Coverage Report

Created: 2026-02-14 06:59

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/ffmpeg/libavcodec/qcelpdec.c
Line
Count
Source
1
/*
2
 * QCELP decoder
3
 * Copyright (c) 2007 Reynaldo H. Verdejo Pinochet
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
22
/**
23
 * @file
24
 * QCELP decoder
25
 * @author Reynaldo H. Verdejo Pinochet
26
 * @remark FFmpeg merging spearheaded by Kenan Gillet
27
 * @remark Development mentored by Benjamin Larson
28
 */
29
30
#include "libavutil/avassert.h"
31
#include "libavutil/channel_layout.h"
32
#include "libavutil/float_dsp.h"
33
#include "avcodec.h"
34
#include "codec_internal.h"
35
#include "decode.h"
36
#include "get_bits.h"
37
#include "qcelpdata.h"
38
#include "celp_filters.h"
39
#include "acelp_filters.h"
40
#include "acelp_vectors.h"
41
#include "lsp.h"
42
43
typedef enum {
44
    I_F_Q = -1,    /**< insufficient frame quality */
45
    SILENCE,
46
    RATE_OCTAVE,
47
    RATE_QUARTER,
48
    RATE_HALF,
49
    RATE_FULL
50
} qcelp_packet_rate;
51
52
typedef struct QCELPContext {
53
    GetBitContext     gb;
54
    qcelp_packet_rate bitrate;
55
    QCELPFrame        frame;    /**< unpacked data frame */
56
57
    uint8_t  erasure_count;
58
    uint8_t  octave_count;      /**< count the consecutive RATE_OCTAVE frames */
59
    float    prev_lspf[10];
60
    float    predictor_lspf[10];/**< LSP predictor for RATE_OCTAVE and I_F_Q */
61
    float    pitch_synthesis_filter_mem[303];
62
    float    pitch_pre_filter_mem[303];
63
    float    rnd_fir_filter_mem[180];
64
    float    formant_mem[170];
65
    float    last_codebook_gain;
66
    int      prev_g1[2];
67
    int      prev_bitrate;
68
    float    pitch_gain[4];
69
    uint8_t  pitch_lag[4];
70
    uint16_t first16bits;
71
    uint8_t  warned_buf_mismatch_bitrate;
72
73
    /* postfilter */
74
    float    postfilter_synth_mem[10];
75
    float    postfilter_agc_mem;
76
    float    postfilter_tilt_mem;
77
} QCELPContext;
78
79
/**
80
 * Initialize the speech codec according to the specification.
81
 *
82
 * TIA/EIA/IS-733 2.4.9
83
 */
84
static av_cold int qcelp_decode_init(AVCodecContext *avctx)
85
1.09k
{
86
1.09k
    QCELPContext *q = avctx->priv_data;
87
1.09k
    int i;
88
89
1.09k
    av_channel_layout_uninit(&avctx->ch_layout);
90
1.09k
    avctx->ch_layout      = (AVChannelLayout)AV_CHANNEL_LAYOUT_MONO;
91
1.09k
    avctx->sample_fmt     = AV_SAMPLE_FMT_FLT;
92
1.09k
    if (!avctx->sample_rate)
93
727
        avctx->sample_rate = 8000;
94
95
12.0k
    for (i = 0; i < 10; i++)
96
10.9k
        q->prev_lspf[i] = (i + 1) / 11.0;
97
98
1.09k
    return 0;
99
1.09k
}
100
101
/**
102
 * Decode the 10 quantized LSP frequencies from the LSPV/LSP
103
 * transmission codes of any bitrate and check for badly received packets.
104
 *
105
 * @param q the context
106
 * @param lspf line spectral pair frequencies
107
 *
108
 * @return 0 on success, -1 if the packet is badly received
109
 *
110
 * TIA/EIA/IS-733 2.4.3.2.6.2-2, 2.4.8.7.3
111
 */
112
static int decode_lspf(QCELPContext *q, float *lspf)
113
248k
{
114
248k
    int i;
115
248k
    float tmp_lspf, smooth, erasure_coeff;
116
248k
    const float *predictors;
117
118
248k
    if (q->bitrate == RATE_OCTAVE || q->bitrate == I_F_Q) {
119
210k
        predictors = q->prev_bitrate != RATE_OCTAVE &&
120
205k
                     q->prev_bitrate != I_F_Q ? q->prev_lspf
121
210k
                                              : q->predictor_lspf;
122
123
210k
        if (q->bitrate == RATE_OCTAVE) {
124
4.84k
            q->octave_count++;
125
126
53.2k
            for (i = 0; i < 10; i++) {
127
48.4k
                q->predictor_lspf[i] =
128
48.4k
                             lspf[i] = (q->frame.lspv[i] ?  QCELP_LSP_SPREAD_FACTOR
129
48.4k
                                                         : -QCELP_LSP_SPREAD_FACTOR) +
130
48.4k
                                        predictors[i] * QCELP_LSP_OCTAVE_PREDICTOR   +
131
48.4k
                                        (i + 1) * ((1 - QCELP_LSP_OCTAVE_PREDICTOR) / 11);
132
48.4k
            }
133
4.84k
            smooth = q->octave_count < 10 ? .875 : 0.1;
134
205k
        } else {
135
205k
            erasure_coeff = QCELP_LSP_OCTAVE_PREDICTOR;
136
137
205k
            av_assert2(q->bitrate == I_F_Q);
138
139
205k
            if (q->erasure_count > 1)
140
200k
                erasure_coeff *= q->erasure_count < 4 ? 0.9 : 0.7;
141
142
2.26M
            for (i = 0; i < 10; i++) {
143
2.05M
                q->predictor_lspf[i] =
144
2.05M
                             lspf[i] = (i + 1) * (1 - erasure_coeff) / 11 +
145
2.05M
                                       erasure_coeff * predictors[i];
146
2.05M
            }
147
205k
            smooth = 0.125;
148
205k
        }
149
150
        // Check the stability of the LSP frequencies.
