        int64_t accum = 0;
1794
1795
0
        if (!blocksize)
1796
0
            break;
1797
1798
0
        for (int filter = 0; filter < NUM_FILTERS; filter++) {
1799
0
            int32_t *fcoeff = cp->coeff[filter];
1800
0
            for (unsigned int order = 0; order < fp[filter]->order; order++)
1801
0
                accum += (int64_t)filter_state[filter][i - 1 - order] *
1802
0
                    fcoeff[order];
1803
0
        }
1804
1805
0
        sample = sample_buffer[k];
1806
0
        accum  >>= filter_shift;
1807
0
        residual = sample - (accum & mask);
1808
1809
0
        if ((codebook > 0) &&
1810
0
            (residual < SAMPLE_MIN(24) ||
1811
0
             residual > SAMPLE_MAX(24)))
1812
0
            return -1;
1813
1814
0
        filter_state[FIR][i] = sample;
1815
0
        filter_state[IIR][i] = residual;
1816
1817
0
        i++;
1818
0
        k++;
1819
0
        if (k >= blocksize) {
1820
0
            k = 0;
1821
0
            j++;
1822
0
            if (j > ctx->cur_restart_interval)
1823
0
                break;
1824
0
        }
1825
0
    }
1826
1827
0
    for (int l = 0, j = 0; j <= ctx->cur_restart_interval; j++) {
1828
0
        int32_t *sample_buffer = s->b[j].decoding_params.sample_buffer[channel];
1829
0
        unsigned int blocksize = s->b[j].decoding_params.blocksize;
1830
1831
0
        for (int i = 0; i < blocksize; i++, l++)
1832
0
            sample_buffer[i] = filter_state[IIR][l];
1833
0
    }
1834
1835
0
    return 0;
1836
0
}
1837
1838
static void apply_filters(MLPEncodeContext *ctx, MLPSubstream *s)
1839
0
{
1840
0
    RestartHeader *rh = s->cur_restart_header;
1841
1842
0
    for (int ch = rh->min_channel; ch <= rh->max_channel; ch++) {
1843
0
        while (apply_filter(ctx, s, ch) < 0) {
1844
            /* Filter is horribly wrong. Retry. */
1845
0
            set_filter(ctx, s, ch, 1);
1846
0
        }
1847
0
    }
1848
0
}
1849
1850
/** Generates two noise channels worth of data. */
1851
static void generate_2_noise_channels(MLPEncodeContext *ctx, MLPSubstream *s)
1852
0
{
1853
0
    RestartHeader *rh = s->cur_restart_header;
1854
0
    uint32_t seed = rh->noisegen_seed;
1855
1856
0
    for (unsigned int j = 0; j <= ctx->cur_restart_interval; j++) {
1857
0
        DecodingParams *dp = &s->b[j].decoding_params;
1858
0
        int32_t *sample_buffer2 = dp->sample_buffer[ctx->num_channels-2];
1859
0
        int32_t *sample_buffer1 = dp->sample_buffer[ctx->num_channels-1];
1860
1861
0
        for (unsigned int i = 0; i < dp->blocksize; i++) {
1862
0
            uint16_t seed_shr7 = seed >> 7;
1863
0
            sample_buffer2[i] = ((int8_t)(seed >> 15)) * (1 << rh->noise_shift);
1864
0
            sample_buffer1[i] = ((int8_t) seed_shr7)   * (1 << rh->noise_shift);
1865
1866
0
            seed = (seed << 16) ^ seed_shr7 ^ (seed_shr7 << 5);
1867
0
        }
1868
0
    }
1869
1870
0
    rh->noisegen_seed = seed & ((1 << 24)-1);
1871
0
}
1872
1873
/** Rematrixes all channels using chosen coefficients. */
1874
static void rematrix_channels(MLPEncodeContext *ctx, MLPSubstream *s)
1875
0
{
1876
0
    RestartHeader *rh = s->cur_restart_header;
1877
0
    DecodingParams *dp1 = &s->b[1].decoding_params;
1878
0
    MatrixParams *mp1 = &dp1->matrix_params;
1879
0
    const int maxchan = rh->max_matrix_channel;
1880
0
    int32_t orig_samples[MAX_NCHANNELS];
1881
0
    int32_t rematrix_samples[MAX_NCHANNELS];
1882
0
    uint8_t lsb_bypass[MAX_MATRICES] = { 0 };
1883
1884
0
    for (unsigned int j = 0; j <= ctx->cur_restart_interval; j++) {
1885
0
        DecodingParams *dp = &s->b[j].decoding_params;
