/src/fftw3/reodft/reodft010e-r2hc.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | |
22 | | /* Do an R{E,O}DFT{01,10} problem via an R2HC problem, with some |
23 | | pre/post-processing ala FFTPACK. */ |
24 | | |
25 | | #include "reodft/reodft.h" |
26 | | |
27 | | typedef struct { |
28 | | solver super; |
29 | | } S; |
30 | | |
31 | | typedef struct { |
32 | | plan_rdft super; |
33 | | plan *cld; |
34 | | twid *td; |
35 | | INT is, os; |
36 | | INT n; |
37 | | INT vl; |
38 | | INT ivs, ovs; |
39 | | rdft_kind kind; |
40 | | } P; |
41 | | |
42 | | /* A real-even-01 DFT operates logically on a size-4N array: |
43 | | I 0 -r(I*) -I 0 r(I*), |
44 | | where r denotes reversal and * denotes deletion of the 0th element. |
45 | | To compute the transform of this, we imagine performing a radix-4 |
46 | | (real-input) DIF step, which turns the size-4N DFT into 4 size-N |
47 | | (contiguous) DFTs, two of which are zero and two of which are |
48 | | conjugates. The non-redundant size-N DFT has halfcomplex input, so |
49 | | we can do it with a size-N hc2r transform. (In order to share |
50 | | plans with the re10 (inverse) transform, however, we use the DHT |
51 | | trick to re-express the hc2r problem as r2hc. This has little cost |
52 | | since we are already pre- and post-processing the data in {i,n-i} |
53 | | order.) Finally, we have to write out the data in the correct |
54 | | order...the two size-N redundant (conjugate) hc2r DFTs correspond |
55 | | to the even and odd outputs in O (i.e. the usual interleaved output |
56 | | of DIF transforms); since this data has even symmetry, we only |
57 | | write the first half of it. |
58 | | |
59 | | The real-even-10 DFT is just the reverse of these steps, i.e. a |
60 | | radix-4 DIT transform. There, however, we just use the r2hc |
61 | | transform naturally without resorting to the DHT trick. |
62 | | |
63 | | A real-odd-01 DFT is very similar, except that the input is |
64 | | 0 I (rI)* 0 -I -(rI)*. This format, however, can be transformed |
65 | | into precisely the real-even-01 format above by sending I -> rI |
66 | | and shifting the array by N. The former swap is just another |
67 | | transformation on the input during preprocessing; the latter |
68 | | multiplies the even/odd outputs by i/-i, which combines with |
69 | | the factor of -i (to take the imaginary part) to simply flip |
70 | | the sign of the odd outputs. Vice-versa for real-odd-10. |
71 | | |
72 | | The FFTPACK source code was very helpful in working this out. |
73 | | (They do unnecessary passes over the array, though.) The same |
74 | | algorithm is also described in: |
75 | | |
76 | | John Makhoul, "A fast cosine transform in one and two dimensions," |
77 | | IEEE Trans. on Acoust. Speech and Sig. Proc., ASSP-28 (1), 27--34 (1980). |
78 | | |
79 | | Note that Numerical Recipes suggests a different algorithm that |
80 | | requires more operations and uses trig. functions for both the pre- |
81 | | and post-processing passes. |
82 | | */ |
83 | | |
84 | | static void apply_re01(const plan *ego_, R *I, R *O) |
85 | 0 | { |
86 | 0 | const P *ego = (const P *) ego_; |
87 | 0 | INT is = ego->is, os = ego->os; |
88 | 0 | INT i, n = ego->n; |
89 | 0 | INT iv, vl = ego->vl; |
90 | 0 | INT ivs = ego->ivs, ovs = ego->ovs; |
91 | 0 | R *W = ego->td->W; |
92 | 0 | R *buf; |
93 | |
|
