/src/fftw3/rdft/rank-geq2.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | |
22 | | /* plans for RDFT of rank >= 2 (multidimensional) */ |
23 | | |
24 | | /* FIXME: this solver cannot strictly be applied to multidimensional |
25 | | DHTs, since the latter are not separable...up to rnk-1 additional |
26 | | post-processing passes may be required. See also: |
27 | | |
28 | | R. N. Bracewell, O. Buneman, H. Hao, and J. Villasenor, "Fast |
29 | | two-dimensional Hartley transform," Proc. IEEE 74, 1282-1283 (1986). |
30 | | |
31 | | H. Hao and R. N. Bracewell, "A three-dimensional DFT algorithm |
32 | | using the fast Hartley transform," Proc. IEEE 75(2), 264-266 (1987). |
33 | | */ |
34 | | |
35 | | #include "rdft/rdft.h" |
36 | | |
37 | | typedef struct { |
38 | | solver super; |
39 | | int spltrnk; |
40 | | const int *buddies; |
41 | | size_t nbuddies; |
42 | | } S; |
43 | | |
44 | | typedef struct { |
45 | | plan_rdft super; |
46 | | |
47 | | plan *cld1, *cld2; |
48 | | const S *solver; |
49 | | } P; |
50 | | |
51 | | /* Compute multi-dimensional RDFT by applying the two cld plans |
52 | | (lower-rnk RDFTs). */ |
53 | | static void apply(const plan *ego_, R *I, R *O) |
54 | | { |
55 | | const P *ego = (const P *) ego_; |
56 | | plan_rdft *cld1, *cld2; |
57 | | |
58 | | cld1 = (plan_rdft *) ego->cld1; |
59 | | cld1->apply(ego->cld1, I, O); |
60 | | |
61 | | cld2 = (plan_rdft *) ego->cld2; |
62 | | cld2->apply(ego->cld2, O, O); |
63 | | } |
64 | | |
65 | | |
66 | | static void awake(plan *ego_, enum wakefulness wakefulness) |
67 | | { |
68 | | P *ego = (P *) ego_; |
69 | | X(plan_awake)(ego->cld1, wakefulness); |
70 | | X(plan_awake)(ego->cld2, wakefulness); |
71 | | } |
72 | | |
73 | | static void destroy(plan *ego_) |
74 | | { |
75 | | P *ego = (P *) ego_; |
76 | | X(plan_destroy_internal)(ego->cld2); |
77 | | X(plan_destroy_internal)(ego->cld1); |
78 | | } |
79 | | |
80 | | static void print(const plan *ego_, printer *p) |
81 | | { |
82 | | const P *ego = (const P *) ego_; |
83 | | const S *s = ego->solver; |
84 | | p->print(p, "(rdft-rank>=2/%d%(%p%)%(%p%))", |
85 | | s->spltrnk, ego->cld1, ego->cld2); |
86 | | } |
87 | | |
88 | | static int picksplit(const S *ego, const tensor *sz, int *rp) |
89 | | { |
90 | | A(sz->rnk > 1); /* cannot split rnk <= 1 */ |
91 | | if (!X(pickdim)(ego->spltrnk, ego->buddies, ego->nbuddies, sz, 1, rp)) |
92 | | return 0; |
93 | | *rp += 1; /* convert from dim. index to rank */ |
94 | | if (*rp >= sz->rnk) /* split must reduce rank */ |
95 | | return 0; |
96 | | return 1; |
97 | | } |
98 | | |
99 | | static int applicable0(const solver *ego_, const problem *p_, int *rp) |
100 | | { |
101 | | const problem_rdft *p = (const problem_rdft *) p_; |
102 | | const S *ego = (const S *)ego_; |
103 | | return (1 |
104 | | && FINITE_RNK(p->sz->rnk) && FINITE_RNK(p->vecsz->rnk) |
105 | | && p->sz->rnk >= 2 |
106 | | && picksplit(ego, p->sz, rp) |
107 | | ); |
108 | | } |
109 | | |
110 | | /* TODO: revise this. */ |
111 | | static int applicable(const solver *ego_, const problem *p_, |
112 | | const planner *plnr, int *rp) |
113 | | { |
