Coverage Report

Created: 2026-02-14 06:59

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/opus/celt/rate.c
Line
Count
Source
1
/* Copyright (c) 2007-2008 CSIRO
2
   Copyright (c) 2007-2009 Xiph.Org Foundation
3
   Written by Jean-Marc Valin */
4
/*
5
   Redistribution and use in source and binary forms, with or without
6
   modification, are permitted provided that the following conditions
7
   are met:
8
9
   - Redistributions of source code must retain the above copyright
10
   notice, this list of conditions and the following disclaimer.
11
12
   - Redistributions in binary form must reproduce the above copyright
13
   notice, this list of conditions and the following disclaimer in the
14
   documentation and/or other materials provided with the distribution.
15
16
   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17
   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
20
   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
21
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
23
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
24
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
25
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
26
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
*/
28
29
#ifdef HAVE_CONFIG_H
30
#include "config.h"
31
#endif
32
33
#include <math.h>
34
#include "modes.h"
35
#include "cwrs.h"
36
#include "arch.h"
37
#include "os_support.h"
38
39
#include "entcode.h"
40
#include "rate.h"
41
#include "quant_bands.h"
42
43
static const unsigned char LOG2_FRAC_TABLE[24]={
44
   0,
45
   8,13,
46
  16,19,21,23,
47
  24,26,27,28,29,30,31,32,
48
  32,33,34,34,35,36,36,37,37
49
};
50
51
#if defined(CUSTOM_MODES)
52
53
/*Determines if V(N,K) fits in a 32-bit unsigned integer.
54
  N and K are themselves limited to 15 bits.*/
55
static int fits_in32(int _n, int _k)
56
{
57
   static const opus_int16 maxN[15] = {
58
      32767, 32767, 32767, 1476, 283, 109,  60,  40,
59
       29,  24,  20,  18,  16,  14,  13};
60
   static const opus_int16 maxK[15] = {
61
      32767, 32767, 32767, 32767, 1172, 238,  95,  53,
62
       36,  27,  22,  18,  16,  15,  13};
63
   if (_n>=14)
64
   {
65
      if (_k>=14)
66
         return 0;
67
      else
68
         return _n <= maxN[_k];
69
   } else {
70
      return _k <= maxK[_n];
71
   }
72
}
73
74
void compute_pulse_cache(CELTMode *m, int LM)
75
{
76
   int C;
77
   int i;
78
   int j;
79
   int curr=0;
80
   int nbEntries=0;
81
   int entryN[100], entryK[100], entryI[100];
82
   const opus_int16 *eBands = m->eBands;
83
   PulseCache *cache = &m->cache;
84
   opus_int16 *cindex;
85
   unsigned char *bits;
86
   unsigned char *cap;
87
88
   cindex = (opus_int16 *)opus_alloc(sizeof(cache->index[0])*m->nbEBands*(LM+2));
89
   cache->index = cindex;
90
91
   /* Scan for all unique band sizes */
92
   for (i=0;i<=LM+1;i++)
93
   {
94
      for (j=0;j<m->nbEBands;j++)
95
      {
96
         int k;
97
         int N = (eBands[j+1]-eBands[j])<<i>>1;
98
         cindex[i*m->nbEBands+j] = -1;
99
         /* Find other bands that have the same size */
100
         for (k=0;k<=i;k++)
101
         {
102
            int n;
103
            for (n=0;n<m->nbEBands && (k!=i || n<j);n++)
104
            {
105
               if (N == (eBands[n+1]-eBands[n])<<k>>1)
106
               {
107
                  cindex[i*m->nbEBands+j] = cindex[k*m->nbEBands+n];
108
                  break;
109
               }
110
            }
111
         }
112
         if (cache->index[i*m->nbEBands+j] == -1 && N!=0)
113
         {
114
            int K;
115
            entryN[nbEntries] = N;
116
            K = 0;
117
            while (fits_in32(N,get_pulses(K+1)) && K<MAX_PSEUDO)
118
               K++;
119
            entryK[nbEntries] = K;
120
            cindex[i*m->nbEBands+j] = curr;
121
            entryI[nbEntries] = curr;
122
123
            curr += K+1;
124
            nbEntries++;
125
         }
126
      }
127
   }
128
   bits = (unsigned char *)opus_alloc(sizeof(unsigned char)*curr);
129
   cache->bits = bits;
130
   cache->size = curr;
131
   /* Compute the cache for all unique sizes */
132
   for (i=0;i<nbEntries;i++)
133
   {
134
      unsigned char *ptr = bits+entryI[i];
135
      opus_int16 tmp[CELT_MAX_PULSES+1];
136
      get_required_bits(tmp, entryN[i], get_pulses(entryK[i]), BITRES);
137
      for (j=1;j<=entryK[i];j++)
138
         ptr[j] = tmp[get_pulses(j)]-1;
139
      ptr[0] = entryK[i];
140
   }
141
142
   /* Compute the maximum rate for each band at which we'll reliably use as
143
       many bits as we ask for. */
144
   cache->caps = cap = (unsigned char *)opus_alloc(sizeof(cache->caps[0])*(LM+1)*2*m->nbEBands);
145
   for (i=0;i<=LM;i++)
146
   {
147
      for (C=1;C<=2;C++)
148
      {
149
         for (j=0;j<m->nbEBands;j++)
150
         {
151
            int N0;
152
            int max_bits;
153
            N0 = m->eBands[j+1]-m->eBands[j];
154
            /* N=1 bands only have a sign bit and fine bits. */
155
            if (N0<<i == 1)
156
               max_bits = C*(1+MAX_FINE_BITS)<<BITRES;
157
            else
158
            {
159
               const unsigned char *pcache;
160
               opus_int32           num;
161
               opus_int32           den;
162
               int                  LM0;
163
               int                  N;
164
               int                  offset;
165
               int                  ndof;
166
               int                  qb;
167
               int                  k;
168
               LM0 = 0;
169
               /* Even-sized bands bigger than N=2 can be split one more time.