1886
0
        MatrixParams *mp = &dp->matrix_params;
1887
1888
0
        for (unsigned int i = 0; i < dp->blocksize; i++) {
1889
0
            for (int ch = 0; ch <= maxchan; ch++)
1890
0
                orig_samples[ch] = rematrix_samples[ch] = dp->sample_buffer[ch][i];
1891
1892
0
            for (int mat = 0; mat < mp1->count; mat++) {
1893
0
                unsigned int outch = mp1->outch[mat];
1894
0
                int64_t accum = 0;
1895
1896
0
                for (int ch = 0; ch <= maxchan; ch++) {
1897
0
                    int32_t sample = rematrix_samples[ch];
1898
1899
0
                    accum += (int64_t)sample * mp1->forco[mat][ch];
1900
0
                }
1901
1902
0
                rematrix_samples[outch] = accum >> 14;
1903
0
            }
1904
1905
0
            for (int ch = 0; ch <= maxchan; ch++)
1906
0
                dp->sample_buffer[ch][i] = rematrix_samples[ch];
1907
1908
0
            for (unsigned int mat = 0; mat < mp1->count; mat++) {
1909
0
                int8_t *bypassed_lsbs = mp->bypassed_lsbs[mat];
1910
0
                unsigned int outch = mp1->outch[mat];
1911
0
                int64_t accum = 0;
1912
0
                int8_t bit;
1913
1914
0
                for (int ch = 0; ch <= maxchan; ch++) {
1915
0
                    int32_t sample = rematrix_samples[ch];
1916
1917
0
                    accum += (int64_t)sample * mp1->coeff[mat][ch];
1918
0
                }
1919
1920
0
                rematrix_samples[outch] = accum >> 14;
1921
0
                bit = rematrix_samples[outch] != orig_samples[outch];
1922
1923
0
                bypassed_lsbs[i] = bit;
1924
0
                lsb_bypass[mat] |= bit;
1925
0
            }
1926
0
        }
1927
0
    }
1928
1929
0
    for (unsigned int mat = 0; mat < mp1->count; mat++)
1930
0
        mp1->lsb_bypass[mat] = lsb_bypass[mat];
1931
0
}
1932
1933
/****************************************************************************
1934
 **** Functions that deal with determining the best parameters and output ***
1935
 ****************************************************************************/
1936
1937
typedef struct PathCounter {
1938
    char    path[MAX_HEADER_INTERVAL + 2];
1939
    int     cur_idx;
1940
    uint32_t bitcount;
1941
} PathCounter;
1942
1943
0
#define CODEBOOK_CHANGE_BITS    21
1944
1945
static void clear_path_counter(PathCounter *path_counter)
1946
0
{
1947
0
    memset(path_counter, 0, (NUM_CODEBOOKS + 1) * sizeof(*path_counter));
1948
0
}
1949
1950
static int compare_best_offset(const BestOffset *prev, const BestOffset *cur)
1951
0
{
1952
0
    return prev->lsb_bits != cur->lsb_bits;
1953
0
}
1954
1955
static uint32_t best_codebook_path_cost(MLPEncodeContext *ctx, MLPSubstream *s,
1956
                                        int channel,
1957
                                        PathCounter *src, int cur_codebook)
1958
0
{
1959
0
    int idx = src->cur_idx;
1960
0
    const BestOffset *cur_bo = s->b[idx].best_offset[channel],
1961
0
                    *prev_bo = idx ? s->b[idx - 1].best_offset[channel] :
1962
0
                                     restart_best_offset;
1963
0
    uint32_t bitcount = src->bitcount;
1964
0
    int prev_codebook = src->path[idx];
1965
1966
0
    bitcount += cur_bo[cur_codebook].bitcount;
1967
1968
0
    if (prev_codebook != cur_codebook ||
1969
0
        compare_best_offset(&prev_bo[prev_codebook], &cur_bo[cur_codebook]))
1970
0
        bitcount += CODEBOOK_CHANGE_BITS;
1971
1972
0
    return bitcount;
1973
0
}
1974
1975
static void set_best_codebook(MLPEncodeContext *ctx, MLPSubstream *s)