151
210k
        lspf[0] = FFMAX(lspf[0], QCELP_LSP_SPREAD_FACTOR);
152
2.10M
        for (i = 1; i < 10; i++)
153
1.89M
            lspf[i] = FFMAX(lspf[i], lspf[i - 1] + QCELP_LSP_SPREAD_FACTOR);
154
155
210k
        lspf[9] = FFMIN(lspf[9], 1.0 - QCELP_LSP_SPREAD_FACTOR);
156
2.10M
        for (i = 9; i > 0; i--)
157
1.89M
            lspf[i - 1] = FFMIN(lspf[i - 1], lspf[i] - QCELP_LSP_SPREAD_FACTOR);
158
159
        // Low-pass filter the LSP frequencies.
160
210k
        ff_weighted_vector_sumf(lspf, lspf, q->prev_lspf, smooth, 1.0 - smooth, 10);
161
210k
    } else {
162
37.4k
        q->octave_count = 0;
163
164
37.4k
        tmp_lspf = 0.0;
165
224k
        for (i = 0; i < 5; i++) {
166
187k
            lspf[2 * i + 0] = tmp_lspf += qcelp_lspvq[i][q->frame.lspv[i]][0] * 0.0001;
167
187k
            lspf[2 * i + 1] = tmp_lspf += qcelp_lspvq[i][q->frame.lspv[i]][1] * 0.0001;
168
187k
        }
169
170
        // Check for badly received packets.
171
37.4k
        if (q->bitrate == RATE_QUARTER) {
172
2.33k
            if (lspf[9] <= .70 || lspf[9] >= .97)
173
715
                return -1;
174
12.3k
            for (i = 3; i < 10; i++)
175
11.0k
                if (fabs(lspf[i] - lspf[i - 2]) < .08)
176
397
                    return -1;
177
35.1k
        } else {
178
35.1k
            if (lspf[9] <= .66 || lspf[9] >= .985)
179
23.4k
                return -1;
180
81.2k
            for (i = 4; i < 10; i++)
181
69.7k
                if (fabs(lspf[i] - lspf[i - 4]) < .0931)
182
196
                    return -1;
183
11.7k
        }
184
37.4k
    }
185
223k
    return 0;
186
248k
}
187
188
/**
189
 * Convert codebook transmission codes to GAIN and INDEX.
190
 *
191
 * @param q the context
192
 * @param gain array holding the decoded gain
193
 *
194
 * TIA/EIA/IS-733 2.4.6.2
195
 */
196
static void decode_gain_and_index(QCELPContext *q, float *gain)
197
248k
{
198
248k
    int i, subframes_count, g1[16];
199
248k
    float slope;
200
201
248k
    if (q->bitrate >= RATE_QUARTER) {
202
5.44k
        switch (q->bitrate) {
203
1.27k
        case RATE_FULL: subframes_count = 16; break;
204
1.83k
        case RATE_HALF: subframes_count =  4; break;
205
2.33k
        default:        subframes_count =  5;
206
5.44k
        }
207
44.9k
        for (i = 0; i < subframes_count; i++) {
208
39.4k
            g1[i] = 4 * q->frame.cbgain[i];
209
39.4k
            if (q->bitrate == RATE_FULL && !((i + 1) & 3)) {
210
5.11k
                g1[i] += av_clip((g1[i - 1] + g1[i - 2] + g1[i - 3]) / 3 - 6, 0, 32);
211
5.11k
            }
212
213
39.4k
            gain[i] = qcelp_g12ga[g1[i]];
214
215
39.4k
            if (q->frame.cbsign[i]) {
216
10.5k
                gain[i] = -gain[i];
217
10.5k
                q->frame.cindex[i] = (q->frame.cindex[i] - 89) & 127;
218
10.5k
            }
219
39.4k
        }
220
221
5.44k
        q->prev_g1[0]         = g1[i - 2];
222
5.44k
        q->prev_g1[1]         = g1[i - 1];
223
5.44k
        q->last_codebook_gain = qcelp_g12ga[g1[i - 1]];
224
225
5.44k
        if (q->bitrate == RATE_QUARTER) {
226
            // Provide smoothing of the unvoiced excitation energy.