170
                  As of commit 44203907 all bands >1 are even, including custom modes.*/
171
               if (N0 > 2)
172
               {
173
                  N0>>=1;
174
                  LM0--;
175
               }
176
               /* N0=1 bands can't be split down to N<2. */
177
               else if (N0 <= 1)
178
               {
179
                  LM0=IMIN(i,1);
180
                  N0<<=LM0;
181
               }
182
               /* Compute the cost for the lowest-level PVQ of a fully split
183
                   band. */
184
               pcache = bits + cindex[(LM0+1)*m->nbEBands+j];
185
               max_bits = pcache[pcache[0]]+1;
186
               /* Add in the cost of coding regular splits. */
187
               N = N0;
188
               for(k=0;k<i-LM0;k++){
189
                  max_bits <<= 1;
190
                  /* Offset the number of qtheta bits by log2(N)/2
191
                      + QTHETA_OFFSET compared to their "fair share" of
192
                      total/N */
193
                  offset = ((m->logN[j]+(opus_int32)((opus_uint32)(LM0+k)<<BITRES))>>1)-QTHETA_OFFSET;
194
                  /* The number of qtheta bits we'll allocate if the remainder
195
                      is to be max_bits.
196
                     The average measured cost for theta is 0.89701 times qb,
197
                      approximated here as 459/512. */
198
                  num=459*(opus_int32)((2*N-1)*offset+max_bits);
199
                  den=((opus_int32)(2*N-1)<<9)-459;
200
                  qb = IMIN((num+(den>>1))/den, 57);
201
                  celt_assert(qb >= 0);
202
                  max_bits += qb;
203
                  N <<= 1;
204
               }
205
               /* Add in the cost of a stereo split, if necessary. */
206
               if (C==2)
207
               {
208
                  max_bits <<= 1;
209
                  offset = ((m->logN[j]+(i<<BITRES))>>1)-(N==2?QTHETA_OFFSET_TWOPHASE:QTHETA_OFFSET);
210
                  ndof = 2*N-1-(N==2);
211
                  /* The average measured cost for theta with the step PDF is
212
                      0.95164 times qb, approximated here as 487/512. */
213
                  num = (N==2?512:487)*(opus_int32)(max_bits+ndof*offset);
214
                  den = ((opus_int32)ndof<<9)-(N==2?512:487);
215
                  qb = IMIN((num+(den>>1))/den, (N==2?64:61));
216
                  celt_assert(qb >= 0);
217
                  max_bits += qb;
218
               }
219
               /* Add the fine bits we'll use. */
220
               /* Compensate for the extra DoF in stereo */
221
               ndof = C*N + ((C==2 && N>2) ? 1 : 0);
222
               /* Offset the number of fine bits by log2(N)/2 + FINE_OFFSET
223
                   compared to their "fair share" of total/N */
224
               offset = ((m->logN[j] + (i<<BITRES))>>1)-FINE_OFFSET;
225
               /* N=2 is the only point that doesn't match the curve */
226
               if (N==2)
227
                  offset += 1<<BITRES>>2;
228
               /* The number of fine bits we'll allocate if the remainder is
229
                   to be max_bits. */
230
               num = max_bits+ndof*offset;
231
               den = (ndof-1)<<BITRES;
232
               qb = IMIN((num+(den>>1))/den, MAX_FINE_BITS);
233
               celt_assert(qb >= 0);
234
               max_bits += C*qb<<BITRES;
235
            }
236
            max_bits = (4*max_bits/(C*((m->eBands[j+1]-m->eBands[j])<<i)))-64;
237
            celt_assert(max_bits >= 0);
238
            celt_assert(max_bits < 256);
239
            *cap++ = (unsigned char)max_bits;
240
         }
241
      }
242
   }
243
}
244
245
#endif /* CUSTOM_MODES */
246
247
8.62M
#define ALLOC_STEPS 6
248
249
