Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | |
22 | | /* trigonometric functions */ |
23 | | #include "kernel/ifftw.h" |
24 | | #include <math.h> |
25 | | |
26 | | #if defined(TRIGREAL_IS_LONG_DOUBLE) |
27 | | # define COS cosl |
28 | | # define SIN sinl |
29 | | # define KTRIG(x) (x##L) |
30 | | # if defined(HAVE_DECL_SINL) && !HAVE_DECL_SINL |
31 | | extern long double sinl(long double x); |
32 | | # endif |
33 | | # if defined(HAVE_DECL_COSL) && !HAVE_DECL_COSL |
34 | | extern long double cosl(long double x); |
35 | | # endif |
36 | | #elif defined(TRIGREAL_IS_QUAD) |
37 | | # define COS cosq |
38 | | # define SIN sinq |
39 | | # define KTRIG(x) (x##Q) |
40 | | extern __float128 sinq(__float128 x); |
41 | | extern __float128 cosq(__float128 x); |
42 | | #else |
43 | 57.9k | # define COS cos |
44 | 57.9k | # define SIN sin |
45 | | # define KTRIG(x) (x) |
46 | | #endif |
47 | | |
48 | | static const trigreal K2PI = |
49 | | KTRIG(6.2831853071795864769252867665590057683943388); |
50 | 57.9k | #define by2pi(m, n) ((K2PI * (m)) / (n)) |
51 | | |
52 | | /* |
53 | | * Improve accuracy by reducing x to range [0..1/8] |
54 | | * before multiplication by 2 * PI. |
55 | | */ |
56 | | |
57 | | static void real_cexp(INT m, INT n, trigreal *out) |
58 | 57.9k | { |
59 | 57.9k | trigreal theta, c, s, t; |
60 | 57.9k | unsigned octant = 0; |
61 | 57.9k | INT quarter_n = n; |
62 | | |
63 | 57.9k | n += n; n += n; |
64 | 57.9k | m += m; m += m; |
65 | | |
66 | 57.9k | if (m < 0) m += n; |
67 | 57.9k | if (m > n - m) { m = n - m; octant |= 4; } |
68 | 57.9k | if (m - quarter_n > 0) { m = m - quarter_n; octant |= 2; } |
69 | 57.9k | if (m > quarter_n - m) { m = quarter_n - m; octant |= 1; } |
70 | | |
71 | 57.9k | theta = by2pi(m, n); |
72 | 57.9k | c = COS(theta); s = SIN(theta); |
73 | | |
74 | 57.9k | if (octant & 1) { t = c; c = s; s = t; } |
75 | 57.9k | if (octant & 2) { t = c; c = -s; s = t; } |
76 | 57.9k | if (octant & 4) { s = -s; } |
77 | | |
78 | 57.9k | out[0] = c; |
79 | 57.9k | out[1] = s; |
80 | 57.9k | } |
81 | | |
82 | | static INT choose_twshft(INT n) |
83 | 0 | { |
84 | 0 | INT log2r = 0; |
85 | 0 | while (n > 0) { |
86 | 0 | ++log2r; |
87 | 0 | n /= 4; |
88 | 0 | } |
89 | 0 | return log2r; |
90 | 0 | } |
91 | | |
92 | | static void cexpl_sqrtn_table(triggen *p, INT m, trigreal *res) |
93 | 0 | { |
94 | 0 | m += p->n * (m < 0); |
95 | |
|
96 | 0 | { |
97 | 0 | INT m0 = m & p->twmsk; |
98 | 0 | INT m1 = m >> p->twshft; |
99 | 0 | trigreal wr0 = p->W0[2 * m0]; |
100 | 0 | trigreal wi0 = p->W0[2 * m0 + 1]; |
101 | 0 | trigreal wr1 = p->W1[2 * m1]; |
102 | 0 | trigreal wi1 = p->W1[2 * m1 + 1]; |
103 | |
|
104 | 0 | res[0] = wr1 * wr0 - wi1 * wi0; |
105 | 0 | res[1] = wi1 * wr0 + wr1 * wi0; |
106 | 0 | } |
107 | 0 | } |
108 | | |
109 | | /* multiply (xr, xi) by exp(FFT_SIGN * 2*pi*i*m/n) */ |
110 | | static void rotate_sqrtn_table(triggen *p, INT m, R xr, R xi, R *res) |
111 | 0 | { |
112 | 0 | m += p->n * (m < 0); |
113 | |
|
114 | 0 | { |
115 | 0 | INT m0 = m & p->twmsk; |
116 | 0 | INT m1 = m >> p->twshft; |
117 | 0 | trigreal wr0 = p->W0[2 * m0]; |
118 | 0 | trigreal wi0 = p->W0[2 * m0 + 1]; |
119 | 0 | trigreal wr1 = p->W1[2 * m1]; |
120 | 0 | trigreal wi1 = p->W1[2 * m1 + 1]; |
121 | 0 | trigreal wr = wr1 * wr0 - wi1 * wi0; |