227
2.33k
            gain[7] =       gain[4];
228
2.33k
            gain[6] = 0.4 * gain[3] + 0.6 * gain[4];
229
2.33k
            gain[5] =       gain[3];
230
2.33k
            gain[4] = 0.8 * gain[2] + 0.2 * gain[3];
231
2.33k
            gain[3] = 0.2 * gain[1] + 0.8 * gain[2];
232
2.33k
            gain[2] =       gain[1];
233
2.33k
            gain[1] = 0.6 * gain[0] + 0.4 * gain[1];
234
2.33k
        }
235
242k
    } else if (q->bitrate != SILENCE) {
236
210k
        if (q->bitrate == RATE_OCTAVE) {
237
4.84k
            g1[0] = 2 * q->frame.cbgain[0] +
238
4.84k
                    av_clip((q->prev_g1[0] + q->prev_g1[1]) / 2 - 5, 0, 54);
239
4.84k
            subframes_count = 8;
240
205k
        } else {
241
205k
            av_assert2(q->bitrate == I_F_Q);
242
243
205k
            g1[0] = q->prev_g1[1];
244
205k
            switch (q->erasure_count) {
245
4.40k
            case 1 : break;
246
2.54k
            case 2 : g1[0] -= 1; break;
247
2.03k
            case 3 : g1[0] -= 2; break;
248
196k
            default: g1[0] -= 6;
249
205k
            }
250
205k
            if (g1[0] < 0)
251
198k
                g1[0] = 0;
252
205k
            subframes_count = 4;
253
205k
        }
254
        // This interpolation is done to produce smoother background noise.
255
210k
        slope = 0.5 * (qcelp_g12ga[g1[0]] - q->last_codebook_gain) / subframes_count;
256
1.07M
        for (i = 1; i <= subframes_count; i++)
257
861k
                gain[i - 1] = q->last_codebook_gain + slope * i;
258
259
210k
        q->last_codebook_gain = gain[i - 2];
260
210k
        q->prev_g1[0]         = q->prev_g1[1];
261
210k
        q->prev_g1[1]         = g1[0];
262
210k
    }
263
248k
}
264
265
/**
266
 * If the received packet is Rate 1/4 a further sanity check is made of the
267
 * codebook gain.
268
 *
269
 * @param cbgain the unpacked cbgain array
270
 * @return -1 if the sanity check fails, 0 otherwise
271
 *
272
 * TIA/EIA/IS-733 2.4.8.7.3
273
 */
274
static int codebook_sanity_check_for_rate_quarter(const uint8_t *cbgain)
275
2.83k
{
276
2.83k
    int i, diff, prev_diff = 0;
277
278
12.9k
    for (i = 1; i < 5; i++) {
279
10.5k
        diff = cbgain[i] - cbgain[i-1];
280
10.5k
        if (FFABS(diff) > 10)
281
252
            return -1;
282
10.3k
        else if (FFABS(diff - prev_diff) > 12)
283
244
            return -1;
284
10.0k
        prev_diff = diff;
285
10.0k
    }
286
2.33k
    return 0;
287
2.83k
}
288
289
/**
290
 * Compute the scaled codebook vector Cdn From INDEX and GAIN
291
 * for all rates.
292
 *
293
 * The specification lacks some information here.
294
 *
295
 * TIA/EIA/IS-733 has an omission on the codebook index determination
296
 * formula for RATE_FULL and RATE_HALF frames at section 2.4.8.1.1. It says
297
 * you have to subtract the decoded index parameter from the given scaled
298
 * codebook vector index 'n' to get the desired circular codebook index, but
299
 * it does not mention that you have to clamp 'n' to [0-9] in order to get
300
 * RI-compliant results.
301
 *
302
 * The reason for this mistake seems to be the fact they forgot to mention you
303
 * have to do these calculations per codebook subframe and adjust given
304
 * equation values accordingly.