static OPUS_INLINE int interp_bits2pulses(const CELTMode *m, int start, int end, int skip_start,
250
      const int *bits1, const int *bits2, const int *thresh, const int *cap, opus_int32 total, opus_int32 *_balance,
251
      int skip_rsv, int *intensity, int intensity_rsv, int *dual_stereo, int dual_stereo_rsv, int *bits,
252
      int *ebits, int *fine_priority, int C, int LM, ec_ctx *ec, int encode, int prev, int signalBandwidth)
253
93.2k
{
254
93.2k
   opus_int32 psum;
255
93.2k
   int lo, hi;
256
93.2k
   int i, j;
257
93.2k
   int logM;
258
93.2k
   int stereo;
259
93.2k
   int codedBands=-1;
260
93.2k
   int alloc_floor;
261
93.2k
   opus_int32 left, percoeff;
262
93.2k
   int done;
263
93.2k
   opus_int32 balance;
264
93.2k
   SAVE_STACK;
265
266
93.2k
   alloc_floor = C<<BITRES;
267
93.2k
   stereo = C>1;
268
269
93.2k
   logM = LM<<BITRES;
270
93.2k
   lo = 0;
271
93.2k
   hi = 1<<ALLOC_STEPS;
272
652k
   for (i=0;i<ALLOC_STEPS;i++)
273
559k
   {
274
559k
      int mid = (lo+hi)>>1;
275
559k
      psum = 0;
276
559k
      done = 0;
277
7.31M
      for (j=end;j-->start;)
278
6.75M
      {
279
6.75M
         int tmp = bits1[j] + (mid*(opus_int32)bits2[j]>>ALLOC_STEPS);
280
6.75M
         if (tmp >= thresh[j] || done)
281
4.10M
         {
282
4.10M
            done = 1;
283
            /* Don't allocate more than we can actually use */
284
4.10M
            psum += IMIN(tmp, cap[j]);
285
4.10M
         } else {
286
2.64M
            if (tmp >= alloc_floor)
287
279k
               psum += alloc_floor;
288
2.64M
         }
289
6.75M
      }
290
559k
      if (psum > total)
291
253k
         hi = mid;
292
306k
      else
293
306k
         lo = mid;
294
559k
   }
295
93.2k
   psum = 0;
296
   /*printf ("interp bisection gave %d\n", lo);*/
297
93.2k
   done = 0;
298
1.21M
   for (j=end;j-->start;)
299
1.12M
   {
300
1.12M
      int tmp = bits1[j] + ((opus_int32)lo*bits2[j]>>ALLOC_STEPS);
301
1.12M
      if (tmp < thresh[j] && !done)
302
525k
      {
303
525k
         if (tmp >= alloc_floor)
304
31.5k
            tmp = alloc_floor;
305
493k
         else
306
493k
            tmp = 0;
307
525k
      } else
308
600k
         done = 1;
309
      /* Don't allocate more than we can actually use */
310
1.12M
      tmp = IMIN(tmp, cap[j]);
311
1.12M
      bits[j] = tmp;
312
1.12M
      psum += tmp;
313
1.12M
   }
314
315
   /* Decide which bands to skip, working backwards from the end. */
316
613k
   for (codedBands=end;;codedBands--)
317
706k
   {
318
706k
      int band_width;
319
706k
      int band_bits;
320
706k
      int rem;
321
706k
      j = codedBands-1;
322
      /* Never skip the first band, nor a band that has been boosted by
323
          dynalloc.
324
         In the first case, we'd be coding a bit to signal we're going to waste
325
          all the other bits.
326
         In the second case, we'd be coding a bit to redistribute all the bits
327
          we just signaled should be concentrated in this band. */
328
706k
      if (j<=skip_start)
329
60.6k
      {
330
         /* Give the bit we reserved to end skipping back. */
331
60.6k
         total += skip_rsv;
332
60.6k
         break;
333
60.6k
      }
334
      /*Figure out how many left-over bits we would be adding to this band.
335
        This can include bits we've stolen back from higher, skipped bands.*/
336
645k
      left = total-psum;
337
645k
      percoeff = celt_udiv(left, m->eBands[codedBands]-m->eBands[start]);
338
645k
      left -= (m->eBands[codedBands]-m->eBands[start])*percoeff;
339
645k
      rem = IMAX(left-(m->eBands[j]-m->eBands[start]),0);
340
645k
      band_width = m->eBands[codedBands]-m->eBands[j];
341
645k
      band_bits = (int)(bits[j] + percoeff*band_width + rem);
342
      /*Only code a skip decision if we're above the threshold for this band.
343
        Otherwise it is force-skipped.