114 | | const S *ego = (const S *)ego_; |
115 | | |
116 | | if (!applicable0(ego_, p_, rp)) return 0; |
117 | | |
118 | | if (NO_RANK_SPLITSP(plnr) && (ego->spltrnk != ego->buddies[0])) |
119 | | return 0; |
120 | | |
121 | | if (NO_UGLYP(plnr)) { |
122 | | /* Heuristic: if the vector stride is greater than the transform |
123 | | sz, don't use (prefer to do the vector loop first with a |
124 | | vrank-geq1 plan). */ |
125 | | const problem_rdft *p = (const problem_rdft *) p_; |
126 | | |
127 | | if (p->vecsz->rnk > 0 && |
128 | | X(tensor_min_stride)(p->vecsz) > X(tensor_max_index)(p->sz)) |
129 | | return 0; |
130 | | } |
131 | | |
132 | | return 1; |
133 | | } |
134 | | |
135 | | static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) |
136 | | { |
137 | | const S *ego = (const S *) ego_; |
138 | | const problem_rdft *p; |
139 | | P *pln; |
140 | | plan *cld1 = 0, *cld2 = 0; |
141 | | tensor *sz1, *sz2, *vecszi, *sz2i; |
142 | | int spltrnk; |
143 | | |
144 | | static const plan_adt padt = { |
145 | | X(rdft_solve), awake, print, destroy |
146 | | }; |
147 | | |
148 | | if (!applicable(ego_, p_, plnr, &spltrnk)) |
149 | | return (plan *) 0; |
150 | | |
151 | | p = (const problem_rdft *) p_; |
152 | | X(tensor_split)(p->sz, &sz1, spltrnk, &sz2); |
153 | | vecszi = X(tensor_copy_inplace)(p->vecsz, INPLACE_OS); |
154 | | sz2i = X(tensor_copy_inplace)(sz2, INPLACE_OS); |
155 | | |
156 | | cld1 = X(mkplan_d)(plnr, |
157 | | X(mkproblem_rdft_d)(X(tensor_copy)(sz2), |
158 | | X(tensor_append)(p->vecsz, sz1), |
159 | | p->I, p->O, p->kind + spltrnk)); |
160 | | if (!cld1) goto nada; |
161 | | |
162 | | cld2 = X(mkplan_d)(plnr, |
163 | | X(mkproblem_rdft_d)( |
164 | | X(tensor_copy_inplace)(sz1, INPLACE_OS), |
165 | | X(tensor_append)(vecszi, sz2i), |
166 | | p->O, p->O, p->kind)); |
167 | | if (!cld2) goto nada; |
168 | | |
169 | | pln = MKPLAN_RDFT(P, &padt, apply); |
170 | | |
171 | | pln->cld1 = cld1; |
172 | | pln->cld2 = cld2; |
173 | | |
174 | | pln->solver = ego; |
175 | | X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops); |
176 | | |
177 | | X(tensor_destroy4)(sz2, sz1, vecszi, sz2i); |
178 | | |
179 | | return &(pln->super.super); |
180 | | |
181 | | nada: |
182 | | X(plan_destroy_internal)(cld2); |
183 | | X(plan_destroy_internal)(cld1); |
184 | | X(tensor_destroy4)(sz2, sz1, vecszi, sz2i); |
185 | | return (plan *) 0; |
186 | | } |
187 | | |
188 | | static solver *mksolver(int spltrnk, const int *buddies, size_t nbuddies) |
189 | | { |
190 | | static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; |
191 | | S *slv = MKSOLVER(S, &sadt); |
192 | | slv->spltrnk = spltrnk; |
193 | | slv->buddies = buddies; |
194 | | slv->nbuddies = nbuddies; |
195 | | return &(slv->super); |
196 | | } |
197 | | |
198 | | void X(rdft_rank_geq2_register)(planner *p) |
199 | 1 | { |
200 | 1 | static const int buddies[] = { 1, 0, -2 }; |
201 | 1 | size_t i; |
202 | | |
203 | 4 | for (i = 0; i < NELEM(buddies); ++i) |
204 | 3 | REGISTER_SOLVER(p, mksolver(buddies[i], buddies, NELEM(buddies))); |
205 | | |
206 | | /* FIXME: Should we try more buddies? See also dft/rank-geq2. */ |
207 | 1 | } |