305
 *
306
 * @param q the context
307
 * @param gain array holding the 4 pitch subframe gain values
308
 * @param cdn_vector array for the generated scaled codebook vector
309
 */
310
static void compute_svector(QCELPContext *q, const float *gain,
311
                            float *cdn_vector)
312
248k
{
313
248k
    int i, j, k;
314
248k
    uint16_t cbseed, cindex;
315
248k
    float *rnd, tmp_gain, fir_filter_value;
316
317
248k
    switch (q->bitrate) {
318
1.27k
    case RATE_FULL:
319
21.7k
        for (i = 0; i < 16; i++) {
320
20.4k
            tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO;
321
20.4k
            cindex   = -q->frame.cindex[i];
322
224k
            for (j = 0; j < 10; j++)
323
204k
                *cdn_vector++ = tmp_gain *
324
204k
                                qcelp_rate_full_codebook[cindex++ & 127];
325
20.4k
        }
326
1.27k
        break;
327
1.83k
    case RATE_HALF:
328
9.16k
        for (i = 0; i < 4; i++) {
329
7.33k
            tmp_gain = gain[i] * QCELP_RATE_HALF_CODEBOOK_RATIO;
330
7.33k
            cindex   = -q->frame.cindex[i];
331
300k
            for (j = 0; j < 40; j++)
332
293k
                *cdn_vector++ = tmp_gain *
333
293k
                                qcelp_rate_half_codebook[cindex++ & 127];
334
7.33k
        }
335
1.83k
        break;
336
2.33k
    case RATE_QUARTER:
337
2.33k
        cbseed = (0x0003 & q->frame.lspv[4]) << 14 |
338
2.33k
                 (0x003F & q->frame.lspv[3]) <<  8 |
339
2.33k
                 (0x0060 & q->frame.lspv[2]) <<  1 |
340
2.33k
                 (0x0007 & q->frame.lspv[1]) <<  3 |
341
2.33k
                 (0x0038 & q->frame.lspv[0]) >>  3;
342
2.33k
        rnd    = q->rnd_fir_filter_mem + 20;
343
21.0k
        for (i = 0; i < 8; i++) {
344
18.6k
            tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0);
345
392k
            for (k = 0; k < 20; k++) {
346
373k
                cbseed = 521 * cbseed + 259;
347
373k
                *rnd   = (int16_t) cbseed;
348
349
                    // FIR filter
350
373k
                fir_filter_value = 0.0;
351
4.11M
                for (j = 0; j < 10; j++)
352
3.73M
                    fir_filter_value += qcelp_rnd_fir_coefs[j] *
353
3.73M
                                        (rnd[-j] + rnd[-20+j]);
354
355
373k
                fir_filter_value += qcelp_rnd_fir_coefs[10] * rnd[-10];
356
373k
                *cdn_vector++     = tmp_gain * fir_filter_value;
357
373k
                rnd++;
358
373k
            }
359
18.6k
        }
360
2.33k
        memcpy(q->rnd_fir_filter_mem, q->rnd_fir_filter_mem + 160,
361
2.33k
               20 * sizeof(float));
362
2.33k
        break;
363
4.84k
    case RATE_OCTAVE:
364
4.84k
        cbseed = q->first16bits;
365
43.5k
        for (i = 0; i < 8; i++) {
366
38.7k
            tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0);
367
813k
            for (j = 0; j < 20; j++) {
368
774k
                cbseed        = 521 * cbseed + 259;
369
774k
                *cdn_vector++ = tmp_gain * (int16_t) cbseed;
370
774k
            }
371
38.7k
        }
372
4.84k
        break;
373
205k
    case I_F_Q:
374
205k
        cbseed = -44; // random codebook index
375
1.02M
        for (i = 0; i < 4; i++) {
376
822k
            tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO;
377
33.7M
            for (j = 0; j < 40; j++)
378
32.9M
                *cdn_vector++ = tmp_gain *
379
32.9M
                                qcelp_rate_full_codebook[cbseed++ & 127];
380
822k
        }
381
205k
        break;
382
32.0k
    case SILENCE:
383
32.0k
        memset(cdn_vector, 0, 160 * sizeof(float));
384
32.0k
        break;
385
248k
    }
386
248k
}
387
388
/**
389
 * Apply generic gain control.
390
 *
391
 * @param v_out output vector
392
 * @param v_in gain-controlled vector
393
 * @param v_ref vector to control gain of
394
 *
395
 * TIA/EIA/IS-733 2.4.8.3, 2.4.8.6
396
 */
397
static void apply_gain_ctrl(float *v_out, const float *v_ref, const float *v_in)
398
12.1k
{
399
12.1k
    int i;
400
401
60.6k
    for (i = 0; i < 160; i += 40) {
402
48.5k
        float res = ff_scalarproduct_float_c(v_ref + i, v_ref + i, 40);
403
48.5k
        ff_scale_vector_to_given_sum_of_squares(v_out + i, v_in + i, res, 40);
404
48.5k
    }
405
12.1k
}
406
407
/**
408
 * Apply filter in pitch-subframe steps.