344
        This ensures that we have enough bits to code the skip flag.*/
345
645k
      if (band_bits >= IMAX(thresh[j], alloc_floor+(1<<BITRES)))
346
150k
      {
347
150k
         if (encode)
348
0
         {
349
            /*This if() block is the only part of the allocation function that
350
               is not a mandatory part of the bitstream: any bands we choose to
351
               skip here must be explicitly signaled.*/
352
0
            int depth_threshold;
353
            /*We choose a threshold with some hysteresis to keep bands from
354
               fluctuating in and out, but we try not to fold below a certain point. */
355
0
            if (codedBands > 17)
356
0
               depth_threshold = j<prev ? 7 : 9;
357
0
            else
358
0
               depth_threshold = 0;
359
#ifdef FUZZING
360
            (void)signalBandwidth;
361
            (void)depth_threshold;
362
            if ((rand()&0x1) == 0)
363
#else
364
0
            if (codedBands<=start+2 || (band_bits > (depth_threshold*band_width<<LM<<BITRES)>>4 && j<=signalBandwidth))
365
0
#endif
366
0
            {
367
0
               ec_enc_bit_logp(ec, 1, 1);
368
0
               break;
369
0
            }
370
0
            ec_enc_bit_logp(ec, 0, 1);
371
150k
         } else if (ec_dec_bit_logp(ec, 1)) {
372
32.6k
            break;
373
32.6k
         }
374
         /*We used a bit to skip this band.*/
375
118k
         psum += 1<<BITRES;
376
118k
         band_bits -= 1<<BITRES;
377
118k
      }
378
      /*Reclaim the bits originally allocated to this band.*/
379
613k
      psum -= bits[j]+intensity_rsv;
380
613k
      if (intensity_rsv > 0)
381
57.9k
         intensity_rsv = LOG2_FRAC_TABLE[j-start];
382
613k
      psum += intensity_rsv;
383
613k
      if (band_bits >= alloc_floor)
384
170k
      {
385
         /*If we have enough for a fine energy bit per channel, use it.*/
386
170k
         psum += alloc_floor;
387
170k
         bits[j] = alloc_floor;
388
442k
      } else {
389
         /*Otherwise this band gets nothing at all.*/
390
442k
         bits[j] = 0;
391
442k
      }
392
613k
   }
393
394
93.2k
   celt_assert(codedBands > start);
395
   /* Code the intensity and dual stereo parameters. */
396
93.2k
   if (intensity_rsv > 0)
397
14.6k
   {
398
14.6k
      if (encode)
399
0
      {
400
0
         *intensity = IMIN(*intensity, codedBands);
401
0
         ec_enc_uint(ec, *intensity-start, codedBands+1-start);
402
0
      }
403
14.6k
      else
404
14.6k
         *intensity = start+ec_dec_uint(ec, codedBands+1-start);
405
14.6k
   }
406
78.6k
   else
407
78.6k
      *intensity = 0;
408
93.2k
   if (*intensity <= start)
409
81.6k
   {
410
81.6k
      total += dual_stereo_rsv;
411
81.6k
      dual_stereo_rsv = 0;
412
81.6k
   }
413
93.2k
   if (dual_stereo_rsv > 0)
414
11.5k
   {
415
11.5k
      if (encode)
416
0
         ec_enc_bit_logp(ec, *dual_stereo, 1);
417
11.5k
      else
418
11.5k
         *dual_stereo = ec_dec_bit_logp(ec, 1);
419
11.5k
   }
420
81.6k
   else
421
81.6k
      *dual_stereo = 0;
422
423
   /* Allocate the remaining bits */
424
93.2k
   left = total-psum;
425
93.2k
   percoeff = celt_udiv(left, m->eBands[codedBands]-m->eBands[start]);
426
93.2k
   left -= (m->eBands[codedBands]-m->eBands[start])*percoeff;
427
605k
   for (j=start;j<codedBands;j++)
428
512k
      bits[j] += ((int)percoeff*(m->eBands[j+1]-m->eBands[j]));
429
605k
   for (j=start;j<codedBands;j++)
430
512k
   {
431
512k
      int tmp = (int)IMIN(left, m->eBands[j+1]-m->eBands[j]);
432
512k
      bits[j] += tmp;
433
512k
      left -= tmp;
434
512k
   }
435
   /*for (j=0;j<end;j++)printf("%d ", bits[j]);printf("\n");*/
436
437
93.2k
   balance = 0;
438
605k
   for (j=start;j<codedBands;j++)
439
512k
   {
440
512k
      int N0, N, den;
441
512k
      int offset;
442
512k
      int NClogN;
443
512k
      opus_int32 excess, bit;
444
445
512k
      celt_assert(bits[j] >= 0);
446
512k
      N0 = m->eBands[j+1]-m->eBands[j];
447
512k
      N=N0<<LM;
448
512k
      bit = (opus_int32)bits[j]+balance;
449
450
512k
      if (N>1)
451
452k
      {
452
452k
         excess = MAX32(bit-cap[j],0);
453
452k
         bits[j] = bit-excess;
454
455
         /* Compensate for the extra DoF in stereo */
456
452k
         den=(C*N+ ((C==2 && N>2 && !*dual_stereo && j<*intensity) ? 1 : 0));
457
458
452k
         NClogN = den*(m->logN[j] + logM);
459
460
         /* Offset for the number of fine bits by log2(N)/2 + FINE_OFFSET
461
            compared to their "fair share" of total/N */
462
452k
         offset = (NClogN>>1)-den*FINE_OFFSET;
463
464
         /* N=2 is the only point that doesn't match the curve */
465
452k
         if (N==2)
466
131k
            offset += den<<BITRES>>2;
467
468
         /* Changing the offset for allocating the second and third
469
             fine energy bit */
470
452k
         if (bits[j] + offset < den*2<<BITRES)
471
285k
            offset += NClogN>>2;
472
166k
         else if (bits[j] + offset < den*3<<BITRES)
473
35.2k
            offset += NClogN>>3;
474
475
         /* Divide with rounding */
476
452k
         ebits[j] = IMAX(0, (bits[j] + offset + (den<<(BITRES-1))));
477
452k
         ebits[j] = celt_udiv(ebits[j], den)>>BITRES;
478
479
         /* Make sure not to bust */
480
452k
         if (C*ebits[j] > (bits[j]>>BITRES))
481
23.4k
            ebits[j] = bits[j] >> stereo >> BITRES;
482
483
         /* More than that is useless because that's about as far as PVQ can go */
484
452k
         ebits[j] = IMIN(ebits[j], MAX_FINE_BITS);
485
486
         /* If we rounded down or capped this band, make it a candidate for the
487
             final fine energy pass */
488
452k
         fine_priority[j] = ebits[j]*(den<<BITRES) >= bits[j]+offset;
489
490
         /* Remove the allocated fine bits; the rest are assigned to PVQ */
491
452k
         bits[j] -= C*ebits[j]<<BITRES;
492
493
452k
      } else {
494
         /* For N=1, all bits go to fine energy except for a single sign bit */
495
60.4k
         excess = MAX32(0,bit-(C<<BITRES));
496
60.4k
         bits[j] = bit-excess;
497
60.4k
         ebits[j] = 0;
498
60.4k
         fine_priority[j] = 1;
499
60.4k
      }
500
501
      /* Fine energy can't take advantage of the re-balancing in
502
          quant_all_bands().