94 | 0 | buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); |
95 | |
|
96 | 0 | for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { |
97 | 0 | buf[0] = I[0]; |
98 | 0 | for (i = 1; i < n - i; ++i) { |
99 | 0 | E a, b, apb, amb, wa, wb; |
100 | 0 | a = I[is * i]; |
101 | 0 | b = I[is * (n - i)]; |
102 | 0 | apb = a + b; |
103 | 0 | amb = a - b; |
104 | 0 | wa = W[2*i]; |
105 | 0 | wb = W[2*i + 1]; |
106 | 0 | buf[i] = wa * amb + wb * apb; |
107 | 0 | buf[n - i] = wa * apb - wb * amb; |
108 | 0 | } |
109 | 0 | if (i == n - i) { |
110 | 0 | buf[i] = K(2.0) * I[is * i] * W[2*i]; |
111 | 0 | } |
112 | | |
113 | 0 | { |
114 | 0 | plan_rdft *cld = (plan_rdft *) ego->cld; |
115 | 0 | cld->apply((plan *) cld, buf, buf); |
116 | 0 | } |
117 | | |
118 | 0 | O[0] = buf[0]; |
119 | 0 | for (i = 1; i < n - i; ++i) { |
120 | 0 | E a, b; |
121 | 0 | INT k; |
122 | 0 | a = buf[i]; |
123 | 0 | b = buf[n - i]; |
124 | 0 | k = i + i; |
125 | 0 | O[os * (k - 1)] = a - b; |
126 | 0 | O[os * k] = a + b; |
127 | 0 | } |
128 | 0 | if (i == n - i) { |
129 | 0 | O[os * (n - 1)] = buf[i]; |
130 | 0 | } |
131 | 0 | } |
132 | |
|
133 | 0 | X(ifree)(buf); |
134 | 0 | } |
135 | | |
136 | | /* ro01 is same as re01, but with i <-> n - 1 - i in the input and |
137 | | the sign of the odd output elements flipped. */ |
138 | | static void apply_ro01(const plan *ego_, R *I, R *O) |
139 | 0 | { |
140 | 0 | const P *ego = (const P *) ego_; |
141 | 0 | INT is = ego->is, os = ego->os; |
142 | 0 | INT i, n = ego->n; |
143 | 0 | INT iv, vl = ego->vl; |
144 | 0 | INT ivs = ego->ivs, ovs = ego->ovs; |
145 | 0 | R *W = ego->td->W; |
146 | 0 | R *buf; |
147 | |
|
148 | 0 | buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); |
149 | |
|
150 | 0 | for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { |
151 | 0 | buf[0] = I[is * (n - 1)]; |
152 | 0 | for (i = 1; i < n - i; ++i) { |
153 | 0 | E a, b, apb, amb, wa, wb; |
154 | 0 | a = I[is * (n - 1 - i)]; |
155 | 0 | b = I[is * (i - 1)]; |
156 | 0 | apb = a + b; |
157 | 0 | amb = a - b; |
158 | 0 | wa = W[2*i]; |
159 | 0 | wb = W[2*i+1]; |
160 | 0 | buf[i] = wa * amb + wb * apb; |
161 | 0 | buf[n - i] = wa * apb - wb * amb; |
162 | 0 | } |
163 | 0 | if (i == n - i) { |
164 | 0 | buf[i] = K(2.0) * I[is * (i - 1)] * W[2*i]; |
165 | 0 | } |
166 | | |
167 | 0 | { |
168 | 0 | plan_rdft *cld = (plan_rdft *) ego->cld; |
169 | 0 | cld->apply((plan *) cld, buf, buf); |
170 | 0 | } |
171 | | |
172 | 0 | O[0] = buf[0]; |
173 | 0 | for (i = 1; i < n - i; ++i) { |
174 | 0 | E a, b; |
175 | 0 | INT k; |
176 | 0 | a = buf[i]; |
177 | 0 | b = buf[n - i]; |
178 | 0 | k = i + i; |
179 | 0 | O[os * (k - 1)] = b - a; |
180 | 0 | O[os * k] = a + b; |
181 | 0 | } |
182 | 0 | if (i == n - i) { |
183 | 0 | O[os * (n - 1)] = -buf[i]; |
184 | 0 | } |
185 | 0 | } |
186 | |
|
187 | 0 | X(ifree)(buf); |
188 | 0 | } |
189 | | |
190 | | static void apply_re10(const plan *ego_, R *I, R *O) |
191 | 0 | { |
192 | 0 | const P *ego = (const P *) ego_; |
193 | 0 | INT is = ego->is, os = ego->os; |
194 | 0 | INT i, n = ego->n; |
195 | 0 | INT iv, vl = ego->vl; |
196 | 0 | INT ivs = ego->ivs, ovs = ego->ovs; |
197 | 0 | R *W = ego->td->W; |
198 | 0 | R *buf; |
199 | |
|
200 | 0 | buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); |
201 | |
|
202 | 0 | for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { |
203 | 0 | buf[0] = I[0]; |
204 | 0 | for (i = 1; i < n - i; ++i) { |
205 | 0 | E u, v; |
206 | 0 | INT k = i + i; |
207 | 0 | u = I[is * (k - 1)]; |
208 | 0 | v = I[is * k]; |
209 | 0 | buf[n - i] = u; |
210 | 0 | buf[i] = v; |
211 | 0 | } |
212 | 0 | if (i == n - i) { |
213 | 0 | buf[i] = I[is * (n - 1)]; |
214 | 0 | } |
215 | | |
216 | 0 | { |
217 | 0 | plan_rdft *cld = (plan_rdft *) ego->cld; |
218 | 0 | cld->apply((plan *) cld, buf, buf); |
219 | 0 | } |
220 | | |
221 | 0 | O[0] = K(2.0) * buf[0]; |
222 | 0 | for (i = 1; i < n - i; ++i) { |
223 | 0 | E a, b, wa, wb; |
224 | 0 | a = K(2.0) * buf[i]; |
225 | 0 | b = K(2.0) * buf[n - i]; |
226 | 0 | wa = W[2*i]; |
227 | 0 | wb = W[2*i + 1]; |
228 | 0 | O[os * i] = wa * a + wb * b; |
229 | 0 | O[os * (n - i)] = wb * a - wa * b; |
230 | 0 | } |
231 | 0 | if (i == n - i) { |
232 | 0 | O[os * i] = K(2.0) * buf[i] * W[2*i]; |
233 | 0 | } |
234 | 0 | } |
235 | |
|
236 | 0 | X(ifree)(buf); |
237 | 0 | } |
238 | | |
239 | | /* ro10 is same as re10, but with i <-> n - 1 - i in the output and |
240 | | the sign of the odd input elements flipped. */ |
241 | | static void apply_ro10(const plan *ego_, R *I, R *O) |
242 | 0 | { |
243 | 0 | const P *ego = (const P *) ego_; |
244 | 0 | INT is = ego->is, os = ego->os; |
245 | 0 | INT i, n = ego->n; |
246 | 0 | INT iv, vl = ego->vl; |
247 | 0 | INT ivs = ego->ivs, ovs = ego->ovs; |
248 | 0 | R *W = ego->td->W; |
249 | 0 | R *buf; |
250 | |
|
251 | 0 | buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); |
252 | |
|
253 | 0 | for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { |
254 | 0 | buf[0] = I[0]; |
255 | 0 | for (i = 1; i < n - i; ++i) { |
256 | 0 | E u, v; |
257 | 0 | INT k = i + i; |
258 | 0 | u = -I[is * (k - 1)]; |
259 | 0 | v = I[is * k]; |
260 | 0 | buf[n - i] = u; |
261 | 0 | buf[i] = v; |
262 | 0 | } |
263 | 0 | if (i == n - i) { |
264 | 0 | buf[i] = -I[is * (n - 1)]; |
265 | 0 | } |
266 | | |
267 | 0 | { |
268 | 0 | plan_rdft *cld = (plan_rdft *) ego->cld; |
269 | 0 | cld->apply((plan *) cld, buf, buf); |
270 | 0 | } |
271 | | |
272 | 0 | O[os * (n - 1)] = K(2.0) * buf[0]; |
273 | 0 | for (i = 1; i < n - i; ++i) { |
274 | 0 | E a, b, wa, wb; |
275 | 0 | a = K(2.0) * buf[i]; |
276 | 0 | b = K(2.0) * buf[n - i]; |
277 | 0 | wa = W[2*i]; |
278 | 0 | wb = W[2*i + 1]; |
279 | 0 | O[os * (n - 1 - i)] = wa * a + wb * b; |
280 | 0 | O[os * (i - 1)] = wb * a - wa * b; |
281 | 0 | } |
282 | 0 | if (i == n - i) { |
283 | 0 | O[os * (i - 1)] = K(2.0) * buf[i] * W[2*i]; |
284 | 0 | } |
285 | 0 | } |
286 | |
|
287 | 0 | X(ifree)(buf); |
288 | 0 | } |
289 | | |
290 | | static void awake(plan *ego_, enum wakefulness wakefulness) |
291 | 0 | { |
292 | 0 | P *ego = (P *) ego_; |
293 | 0 | static const tw_instr reodft010e_tw[] = { |
294 | 0 | { TW_COS, 0, 1 }, |
295 | 0 | { TW_SIN, 0, 1 }, |
296 | 0 | { TW_NEXT, 1, 0 } |
297 | 0 | }; |
298 | |
|
299 | 0 | X(plan_awake)(ego->cld, wakefulness); |
300 | |
|
301 | 0 | X(twiddle_awake)(wakefulness, &ego->td, reodft010e_tw, |
302 | 0 | 4*ego->n, 1, ego->n/2+1); |
303 | 0 | } |
304 | | |
305 | | static void destroy(plan *ego_) |
306 | 0 | { |
307 | 0 | P *ego = (P *) ego_; |
308 | 0 | X(plan_destroy_internal)(ego->cld); |
309 | 0 | } |
310 | | |
311 | | static void print(const plan *ego_, printer *p) |
312 | 0 | { |
313 | 0 | const P *ego = (const P *) ego_; |