409
 *
410
 * @param memory buffer for the previous state of the filter
411
 *        - must be able to contain 303 elements
412
 *        - the 143 first elements are from the previous state
413
 *        - the next 160 are for output
414
 * @param v_in input filter vector
415
 * @param gain per-subframe gain array, each element is between 0.0 and 2.0
416
 * @param lag per-subframe lag array, each element is
417
 *        - between 16 and 143 if its corresponding pfrac is 0,
418
 *        - between 16 and 139 otherwise
419
 * @param pfrac per-subframe boolean array, 1 if the lag is fractional, 0
420
 *        otherwise
421
 *
422
 * @return filter output vector
423
 */
424
static const float *do_pitchfilter(float memory[303], const float v_in[160],
425
                                   const float gain[4], const uint8_t *lag,
426
                                   const uint8_t pfrac[4])
427
24.2k
{
428
24.2k
    int i, j;
429
24.2k
    float *v_lag, *v_out;
430
24.2k
    const float *v_len;
431
432
24.2k
    v_out = memory + 143; // Output vector starts at memory[143].
433
434
121k
    for (i = 0; i < 4; i++) {
435
97.0k
        if (gain[i]) {
436
28.2k
            v_lag = memory + 143 + 40 * i - lag[i];
437
1.15M
            for (v_len = v_in + 40; v_in < v_len; v_in++) {
438
1.13M
                if (pfrac[i]) { // If it is a fractional lag...
439
3.11M
                    for (j = 0, *v_out = 0.0; j < 4; j++)
440
2.49M
                        *v_out += qcelp_hammsinc_table[j] *
441
2.49M
                                  (v_lag[j - 4] + v_lag[3 - j]);
442
622k
                } else
443
507k
                    *v_out = *v_lag;
444
445
1.13M
                *v_out = *v_in + gain[i] * *v_out;
446
447
1.13M
                v_lag++;
448
1.13M
                v_out++;
449
1.13M
            }
450
68.7k
        } else {
451
68.7k
            memcpy(v_out, v_in, 40 * sizeof(float));
452
68.7k
            v_in  += 40;
453
68.7k
            v_out += 40;
454
68.7k
        }
455
97.0k
    }
456
457
24.2k
    memmove(memory, memory + 160, 143 * sizeof(float));
458
24.2k
    return memory + 143;
459
24.2k
}
460
461
/**
462
 * Apply pitch synthesis filter and pitch prefilter to the scaled codebook vector.
463
 * TIA/EIA/IS-733 2.4.5.2, 2.4.8.7.2
464
 *
465
 * @param q the context
466
 * @param cdn_vector the scaled codebook vector
467
 */
468
static void apply_pitch_filters(QCELPContext *q, float *cdn_vector)
469
223k
{
470
223k
    int i;
471
223k
    const float *v_synthesis_filtered, *v_pre_filtered;
472
473
223k
    if (q->bitrate >= RATE_HALF || q->bitrate == SILENCE ||
474
211k
        (q->bitrate == I_F_Q && (q->prev_bitrate >= RATE_HALF))) {
475
476
12.1k
        if (q->bitrate >= RATE_HALF) {
477
            // Compute gain & lag for the whole frame.
478
14.8k
            for (i = 0; i < 4; i++) {
479
11.9k
                q->pitch_gain[i] = q->frame.plag[i] ? (q->frame.pgain[i] + 1) * 0.25 : 0.0;
480
481
11.9k
                q->pitch_lag[i] = q->frame.plag[i] + 16;
482
11.9k
            }
483
9.14k
        } else {
484
9.14k
            float max_pitch_gain;
485
486
9.14k
            if (q->bitrate == I_F_Q) {
487
604
                  if (q->erasure_count < 3)
488
604
                      max_pitch_gain = 0.9 - 0.3 * (q->erasure_count - 1);
489
0
                  else
490
0
                      max_pitch_gain = 0.0;
491
8.54k
            } else {
492
8.54k
                av_assert2(q->bitrate == SILENCE);
493
8.54k
                max_pitch_gain = 1.0;
494
8.54k
            }
495
45.7k
            for (i = 0; i < 4; i++)
496
36.5k
                q->pitch_gain[i] = FFMIN(q->pitch_gain[i], max_pitch_gain);
497
498
9.14k
            memset(q->frame.pfrac, 0, sizeof(q->frame.pfrac));
499
9.14k
        }
500
501
        // pitch synthesis filter
502
12.1k
        v_synthesis_filtered = do_pitchfilter(q->pitch_synthesis_filter_mem,
503
12.1k
                                              cdn_vector, q->pitch_gain,
504
12.1k
                                              q->pitch_lag, q->frame.pfrac);
505
506
        // pitch prefilter update
507
60.6k
        for (i = 0; i < 4; i++)
508
48.5k
            q->pitch_gain[i] = 0.5 * FFMIN(q->pitch_gain[i], 1.0);
509
510
12.1k
        v_pre_filtered       = do_pitchfilter(q->pitch_pre_filter_mem,
511
12.1k
                                              v_synthesis_filtered,
512
12.1k
                                              q->pitch_gain, q->pitch_lag,
513
12.1k
                                              q->frame.pfrac);
514
515
12.1k
        apply_gain_ctrl(cdn_vector, v_synthesis_filtered, v_pre_filtered);
516
211k
    } else {
517
211k
        memcpy(q->pitch_synthesis_filter_mem,
518
211k
               cdn_vector + 17, 143 * sizeof(float));
519
211k
        memcpy(q->pitch_pre_filter_mem, cdn_vector + 17, 143 * sizeof(float));
520
211k
        memset(q->pitch_gain, 0, sizeof(q->pitch_gain));
521
211k
        memset(q->pitch_lag,  0, sizeof(q->pitch_lag));
522
211k
    }
523
223k
}
524
525
/**
526
 * Reconstruct LPC coefficients from the line spectral pair frequencies
527
 * and perform bandwidth expansion.