1976
0
{
1977
0
    RestartHeader *rh = s->cur_restart_header;
1978
1979
0
    for (int channel = rh->min_channel; channel <= rh->max_channel; channel++) {
1980
0
        const BestOffset *prev_bo = restart_best_offset;
1981
0
        BestOffset *cur_bo;
1982
0
        PathCounter path_counter[NUM_CODEBOOKS + 1];
1983
0
        unsigned int best_codebook;
1984
0
        char *best_path;
1985
1986
0
        clear_path_counter(path_counter);
1987
1988
0
        for (unsigned int index = 0; index < ctx->number_of_subblocks; index++) {
1989
0
            uint32_t best_bitcount = UINT32_MAX;
1990
1991
0
            cur_bo = s->b[index].best_offset[channel];
1992
1993
0
            for (unsigned int codebook = 0; codebook < NUM_CODEBOOKS; codebook++) {
1994
0
                uint32_t prev_best_bitcount = UINT32_MAX;
1995
1996
0
                for (unsigned int last_best = 0; last_best < 2; last_best++) {
1997
0
                    PathCounter *dst_path = &path_counter[codebook];
1998
0
                    PathCounter *src_path;
1999
0
                    uint32_t temp_bitcount;
2000
2001
                    /* First test last path with same headers,
2002
                     * then with last best. */
2003
0
                    if (last_best) {
2004
0
                        src_path = &path_counter[NUM_CODEBOOKS];
2005
0
                    } else {
2006
0
                        if (compare_best_offset(&prev_bo[codebook], &cur_bo[codebook]))
2007
0
                            continue;
2008
0
                        else
2009
0
                            src_path = &path_counter[codebook];
2010
0
                    }
2011
2012
0
                    temp_bitcount = best_codebook_path_cost(ctx, s, channel, src_path, codebook);
2013
2014
0
                    if (temp_bitcount < best_bitcount) {
2015
0
                        best_bitcount = temp_bitcount;
2016
0
                        best_codebook = codebook;
2017
0
                    }
2018
2019
0
                    if (temp_bitcount < prev_best_bitcount) {
2020
0
                        prev_best_bitcount = temp_bitcount;
2021
0
                        if (src_path != dst_path)
2022
0
                            memcpy(dst_path, src_path, sizeof(PathCounter));
2023
0
                        if (dst_path->cur_idx < FF_ARRAY_ELEMS(dst_path->path) - 1)
2024
0
                            dst_path->path[++dst_path->cur_idx] = codebook;
2025
0
                        dst_path->bitcount = temp_bitcount;
2026
0
                    }
2027
0
                }
2028
0
            }
2029
2030
0
            prev_bo = cur_bo;
2031
2032
0
            memcpy(&path_counter[NUM_CODEBOOKS], &path_counter[best_codebook], sizeof(PathCounter));
2033
0
        }
2034
2035
0
        best_path = path_counter[NUM_CODEBOOKS].path + 1;
2036
2037
        /* Update context. */
2038
0
        for (unsigned int index = 0; index < ctx->number_of_subblocks; index++) {
2039
0
            ChannelParams *cp = &s->b[index].channel_params[channel];
2040
0
            DecodingParams *dp = &s->b[index].decoding_params;
2041
2042
0
            best_codebook = *best_path++;
2043
0
            cur_bo = &s->b[index].best_offset[channel][best_codebook];
2044
2045
0
            cp->huff_offset      = cur_bo->offset;
2046
0
            cp->huff_lsbs        = cur_bo->lsb_bits + dp->quant_step_size[channel];
2047
0
            cp->codebook         = best_codebook;
2048
0
        }
2049
0
    }
2050
0
}
2051
2052
/** Analyzes all collected bitcounts and selects the best parameters for each
2053
 *  individual access unit.