314 | 0 | p->print(p, "(%se-r2hc-%D%v%(%p%))", |
315 | 0 | X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld); |
316 | 0 | } |
317 | | |
318 | | static int applicable0(const solver *ego_, const problem *p_) |
319 | 0 | { |
320 | 0 | const problem_rdft *p = (const problem_rdft *) p_; |
321 | 0 | UNUSED(ego_); |
322 | |
|
323 | 0 | return (1 |
324 | 0 | && p->sz->rnk == 1 |
325 | 0 | && p->vecsz->rnk <= 1 |
326 | 0 | && (p->kind[0] == REDFT01 || p->kind[0] == REDFT10 |
327 | 0 | || p->kind[0] == RODFT01 || p->kind[0] == RODFT10) |
328 | 0 | ); |
329 | 0 | } |
330 | | |
331 | | static int applicable(const solver *ego, const problem *p, const planner *plnr) |
332 | 332 | { |
333 | 332 | return (!NO_SLOWP(plnr) && applicable0(ego, p)); |
334 | 332 | } |
335 | | |
336 | | static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) |
337 | 332 | { |
338 | 332 | P *pln; |
339 | 332 | const problem_rdft *p; |
340 | 332 | plan *cld; |
341 | 332 | R *buf; |
342 | 332 | INT n; |
343 | 332 | opcnt ops; |
344 | | |
345 | 332 | static const plan_adt padt = { |
346 | 332 | X(rdft_solve), awake, print, destroy |
347 | 332 | }; |
348 | | |
349 | 332 | if (!applicable(ego_, p_, plnr)) |
350 | 332 | return (plan *)0; |
351 | | |
352 | 0 | p = (const problem_rdft *) p_; |
353 | |
|
354 | 0 | n = p->sz->dims[0].n; |
355 | 0 | buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); |
356 | |
|
357 | 0 | cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1), |
358 | 0 | X(mktensor_0d)(), |
359 | 0 | buf, buf, R2HC)); |
360 | 0 | X(ifree)(buf); |
361 | 0 | if (!cld) |
362 | 0 | return (plan *)0; |
363 | | |
364 | 0 | switch (p->kind[0]) { |
365 | 0 | case REDFT01: pln = MKPLAN_RDFT(P, &padt, apply_re01); break; |
366 | 0 | case REDFT10: pln = MKPLAN_RDFT(P, &padt, apply_re10); break; |
367 | 0 | case RODFT01: pln = MKPLAN_RDFT(P, &padt, apply_ro01); break; |
368 | 0 | case RODFT10: pln = MKPLAN_RDFT(P, &padt, apply_ro10); break; |
369 | 0 | default: A(0); return (plan*)0; |
370 | 0 | } |
371 | | |
372 | 0 | pln->n = n; |
373 | 0 | pln->is = p->sz->dims[0].is; |
374 | 0 | pln->os = p->sz->dims[0].os; |
375 | 0 | pln->cld = cld; |
376 | 0 | pln->td = 0; |
377 | 0 | pln->kind = p->kind[0]; |
378 | | |
379 | 0 | X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); |
380 | | |
381 | 0 | X(ops_zero)(&ops); |
382 | 0 | ops.other = 4 + (n-1)/2 * 10 + (1 - n % 2) * 5; |
383 | 0 | if (p->kind[0] == REDFT01 || p->kind[0] == RODFT01) { |
384 | 0 | ops.add = (n-1)/2 * 6; |
385 | 0 | ops.mul = (n-1)/2 * 4 + (1 - n % 2) * 2; |
386 | 0 | } |
387 | 0 | else { /* 10 transforms */ |
388 | 0 | ops.add = (n-1)/2 * 2; |
389 | 0 | ops.mul = 1 + (n-1)/2 * 6 + (1 - n % 2) * 2; |
390 | 0 | } |
391 | | |
392 | 0 | X(ops_zero)(&pln->super.super.ops); |
393 | 0 | X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); |
394 | 0 | X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); |
395 | |
|
396 | 0 | return &(pln->super.super); |
397 | 0 | } |
398 | | |
399 | | /* constructor */ |
400 | | static solver *mksolver(void) |
401 | 1 | { |
402 | 1 | static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; |
403 | 1 | S *slv = MKSOLVER(S, &sadt); |
404 | 1 | return &(slv->super); |
405 | 1 | } |
406 | | |
407 | | void X(reodft010e_r2hc_register)(planner *p) |
408 | 1 | { |
409 | 1 | REGISTER_SOLVER(p, mksolver()); |
410 | 1 | } |