528
 *
529
 * @param lspf line spectral pair frequencies
530
 * @param lpc linear predictive coding coefficients
531
 *
532
 * @note: bandwidth_expansion_coeff could be precalculated into a table
533
 *        but it seems to be slower on x86
534
 *
535
 * TIA/EIA/IS-733 2.4.3.3.5
536
 */
537
static void lspf2lpc(const float *lspf, float *lpc)
538
235k
{
539
235k
    double lsp[10];
540
235k
    double bandwidth_expansion_coeff = QCELP_BANDWIDTH_EXPANSION_COEFF;
541
235k
    int i;
542
543
2.59M
    for (i = 0; i < 10; i++)
544
2.35M
        lsp[i] = cos(M_PI * lspf[i]);
545
546
235k
    ff_acelp_lspd2lpc(lsp, lpc, 5);
547
548
2.59M
    for (i = 0; i < 10; i++) {
549
2.35M
        lpc[i]                    *= bandwidth_expansion_coeff;
550
2.35M
        bandwidth_expansion_coeff *= QCELP_BANDWIDTH_EXPANSION_COEFF;
551
2.35M
    }
552
235k
}
553
554
/**
555
 * Interpolate LSP frequencies and compute LPC coefficients
556
 * for a given bitrate & pitch subframe.
557
 *
558
 * TIA/EIA/IS-733 2.4.3.3.4, 2.4.8.7.2
559
 *
560
 * @param q the context
561
 * @param curr_lspf LSP frequencies vector of the current frame
562
 * @param lpc float vector for the resulting LPC
563
 * @param subframe_num frame number in decoded stream
564
 */
565
static void interpolate_lpc(QCELPContext *q, const float *curr_lspf,
566
                            float *lpc, const int subframe_num)
567
893k
{
568
893k
    float interpolated_lspf[10];
569
893k
    float weight;
570
571
893k
    if (q->bitrate >= RATE_QUARTER)
572
16.8k
        weight = 0.25 * (subframe_num + 1);
573
876k
    else if (q->bitrate == RATE_OCTAVE && !subframe_num)
574
4.84k
        weight = 0.625;
575
871k
    else
576
871k
        weight = 1.0;
577
578
893k
    if (weight != 1.0) {
579
17.4k
        ff_weighted_vector_sumf(interpolated_lspf, curr_lspf, q->prev_lspf,
580
17.4k
                                weight, 1.0 - weight, 10);
581
17.4k
        lspf2lpc(interpolated_lspf, lpc);
582
875k
    } else if (q->bitrate >= RATE_QUARTER ||
583
871k
               (q->bitrate == I_F_Q && !subframe_num))
584
209k
        lspf2lpc(curr_lspf, lpc);
585
665k
    else if (q->bitrate == SILENCE && !subframe_num)
586
8.54k
        lspf2lpc(q->prev_lspf, lpc);
587
893k
}
588
589
static qcelp_packet_rate buf_size2bitrate(const int buf_size)
590
242k
{
591
242k
    switch (buf_size) {
592
1.55k
    case 35: return RATE_FULL;
593
2.33k
    case 17: return RATE_HALF;
594
3.75k
    case  8: return RATE_QUARTER;
595
6.45k
    case  4: return RATE_OCTAVE;
596
202k
    case  1: return SILENCE;
597
242k
    }
598
599
26.3k
    return I_F_Q;
600
242k
}
601
602
/**
603
 * Determine the bitrate from the frame size and/or the first byte of the frame.