122 | 0 | trigreal wi = wi1 * wr0 + wr1 * wi0; |
123 | |
|
124 | 0 | #if FFT_SIGN == -1 |
125 | 0 | res[0] = xr * wr + xi * wi; |
126 | 0 | res[1] = xi * wr - xr * wi; |
127 | | #else |
128 | | res[0] = xr * wr - xi * wi; |
129 | | res[1] = xi * wr + xr * wi; |
130 | | #endif |
131 | 0 | } |
132 | 0 | } |
133 | | |
134 | | static void cexpl_sincos(triggen *p, INT m, trigreal *res) |
135 | 57.9k | { |
136 | 57.9k | real_cexp(m, p->n, res); |
137 | 57.9k | } |
138 | | |
139 | | static void cexp_zero(triggen *p, INT m, R *res) |
140 | 0 | { |
141 | 0 | UNUSED(p); UNUSED(m); |
142 | 0 | res[0] = 0; |
143 | 0 | res[1] = 0; |
144 | 0 | } |
145 | | |
146 | | static void cexpl_zero(triggen *p, INT m, trigreal *res) |
147 | 0 | { |
148 | 0 | UNUSED(p); UNUSED(m); |
149 | 0 | res[0] = 0; |
150 | 0 | res[1] = 0; |
151 | 0 | } |
152 | | |
153 | | static void cexp_generic(triggen *p, INT m, R *res) |
154 | 0 | { |
155 | 0 | trigreal resl[2]; |
156 | 0 | p->cexpl(p, m, resl); |
157 | 0 | res[0] = (R)resl[0]; |
158 | 0 | res[1] = (R)resl[1]; |
159 | 0 | } |
160 | | |
161 | | static void rotate_generic(triggen *p, INT m, R xr, R xi, R *res) |
162 | 0 | { |
163 | 0 | trigreal w[2]; |
164 | 0 | p->cexpl(p, m, w); |
165 | 0 | res[0] = xr * w[0] - xi * (FFT_SIGN * w[1]); |
166 | 0 | res[1] = xi * w[0] + xr * (FFT_SIGN * w[1]); |
167 | 0 | } |
168 | | |
169 | | triggen *X(mktriggen)(enum wakefulness wakefulness, INT n) |
170 | 417 | { |
171 | 417 | INT i, n0, n1; |
172 | 417 | triggen *p = (triggen *)MALLOC(sizeof(*p), TWIDDLES); |
173 | | |
174 | 417 | p->n = n; |
175 | 417 | p->W0 = p->W1 = 0; |
176 | 417 | p->cexp = 0; |
177 | 417 | p->rotate = 0; |
178 | | |
179 | 417 | switch (wakefulness) { |
180 | 0 | case SLEEPY: |
181 | 0 | A(0 /* can't happen */); |
182 | 0 | break; |
183 | | |
184 | 0 | case AWAKE_SQRTN_TABLE: { |
185 | 0 | INT twshft = choose_twshft(n); |
186 | |
|
187 | 0 | p->twshft = twshft; |
188 | 0 | p->twradix = ((INT)1) << twshft; |
189 | 0 | p->twmsk = p->twradix - 1; |
190 | |
|
191 | 0 | n0 = p->twradix; |
192 | 0 | n1 = (n + n0 - 1) / n0; |
193 | |
|
194 | 0 | p->W0 = (trigreal *)MALLOC(n0 * 2 * sizeof(trigreal), TWIDDLES); |
195 | 0 | p->W1 = (trigreal *)MALLOC(n1 * 2 * sizeof(trigreal), TWIDDLES); |
196 | |
|
197 | 0 | for (i = 0; i < n0; ++i) |
198 | 0 | real_cexp(i, n, p->W0 + 2 * i); |
199 | |
|
200 | 0 | for (i = 0; i < n1; ++i) |
201 | 0 | real_cexp(i * p->twradix, n, p->W1 + 2 * i); |
202 | |
|
203 | 0 | p->cexpl = cexpl_sqrtn_table; |
204 | 0 | p->rotate = rotate_sqrtn_table; |
205 | 0 | break; |
206 | 0 | } |
207 | | |
208 | 417 | case AWAKE_SINCOS: |
209 | 417 | p->cexpl = cexpl_sincos; |
210 | 417 | break; |
211 | | |
212 | 0 | case AWAKE_ZERO: |
213 | 0 | p->cexp = cexp_zero; |
214 | 0 | p->cexpl = cexpl_zero; |
215 | 0 | break; |
216 | 417 | } |
217 | | |
218 | 417 | if (!p->cexp) { |
219 | 417 | if (sizeof(trigreal) == sizeof(R)) |
220 | 417 | p->cexp = (void (*)(triggen *, INT, R *))p->cexpl; |
221 | 0 | else |
222 | 0 | p->cexp = cexp_generic; |
223 | 417 | } |
224 | 417 | if (!p->rotate) |
225 | 417 | p->rotate = rotate_generic; |
226 | 417 | return p; |
227 | 417 | } |
228 | | |
229 | | void X(triggen_destroy)(triggen *p) |
230 | 417 | { |
231 | 417 | X(ifree0)(p->W0); |
232 | 417 | X(ifree0)(p->W1); |
233 | 417 | X(ifree)(p); |
234 | 417 | } |