503
         Instead, do the re-balancing here.*/
504
512k
      if(excess > 0)
505
125k
      {
506
125k
         int extra_fine;
507
125k
         int extra_bits;
508
125k
         extra_fine = IMIN(excess>>(stereo+BITRES),MAX_FINE_BITS-ebits[j]);
509
125k
         ebits[j] += extra_fine;
510
125k
         extra_bits = extra_fine*C<<BITRES;
511
125k
         fine_priority[j] = extra_bits >= excess-balance;
512
125k
         excess -= extra_bits;
513
125k
      }
514
512k
      balance = excess;
515
516
512k
      celt_assert(bits[j] >= 0);
517
512k
      celt_assert(ebits[j] >= 0);
518
512k
   }
519
   /* Save any remaining bits over the cap for the rebalancing in
520
       quant_all_bands(). */
521
93.2k
   *_balance = balance;
522
523
   /* The skipped bands use all their bits for fine energy. */
524
706k
   for (;j<end;j++)
525
613k
   {
526
613k
      ebits[j] = bits[j] >> stereo >> BITRES;
527
613k
      celt_assert(C*ebits[j]<<BITRES == bits[j]);
528
613k
      bits[j] = 0;
529
613k
      fine_priority[j] = ebits[j]<1;
530
613k
   }
531
93.2k
   RESTORE_STACK;
532
93.2k
   return codedBands;
533
93.2k
}
534
535
int clt_compute_allocation(const CELTMode *m, int start, int end, const int *offsets, const int *cap, int alloc_trim, int *intensity, int *dual_stereo,
536
      opus_int32 total, opus_int32 *balance, int *pulses, int *ebits, int *fine_priority, int C, int LM, ec_ctx *ec, int encode, int prev, int signalBandwidth)
537
93.2k
{
538
93.2k
   int lo, hi, len, j;
539
93.2k
   int codedBands;
540
93.2k
   int skip_start;
541
93.2k
   int skip_rsv;
542
93.2k
   int intensity_rsv;
543
93.2k
   int dual_stereo_rsv;
544
93.2k
   VARDECL(int, bits1);
545
93.2k
   VARDECL(int, bits2);
546
93.2k
   VARDECL(int, thresh);
547
93.2k
   VARDECL(int, trim_offset);
548
93.2k
   SAVE_STACK;
549
550
93.2k
   total = IMAX(total, 0);
551
93.2k
   len = m->nbEBands;
552
93.2k
   skip_start = start;
553
   /* Reserve a bit to signal the end of manually skipped bands. */
554
93.2k
   skip_rsv = total >= 1<<BITRES ? 1<<BITRES : 0;
555
93.2k
   total -= skip_rsv;
556
   /* Reserve bits for the intensity and dual stereo parameters. */
557
93.2k
   intensity_rsv = dual_stereo_rsv = 0;
558
93.2k
   if (C==2)
559
29.9k
   {
560
29.9k
      intensity_rsv = LOG2_FRAC_TABLE[end-start];
561
29.9k
      if (intensity_rsv>total)
562
15.2k
         intensity_rsv = 0;
563
14.6k
      else
564
14.6k
      {
565
14.6k
         total -= intensity_rsv;
566
14.6k
         dual_stereo_rsv = total>=1<<BITRES ? 1<<BITRES : 0;
567
14.6k
         total -= dual_stereo_rsv;
568
14.6k
      }
569
29.9k
   }
570
93.2k
   ALLOC(bits1, len, int);
571
93.2k
   ALLOC(bits2, len, int);
572
93.2k
   ALLOC(thresh, len, int);
573
93.2k
   ALLOC(trim_offset, len, int);
574
575
1.21M
   for (j=start;j<end;j++)
576
1.12M
   {
577
      /* Below this threshold, we're sure not to allocate any PVQ bits */
578
1.12M
      thresh[j] = IMAX((C)<<BITRES, (3*(m->eBands[j+1]-m->eBands[j])<<LM<<BITRES)>>4);
579
      /* Tilt of the allocation curve */
580
1.12M
      trim_offset[j] = C*(m->eBands[j+1]-m->eBands[j])*(alloc_trim-5-LM)*(end-j-1)
581
1.12M
            *(1<<(LM+BITRES))>>6;
582
      /* Giving less resolution to single-coefficient bands because they get
583
         more benefit from having one coarse value per coefficient*/
584
1.12M
      if ((m->eBands[j+1]-m->eBands[j])<<LM==1)
585
147k
         trim_offset[j] -= C<<BITRES;
586
1.12M
   }
587
93.2k
   lo = 1;
588
93.2k
   hi = m->nbAllocVectors - 1;
589
93.2k
   do
590
320k
   {
591
320k
      int done = 0;
592
320k
      int psum = 0;
593
320k
      int mid = (lo+hi) >> 1;
594