2054
 *  TODO This is just a stub!
2055
 */
2056
static void set_major_params(MLPEncodeContext *ctx, MLPSubstream *s)
2057
0
{
2058
0
    RestartHeader *rh = s->cur_restart_header;
2059
0
    uint8_t max_huff_lsbs = 0, max_output_bits = 0;
2060
0
    int8_t max_shift = 0;
2061
2062
0
    for (int index = 0; index < s->b[ctx->restart_intervals-1].seq_size; index++) {
2063
0
        memcpy(&s->b[index].major_decoding_params,
2064
0
               &s->b[index].decoding_params, sizeof(DecodingParams));
2065
0
        for (int ch = 0; ch <= rh->max_matrix_channel; ch++) {
2066
0
            int8_t shift = s->b[index].decoding_params.output_shift[ch];
2067
2068
0
            max_shift = FFMAX(max_shift, shift);
2069
0
        }
2070
0
        for (int ch = rh->min_channel; ch <= rh->max_channel; ch++) {
2071
0
            uint8_t huff_lsbs = s->b[index].channel_params[ch].huff_lsbs;
2072
2073
0
            max_huff_lsbs = FFMAX(max_huff_lsbs, huff_lsbs);
2074
2075
0
            memcpy(&s->b[index].major_channel_params[ch],
2076
0
                   &s->b[index].channel_params[ch],
2077
0
                   sizeof(ChannelParams));
2078
0
        }
2079
0
    }
2080
2081
0
    rh->max_huff_lsbs = max_huff_lsbs;
2082
0
    rh->max_shift     = max_shift;
2083
2084
0
    for (int index = 0; index < ctx->number_of_frames; index++)
2085
0
        if (max_output_bits < s->b[index].max_output_bits)
2086
0
            max_output_bits = s->b[index].max_output_bits;
2087
0
    rh->max_output_bits = max_output_bits;
2088
2089
0
    s->cur_restart_header = &s->restart_header;
2090
2091
0
    for (int index = 0; index <= ctx->cur_restart_interval; index++)
2092
0
        s->b[index].major_params_changed = compare_decoding_params(ctx, s, index);
2093
2094
0
    s->major_filter_state_subblock = 1;
2095
0
    s->major_cur_subblock_index = 0;
2096
0
}
2097
2098
static void analyze_sample_buffer(MLPEncodeContext *ctx, MLPSubstream *s)
2099
0
{
2100
0
    s->cur_restart_header = &s->restart_header;
2101
2102
    /* Copy frame_size from frames 0...max to decoding_params 1...max + 1
2103
     * decoding_params[0] is for the filter state subblock.
2104
     */
2105
0
    for (unsigned int index = 0; index < ctx->number_of_frames; index++) {
2106
0
        DecodingParams *dp = &s->b[index+1].decoding_params;
2107
0
        dp->blocksize = ctx->avctx->frame_size;
2108
0
    }
2109
    /* The official encoder seems to always encode a filter state subblock
2110
     * even if there are no filters. TODO check if it is possible to skip
2111
     * the filter state subblock for no filters.