604
 *
605
 * @param avctx the AV codec context
606
 * @param buf_size length of the buffer
607
 * @param buf the buffer
608
 *
609
 * @return the bitrate on success,
610
 *         I_F_Q  if the bitrate cannot be satisfactorily determined
611
 *
612
 * TIA/EIA/IS-733 2.4.8.7.1
613
 */
614
static qcelp_packet_rate determine_bitrate(AVCodecContext *avctx,
615
                                           const int buf_size,
616
                                           const uint8_t **buf)
617
223k
{
618
223k
    qcelp_packet_rate bitrate;
619
620
223k
    if ((bitrate = buf_size2bitrate(buf_size)) >= 0) {
621
204k
        if (bitrate > **buf) {
622
1.08k
            QCELPContext *q = avctx->priv_data;
623
1.08k
            if (!q->warned_buf_mismatch_bitrate) {
624
90
            av_log(avctx, AV_LOG_WARNING,
625
90
                   "Claimed bitrate and buffer size mismatch.\n");
626
90
                q->warned_buf_mismatch_bitrate = 1;
627
90
            }
628
1.08k
            bitrate = **buf;
629
203k
        } else if (bitrate < **buf) {
630
171k
            av_log(avctx, AV_LOG_ERROR,
631
171k
                   "Buffer is too small for the claimed bitrate.\n");
632
171k
            return I_F_Q;
633
171k
        }
634
32.2k
        (*buf)++;
635
32.2k
    } else if ((bitrate = buf_size2bitrate(buf_size + 1)) >= 0) {
636
11.9k
        av_log(avctx, AV_LOG_WARNING,
637
11.9k
               "Bitrate byte missing, guessing bitrate from packet size.\n");
638
11.9k
    } else
639
7.16k
        return I_F_Q;
640
641
44.1k
    if (bitrate == SILENCE) {
642
        // FIXME: Remove this warning when tested with samples.
643
32.0k
        avpriv_request_sample(avctx, "Blank frame handling");
644
32.0k
    }
645
44.1k
    return bitrate;
646
223k
}
647
648
static void warn_insufficient_frame_quality(AVCodecContext *avctx,
649
                                            const char *message)
650
205k
{
651
205k
    av_log(avctx, AV_LOG_WARNING, "Frame #%"PRId64", IFQ: %s\n",
652
205k
           avctx->frame_num, message);
653
205k
}
654
655
static void postfilter(QCELPContext *q, float *samples, float *lpc)
656
223k
{
657
223k
    static const float pow_0_775[10] = {
658
223k
        0.775000, 0.600625, 0.465484, 0.360750, 0.279582,
659
223k
        0.216676, 0.167924, 0.130141, 0.100859, 0.078166
660
223k
    }, pow_0_625[10] = {
661
223k
        0.625000, 0.390625, 0.244141, 0.152588, 0.095367,
662
223k
        0.059605, 0.037253, 0.023283, 0.014552, 0.009095
663
223k
    };
664
223k
    float lpc_s[10], lpc_p[10], pole_out[170], zero_out[160];
665
223k
    int n;
666
667
2.45M
    for (n = 0; n < 10; n++) {
668
2.23M
        lpc_s[n] = lpc[n] * pow_0_625[n];
669
2.23M
        lpc_p[n] = lpc[n] * pow_0_775[n];
670
2.23M
    }
671
672
223k
    ff_celp_lp_zero_synthesis_filterf(zero_out, lpc_s,
673
223k
                                      q->formant_mem + 10, 160, 10);
674
223k
    memcpy(pole_out, q->postfilter_synth_mem, sizeof(float) * 10);
675
223k
    ff_celp_lp_synthesis_filterf(pole_out + 10, lpc_p, zero_out, 160, 10);
676
223k
    memcpy(q->postfilter_synth_mem, pole_out + 160, sizeof(float) * 10);
677
678
223k
    ff_tilt_compensation(&q->postfilter_tilt_mem, 0.3, pole_out + 10, 160);
679
680
223k
    ff_adaptive_gain_control(samples, pole_out + 10,
681
223k
                             ff_scalarproduct_float_c(q->formant_mem + 10,
682
223k
                                                      q->formant_mem + 10,
683
223k
                                                      160),
684
223k
                             160, 0.9375, &q->postfilter_agc_mem);
685
223k
}
686
687
static int qcelp_decode_frame(AVCodecContext *avctx, AVFrame *frame,
688
                              int *got_frame_ptr, AVPacket *avpkt)
689
223k
{
690
223k
    const uint8_t *buf = avpkt->data;
691
223k
    int buf_size       = avpkt->size;
692
223k
    QCELPContext *q    = avctx->priv_data;
693
223k
    float *outbuffer;
694
223k
    int   i, ret;
695
223k
    float quantized_lspf[10], lpc[10];
696
223k
    float gain[16];
697
223k
    float *formant_mem;
698
699
    /* get output buffer */
700
223k
    frame->nb_samples = 160;
701
223k
    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
702
0
        return ret;
703
223k
    outbuffer = (float *)frame->data[0];
704
705
223k
    if ((q->bitrate = determine_bitrate(avctx, buf_size, &buf)) == I_F_Q) {
706
179k
        warn_insufficient_frame_quality(avctx, "Bitrate cannot be determined.");
707
179k
        goto erasure;
708
179k
    }
709
710
44.1k
    if (q->bitrate == RATE_OCTAVE &&
711
5.77k
        (q->first16bits = AV_RB16(buf)) == 0xFFFF) {
712
232
        warn_insufficient_frame_quality(avctx, "Bitrate is 1/8 and first 16 bits are on.");
713
232
        goto erasure;
714
232
    }
715
716
43.9k
    if (q->bitrate > SILENCE) {
717
11.9k
        const QCELPBitmap *bitmaps     = qcelp_unpacking_bitmaps_per_rate[q->bitrate];
718
11.9k
        const QCELPBitmap *bitmaps_end = qcelp_unpacking_bitmaps_per_rate[q->bitrate] +
719
11.9k
                                         qcelp_unpacking_bitmaps_lengths[q->bitrate];
720
11.9k
        uint8_t *unpacked_data         = (uint8_t *)&q->frame;
721
722
11.9k
        if ((ret = init_get_bits8(&q->gb, buf, buf_size)) < 0)
723
0
            return ret;
724
725
11.9k
        memset(&q->frame, 0, sizeof(QCELPFrame));
726
727
307k
        for (; bitmaps < bitmaps_end; bitmaps++)
728
295k
            unpacked_data[bitmaps->index] |= get_bits(&q->gb, bitmaps->bitlen) << bitmaps->bitpos;
729
730
        // Check for erasures/blanks on rates 1, 1/4 and 1/8.