4.03M
      for (j=end;j-->start;)
595
3.71M
      {
596
3.71M
         int bitsj;
597
3.71M
         int N = m->eBands[j+1]-m->eBands[j];
598
3.71M
         bitsj = C*N*m->allocVectors[mid*len+j]<<LM>>2;
599
3.71M
         if (bitsj > 0)
600
3.36M
            bitsj = IMAX(0, bitsj + trim_offset[j]);
601
3.71M
         bitsj += offsets[j];
602
3.71M
         if (bitsj >= thresh[j] || done)
603
3.29M
         {
604
3.29M
            done = 1;
605
            /* Don't allocate more than we can actually use */
606
3.29M
            psum += IMIN(bitsj, cap[j]);
607
3.29M
         } else {
608
420k
            if (bitsj >= C<<BITRES)
609
53.9k
               psum += C<<BITRES;
610
420k
         }
611
3.71M
      }
612
320k
      if (psum > total)
613
195k
         hi = mid - 1;
614
125k
      else
615
125k
         lo = mid + 1;
616
      /*printf ("lo = %d, hi = %d\n", lo, hi);*/
617
320k
   }
618
320k
   while (lo <= hi);
619
93.2k
   hi = lo--;
620
   /*printf ("interp between %d and %d\n", lo, hi);*/
621
1.21M
   for (j=start;j<end;j++)
622
1.12M
   {
623
1.12M
      int bits1j, bits2j;
624
1.12M
      int N = m->eBands[j+1]-m->eBands[j];
625
1.12M
      bits1j = C*N*m->allocVectors[lo*len+j]<<LM>>2;
626
1.12M
      bits2j = hi>=m->nbAllocVectors ?
627
1.00M
            cap[j] : C*N*m->allocVectors[hi*len+j]<<LM>>2;
628
1.12M
      if (bits1j > 0)
629
452k
         bits1j = IMAX(0, bits1j + trim_offset[j]);
630
1.12M
      if (bits2j > 0)
631
992k
         bits2j = IMAX(0, bits2j + trim_offset[j]);
632
1.12M
      if (lo > 0)
633
542k
         bits1j += offsets[j];
634
1.12M
      bits2j += offsets[j];
635
1.12M
      if (offsets[j]>0)
636
15.9k
         skip_start = j;
637
1.12M
      bits2j = IMAX(0,bits2j-bits1j);
638
1.12M
      bits1[j] = bits1j;
639
1.12M
      bits2[j] = bits2j;
640
1.12M
   }
641
93.2k
   codedBands = interp_bits2pulses(m, start, end, skip_start, bits1, bits2, thresh, cap,
642
93.2k
         total, balance, skip_rsv, intensity, intensity_rsv, dual_stereo, dual_stereo_rsv,
643
93.2k
         pulses, ebits, fine_priority, C, LM, ec, encode, prev, signalBandwidth);
644
93.2k
   RESTORE_STACK;
645
93.2k
   return codedBands;
646
93.2k
}
647
#ifdef ENABLE_QEXT
648
649
static const unsigned char last_zero[3] = {64, 50, 0};
650
static const unsigned char last_cap[3] = {110, 60, 0};
651
static const unsigned char last_other[4] = {120, 112, 70, 0};
652
653
static void ec_enc_depth(ec_enc *enc, opus_int32 depth, opus_int32 cap, opus_int32 *last) {
654
   int sym = 3;
655
   if (depth==*last) sym = 2;
656
   if (depth==cap) sym = 1;
657
   if (depth==0) sym = 0;
658
   if (*last == 0) {
659
      ec_enc_icdf(enc, IMIN(sym, 2), last_zero, 7);
660
   } else if (*last == cap) {
661
      ec_enc_icdf(enc, IMIN(sym, 2), last_cap, 7);
662
   } else {
663
      ec_enc_icdf(enc, sym, last_other, 7);
664
   }
665
   /* We accept some redundancy if depth==last (for last different from 0 and cap). */
666
   if (sym == 3) ec_enc_uint(enc, depth-1, cap);
667
   *last = depth;
668
}
669
670
static int ec_dec_depth(ec_dec *dec, opus_int32 cap, opus_int32 *last) {
671
   int depth, sym;
672
   if (*last == 0) {
673
      sym = ec_dec_icdf(dec, last_zero, 7);
674
      if (sym==2) sym=3;
675
   } else if (*last == cap) {
676
      sym = ec_dec_icdf(dec, last_cap, 7);
677
      if (sym==2) sym=3;
678
   } else {
679
      sym = ec_dec_icdf(dec, last_other, 7);
680
   }
681
   if (sym==0) depth=0;
682
   else if (sym==1) depth=cap;
683
   else if (sym==2) depth=*last;
684
   else depth = 1 + ec_dec_uint(dec, cap);
685
   *last = depth;
686
   return depth;
687
}
688
689