2112
     */
2113
0
    s->b[0].decoding_params.blocksize  = 8;
2114
0
    s->b[1].decoding_params.blocksize -= 8;
2115
2116
0
    input_to_sample_buffer   (ctx, s);
2117
0
    determine_output_shift   (ctx, s);
2118
0
    generate_2_noise_channels(ctx, s);
2119
0
    lossless_matrix_coeffs   (ctx, s);
2120
0
    rematrix_channels        (ctx, s);
2121
0
    determine_quant_step_size(ctx, s);
2122
0
    determine_filters        (ctx, s);
2123
0
    apply_filters            (ctx, s);
2124
2125
0
    copy_restart_frame_params(ctx, s);
2126
2127
0
    determine_bits(ctx, s);
2128
2129
0
    set_best_codebook(ctx, s);
2130
0
}
2131
2132
static void process_major_frame(MLPEncodeContext *ctx, MLPSubstream *s)
2133
0
{
2134
0
    ctx->number_of_frames = ctx->major_number_of_frames;
2135
2136
0
    s->cur_restart_header = &s->restart_header;
2137
2138
0
    generate_2_noise_channels(ctx, s);
2139
0
    rematrix_channels        (ctx, s);
2140
2141
0
    apply_filters(ctx, s);
2142
0
}
2143
2144
/****************************************************************************/
2145
2146
static int mlp_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
2147
                            const AVFrame *frame, int *got_packet)
2148
0
{
2149
0
    MLPEncodeContext *ctx = avctx->priv_data;
2150
0
    int bytes_written = 0;
2151
0
    int channels = avctx->ch_layout.nb_channels;
2152
0
    int restart_frame, ret;
2153
0
    const uint8_t *data;
2154
2155
0
    if (!frame && !ctx->last_frames)
2156
0
        ctx->last_frames = (ctx->afq.remaining_samples + avctx->frame_size - 1) / avctx->frame_size;
2157
2158
0
    if (!frame && !ctx->last_frames--)
2159
0
        return 0;
2160
2161
0
    if ((ret = ff_alloc_packet(avctx, avpkt, 87500 * channels)) < 0)
2162
0
        return ret;
2163
2164
0
    if (frame) {
2165
        /* add current frame to queue */
2166
0
        if ((ret = ff_af_queue_add(&ctx->afq, frame)) < 0)
2167
0
            return ret;
2168
0
    }
2169
2170
0
    data = frame ? frame->data[0] : NULL;
2171
2172
0
    ctx->frame_index = avctx->frame_num % ctx->cur_restart_interval;
2173
2174
0
    if (avctx->frame_num < ctx->cur_restart_interval) {
2175
0
        if (data)
2176
0
            goto input_and_return;
2177
0
    }
2178
2179
0
    restart_frame = !ctx->frame_index;
2180
2181
0
    if (restart_frame) {
2182
0
        avpkt->flags |= AV_PKT_FLAG_KEY;
2183
0
        for (int n = 0; n < ctx->num_substreams; n++)
2184
0
            set_major_params(ctx, &ctx->s[n]);
2185
2186
0
        if (ctx->min_restart_interval != ctx->cur_restart_interval)
2187
0
            process_major_frame(ctx, &ctx->s[0]);
2188
0
    }
2189
2190
0
    bytes_written = write_access_unit(ctx, avpkt->data, avpkt->size, restart_frame);
2191
2192
0
    ctx->output_timing += avctx->frame_size;
2193
0
    ctx->input_timing  += avctx->frame_size;
2194
2195
0
input_and_return:
2196
2197
0
    if (frame) {
2198
0
        ctx->shorten_by = avctx->frame_size - frame->nb_samples;
2199
0
        ctx->next_major_frame_size += avctx->frame_size;
2200
0
        ctx->next_major_number_of_frames++;
2201
0
    }
2202
0
    if (data)
2203
0
        for (int n = 0; n < ctx->num_substreams; n++)
2204
0
            input_data(ctx, &ctx->s[n], frame->extended_data, frame->nb_samples);
2205
2206
0