731
11.9k
        if (q->frame.reserved) {
732
905
            warn_insufficient_frame_quality(avctx, "Wrong data in reserved frame area.");
733
905
            goto erasure;
734
905
        }
735
11.0k
        if (q->bitrate == RATE_QUARTER &&
736
2.83k
            codebook_sanity_check_for_rate_quarter(q->frame.cbgain)) {
737
496
            warn_insufficient_frame_quality(avctx, "Codebook gain sanity check failed.");
738
496
            goto erasure;
739
496
        }
740
741
10.5k
        if (q->bitrate >= RATE_HALF) {
742
16.4k
            for (i = 0; i < 4; i++) {
743
13.3k
                if (q->frame.pfrac[i] && q->frame.plag[i] >= 124) {
744
247
                    warn_insufficient_frame_quality(avctx, "Cannot initialize pitch filter.");
745
247
                    goto erasure;
746
247
                }
747
13.3k
            }
748
3.35k
        }
749
10.5k
    }
750
751
42.3k
    decode_gain_and_index(q, gain);
752
42.3k
    compute_svector(q, gain, outbuffer);
753
754
42.3k
    if (decode_lspf(q, quantized_lspf) < 0) {
755
24.7k
        warn_insufficient_frame_quality(avctx, "Badly received packets in frame.");
756
24.7k
        goto erasure;
757
24.7k
    }
758
759
17.5k
    apply_pitch_filters(q, outbuffer);
760
761
17.5k
    if (q->bitrate == I_F_Q) {
762
205k
erasure:
763
205k
        q->bitrate = I_F_Q;
764
205k
        q->erasure_count++;
765
205k
        decode_gain_and_index(q, gain);
766
205k
        compute_svector(q, gain, outbuffer);
767
205k
        decode_lspf(q, quantized_lspf);
768
205k
        apply_pitch_filters(q, outbuffer);
769
205k
    } else
770
17.5k
        q->erasure_count = 0;
771
772
223k
    formant_mem = q->formant_mem + 10;
773
1.11M
    for (i = 0; i < 4; i++) {
774
893k
        interpolate_lpc(q, quantized_lspf, lpc, i);
775
893k
        ff_celp_lp_synthesis_filterf(formant_mem, lpc,
776
893k
                                     outbuffer + i * 40, 40, 10);
777
893k
        formant_mem += 40;
778
893k
    }
779
780
    // postfilter, as per TIA/EIA/IS-733 2.4.8.6
781
223k
    postfilter(q, outbuffer, lpc);
782
783
223k
    memcpy(q->formant_mem, q->formant_mem + 160, 10 * sizeof(float));
784
785
223k
    memcpy(q->prev_lspf, quantized_lspf, sizeof(q->prev_lspf));
786
223k
    q->prev_bitrate  = q->bitrate;
787
788
223k
    *got_frame_ptr = 1;
789
790
223k
    return buf_size;
791
17.5k
}
792
793
const FFCodec ff_qcelp_decoder = {
794
    .p.name         = "qcelp",
795
    CODEC_LONG_NAME("QCELP / PureVoice"),
796
    .p.type         = AVMEDIA_TYPE_AUDIO,
797
    .p.id           = AV_CODEC_ID_QCELP,
798
    .init           = qcelp_decode_init,
799
    FF_CODEC_DECODE_CB(qcelp_decode_frame),
800
    .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF,
801
    .priv_data_size = sizeof(QCELPContext),
802
};