#define MSWAP16(a,b) do {opus_val16 tmp = a;a=b;b=tmp;} while(0)
690
static opus_val16 median_of_5_val16(const opus_val16 *x)
691
{
692
   opus_val16 t0, t1, t2, t3, t4;
693
   t2 = x[2];
694
   if (x[0] > x[1])
695
   {
696
      t0 = x[1];
697
      t1 = x[0];
698
   } else {
699
      t0 = x[0];
700
      t1 = x[1];
701
   }
702
   if (x[3] > x[4])
703
   {
704
      t3 = x[4];
705
      t4 = x[3];
706
   } else {
707
      t3 = x[3];
708
      t4 = x[4];
709
   }
710
   if (t0 > t3)
711
   {
712
      MSWAP16(t0, t3);
713
      MSWAP16(t1, t4);
714
   }
715
   if (t2 > t1)
716
   {
717
      if (t1 < t3)
718
         return MIN16(t2, t3);
719
      else
720
         return MIN16(t4, t1);
721
   } else {
722
      if (t2 < t3)
723
         return MIN16(t1, t3);
724
      else
725
         return MIN16(t2, t4);
726
   }
727
}
728
729
void clt_compute_extra_allocation(const CELTMode *m, const CELTMode *qext_mode, int start, int end, int qext_end, const celt_glog *bandLogE, const celt_glog *qext_bandLogE,
730
      opus_int32 total, int *extra_pulses, int *extra_equant, int C, int LM, ec_ctx *ec, int encode, opus_val16 tone_freq, opus_val32 toneishness)
731
{
732
   int i;
733
   opus_int32 last=0;
734
   opus_val32 sum;
735
   opus_val32 fill;
736
   int iter;
737
   int tot_bands;
738
   int tot_samples;
739
   VARDECL(int, depth);
740
   VARDECL(opus_int32, cap);
741
#ifdef FUZZING
742
   float depth_std;
743
#endif
744
   SAVE_STACK;
745
#ifdef FUZZING
746
   depth_std = -10.f*log(1e-8+(float)rand()/(float)RAND_MAX);
747
   depth_std = FMAX(0, FMIN(48, depth_std));
748
#endif
749
   if (qext_mode != NULL) {
750
      celt_assert(end==m->nbEBands);
751
      tot_bands = end + qext_end;
752
      tot_samples = qext_mode->eBands[qext_end]*C<<LM;
753
   } else {
754
      tot_bands = end;
755
      tot_samples = (m->eBands[end]-m->eBands[start])*C<<LM;
756
   }
757
   ALLOC(cap, tot_bands, opus_int32);
758
   for (i=start;i<end;i++) cap[i] = 12;
759
   if (qext_mode != NULL) {
760
      for (i=0;i<qext_end;i++) cap[end+i] = 14;
761
   }
762
   if (total <= 0) {
763
      for (i=start;i<m->nbEBands+qext_end;i++) {
764
         extra_pulses[i] = extra_equant[i] = 0;
765
      }
766
      RESTORE_STACK;
767
      return;
768
   }
769
   ALLOC(depth, tot_bands, int);
770
   if (encode) {
771
      VARDECL(opus_val16, flatE);
772
      VARDECL(int, Ncoef);
773
      VARDECL(opus_val16, min);
774
      VARDECL(opus_val16, follower);
775
776
      ALLOC(flatE, tot_bands, opus_val16);
777
      ALLOC(min, tot_bands, opus_val16);
778
      ALLOC(Ncoef, tot_bands, int);
779
      for (i=start;i<end;i++) {
780
         Ncoef[i] = (m->eBands[i+1]-m->eBands[i])*C<<LM;
781
      }
782
      /* Remove the effect of band width, eMeans and pre-emphasis to compute the real (flat) spectrum. */
783
      for (i=start;i<end;i++) {
784
         flatE[i] = PSHR32(bandLogE[i] - GCONST(0.0625f)*m->logN[i] + SHL32(eMeans[i],DB_SHIFT-4) - GCONST(.0062f)*(i+5)*(i+5), DB_SHIFT-10);
785
         min[i] = 0;
786
      }
787
      if (C==2) {
788
         for (i=start;i<end;i++) {
789
            flatE[i] = MAXG(flatE[i], PSHR32(bandLogE[m->nbEBands+i] - GCONST(0.0625f)*m->logN[i] + SHL32(eMeans[i],DB_SHIFT-4) - GCONST(.0062f)*(i+5)*(i+5), DB_SHIFT-10));
790
         }
791
      }
792
      flatE[end-1] += QCONST16(2.f, 10);
793
      if (qext_mode != NULL) {
794
         opus_val16 min_depth = 0;
795
         /* If we have enough bits, give at least 1 bit of depth to all higher bands. */
796
         if (total >= 3*C*(qext_mode->eBands[qext_end]-qext_mode->eBands[start])<<LM<<BITRES && (toneishness < QCONST32(.98f, 29) || tone_freq > 1.33f))