    restart_frame = (ctx->frame_index + 1) % ctx->min_restart_interval;
2207
2208
0
    if (!restart_frame) {
2209
0
        for (unsigned int seq_index = 0; seq_index < ctx->restart_intervals; seq_index++) {
2210
0
            unsigned int number_of_samples;
2211
2212
0
            ctx->number_of_frames = ctx->next_major_number_of_frames;
2213
0
            ctx->number_of_subblocks = ctx->next_major_number_of_frames + 1;
2214
2215
0
            number_of_samples = avctx->frame_size * ctx->number_of_frames;
2216
2217
0
            for (int n = 0; n < ctx->num_substreams; n++) {
2218
0
                MLPSubstream *s = &ctx->s[n];
2219
2220
0
                for (int i = 0; i < s->b[seq_index].seq_size; i++) {
2221
0
                    clear_channel_params(s->b[i].channel_params, channels);
2222
0
                    default_decoding_params(ctx, &s->b[i].decoding_params);
2223
0
                }
2224
0
            }
2225
2226
0
            if (number_of_samples > 0) {
2227
0
                for (int n = 0; n < ctx->num_substreams; n++)
2228
0
                    analyze_sample_buffer(ctx, &ctx->s[n]);
2229
0
            }
2230
0
        }
2231
2232
0
        if (ctx->frame_index == (ctx->cur_restart_interval - 1)) {
2233
0
            ctx->major_frame_size = ctx->next_major_frame_size;
2234
0
            ctx->next_major_frame_size = 0;
2235
0
            ctx->major_number_of_frames = ctx->next_major_number_of_frames;
2236
0
            ctx->next_major_number_of_frames = 0;
2237
0
        }
2238
0
    }
2239
2240
0
    if (!frame && ctx->last_frames < ctx->cur_restart_interval - 1)
2241
0
        avctx->frame_num++;
2242
2243
0
    if (bytes_written > 0) {
2244
0
        ff_af_queue_remove(&ctx->afq,
2245
0
                           FFMIN(avctx->frame_size, ctx->afq.remaining_samples),
2246
0
                           &avpkt->pts,
2247
0
                           &avpkt->duration);
2248
2249
0
        av_shrink_packet(avpkt, bytes_written);
2250
2251
0
        *got_packet = 1;
2252
0
    } else {
2253
0
        *got_packet = 0;
2254
0
    }
2255
2256
0
    return 0;
2257
0
}
2258
2259
static av_cold int mlp_encode_close(AVCodecContext *avctx)
2260
0
{
2261
0
    MLPEncodeContext *ctx = avctx->priv_data;
2262
2263
0
    ff_lpc_end(&ctx->lpc_ctx);
2264
0
    ff_af_queue_close(&ctx->afq);
2265
2266
0
    return 0;
2267
0
}
2268
2269
#define FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
2270
#define OFFSET(x) offsetof(MLPEncodeContext, x)
2271
static const AVOption mlp_options[] = {
2272
{ "max_interval", "Max number of frames between each new header", OFFSET(max_restart_interval),  AV_OPT_TYPE_INT, {.i64 = 16 }, MIN_HEADER_INTERVAL, MAX_HEADER_INTERVAL, FLAGS },
2273
{ "lpc_coeff_precision", "LPC coefficient precision", OFFSET(lpc_coeff_precision), AV_OPT_TYPE_INT, {.i64 = 15 }, 0, 15, FLAGS },
2274
{ "lpc_type", "LPC algorithm", OFFSET(lpc_type), AV_OPT_TYPE_INT, {.i64 = FF_LPC_TYPE_LEVINSON }, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_CHOLESKY, FLAGS, .unit = "lpc_type" },
2275
{ "levinson", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_LEVINSON }, 0, 0, FLAGS, .unit = "lpc_type" },
2276
{ "cholesky", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_CHOLESKY }, 0, 0, FLAGS, .unit = "lpc_type" },
2277
{ "lpc_passes", "Number of passes to use for Cholesky factorization during LPC analysis", OFFSET(lpc_passes),  AV_OPT_TYPE_INT, {.i64 = 2 }, 1, INT_MAX, FLAGS },
2278
{ "codebook_search", "Max number of codebook searches", OFFSET(max_codebook_search),  AV_OPT_TYPE_INT, {.i64 = 3 }, 1, 100, FLAGS },
2279
{ "prediction_order", "Search method for selecting prediction order", OFFSET(prediction_order), AV_OPT_TYPE_INT, {.i64 = ORDER_METHOD_EST }, ORDER_METHOD_EST, ORDER_METHOD_SEARCH, FLAGS, .unit = "predm" },
2280
{ "estimation", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_EST },    0, 0, FLAGS, .unit = "predm" },
2281
{ "search",     NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_SEARCH }, 0, 0, FLAGS, .unit = "predm" },
2282
{ "rematrix_precision", "Rematrix coefficient precision", OFFSET(rematrix_precision), AV_OPT_TYPE_INT, {.i64 = 1 }, 0, 14, FLAGS },
2283
{ NULL },
2284
};
2285
2286
static const AVClass mlp_class = {
2287
    .class_name = "mlpenc",
2288
    .item_name  = av_default_item_name,
2289
    .option     = mlp_options,
2290
    .version    = LIBAVUTIL_VERSION_INT,
2291
};
2292
2293
#if CONFIG_MLP_ENCODER
2294
const FFCodec ff_mlp_encoder = {
2295
    .p.name                 ="mlp",
2296
    CODEC_LONG_NAME("MLP (Meridian Lossless Packing)"),
2297
    .p.type                 = AVMEDIA_TYPE_AUDIO,
2298
    .p.id                   = AV_CODEC_ID_MLP,
2299
    .p.capabilities         = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
2300
                              AV_CODEC_CAP_EXPERIMENTAL,
2301
    .priv_data_size         = sizeof(MLPEncodeContext),
2302
    .init                   = mlp_encode_init,
2303
    FF_CODEC_ENCODE_CB(mlp_encode_frame),
2304
    .close                  = mlp_encode_close,
2305
    .p.priv_class           = &mlp_class,
2306
    CODEC_SAMPLEFMTS(AV_SAMPLE_FMT_S16P, AV_SAMPLE_FMT_S32P),
2307
    CODEC_SAMPLERATES(44100, 48000, 88200, 96000, 176400, 192000),
2308
    CODEC_CH_LAYOUTS_ARRAY(ff_mlp_ch_layouts),
2309
    .caps_internal          = FF_CODEC_CAP_INIT_CLEANUP,
2310
};
2311
#endif
2312
#if CONFIG_TRUEHD_ENCODER
2313
const FFCodec ff_truehd_encoder = {
2314
    .p.name                 ="truehd",
2315
    CODEC_LONG_NAME("TrueHD"),
2316
    .p.type                 = AVMEDIA_TYPE_AUDIO,
2317
    .p.id                   = AV_CODEC_ID_TRUEHD,
2318
    .p.capabilities         = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
2319
                              AV_CODEC_CAP_SMALL_LAST_FRAME |
2320
                              AV_CODEC_CAP_EXPERIMENTAL,
2321
    .priv_data_size         = sizeof(MLPEncodeContext),
2322
    .init                   = mlp_encode_init,
2323
    FF_CODEC_ENCODE_CB(mlp_encode_frame),
2324
    .close                  = mlp_encode_close,
2325
    .p.priv_class           = &mlp_class,
2326
    CODEC_SAMPLEFMTS(AV_SAMPLE_FMT_S16P, AV_SAMPLE_FMT_S32P),
2327
    CODEC_SAMPLERATES(44100, 48000, 88200, 96000, 176400, 192000),
2328
    CODEC_CH_LAYOUTS(AV_CHANNEL_LAYOUT_MONO,    AV_CHANNEL_LAYOUT_STEREO,
2329
                     AV_CHANNEL_LAYOUT_2POINT1, AV_CHANNEL_LAYOUT_SURROUND,
2330
                     AV_CHANNEL_LAYOUT_3POINT1, AV_CHANNEL_LAYOUT_4POINT0,
2331
                     AV_CHANNEL_LAYOUT_4POINT1, AV_CHANNEL_LAYOUT_5POINT0,
2332
                     AV_CHANNEL_LAYOUT_5POINT1),
2333
    .caps_internal          = FF_CODEC_CAP_INIT_CLEANUP,
2334
};
2335
#endif