797
            min_depth = QCONST16(1.f, 10);
798
         for (i=0;i<qext_end;i++) {
799
            Ncoef[end+i] = (qext_mode->eBands[i+1]-qext_mode->eBands[i])*C<<LM;
800
            min[end+i] = min_depth;
801
         }
802
         for (i=0;i<qext_end;i++) {
803
            flatE[end+i] = PSHR32(qext_bandLogE[i] - GCONST(0.0625f)*qext_mode->logN[i] + SHL32(eMeans[i],DB_SHIFT-4) - GCONST(.0062f)*(end+i+5)*(end+i+5), DB_SHIFT-10);
804
         }
805
         if (C==2) {
806
            for (i=0;i<qext_end;i++) {
807
               flatE[end+i] = MAXG(flatE[end+i], PSHR32(qext_bandLogE[NB_QEXT_BANDS+i] - GCONST(0.0625f)*qext_mode->logN[i] + SHL32(eMeans[i],DB_SHIFT-4) - GCONST(.0062f)*(end+i+5)*(end+i+5), DB_SHIFT-10));
808
            }
809
         }
810
      }
811
      ALLOC(follower, tot_bands, opus_val16);
812
      for (i=start+2;i<tot_bands-2;i++) {
813
         follower[i] = median_of_5_val16(&flatE[i-2]);
814
      }
815
      follower[start] = follower[start+1] = follower[start+2];
816
      follower[tot_bands-1] = follower[tot_bands-2] = follower[tot_bands-3];
817
      for (i=start+1;i<tot_bands;i++) {
818
         follower[i] = MAX16(follower[i], follower[i-1]-QCONST16(1.f, 10));
819
      }
820
      for (i=tot_bands-2;i>=start;i--) {
821
         follower[i] = MAX16(follower[i], follower[i+1]-QCONST16(1.f, 10));
822
      }
823
      for (i=start;i<tot_bands;i++) flatE[i] -= MULT16_16_Q15(Q15ONE-PSHR32(toneishness, 14), follower[i]);
824
      if (qext_mode != NULL) {
825
         for (i=0;i<qext_end;i++) flatE[end+i] = flatE[end+i] + QCONST16(3.f, 10) + QCONST16(.2f, 10)*i;
826
      }
827
      /* Approximate fill level assuming all bands contribute fully. */
828
      sum = 0;
829
      for (i=start;i<tot_bands;i++) {
830
         sum += MULT16_16(Ncoef[i], flatE[i]);
831
      }
832
      total >>= BITRES;
833
      fill = (SHL32(total, 10) + sum)/tot_samples;
834
      /* Iteratively refine the fill level considering the depth min and cap. */
835
      for (iter=0;iter<10;iter++) {
836
         sum = 0;
837
         for (i=start;i<tot_bands;i++)
838
            sum += Ncoef[i] * MIN32(SHL32(cap[i], 10), MAX32(min[i], flatE[i]-fill));
839
         fill -= (SHL32(total, 10) - sum)/tot_samples;
840
      }
841
      for (i=start;i<tot_bands;i++) {
842
#ifdef FIXED_POINT
843
         depth[i] = PSHR32(MIN32(SHL32(cap[i], 10), MAX32(min[i], flatE[i]-fill)), 10-2);
844
#else
845
         depth[i] = (int)floor(.5+4*MIN32(SHL32(cap[i], 10), MAX32(min[i], flatE[i]-fill)));
846
#endif
847
#ifdef FUZZING
848
         depth[i] = (int)-depth_std*log(1e-8+(float)rand()/(float)RAND_MAX);
849
         depth[i] = IMAX(0, IMIN(cap[i]<<2, depth[i]));
850
#endif
851
         if (ec_tell_frac(ec) + 80 < ec->storage*8<<BITRES)
852
            ec_enc_depth(ec, depth[i], 4*cap[i], &last);
853
         else
854
            depth[i] = 0;
855
      }
856
   } else {
857
      for (i=start;i<tot_bands;i++) {
858
         if (ec_tell_frac(ec) + 80 < ec->storage*8<<BITRES)
859
            depth[i] = ec_dec_depth(ec, 4*cap[i], &last);
860
         else
861
            depth[i] = 0;
862
      }
863
   }
864
   for (i=start;i<end;i++) {
865
      extra_equant[i] = (depth[i]+3)>>2;
866
      extra_pulses[i] = ((((m->eBands[i+1]-m->eBands[i])<<LM)-1)*C * depth[i] * (1<<BITRES) + 2)>>2;
867
   }
868
   if (qext_mode) {
869
      for (i=0;i<qext_end;i++) {
870
         extra_equant[end+i] = (depth[end+i]+3)>>2;
871
         extra_pulses[end+i] = ((((qext_mode->eBands[i+1]-qext_mode->eBands[i])<<LM)-1)*C * depth[end+i] * (1<<BITRES) + 2)>>2;
872
      }
873
   }
874
   RESTORE_STACK;
875
}
876
#endif