Coverage Report

Created: 2025-07-11 06:55

/src/fftw3/rdft/direct2.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
22
/* direct RDFT2 R2HC/HC2R solver, if we have a codelet */
23
24
#include "rdft/rdft.h"
25
26
typedef struct {
27
     solver super;
28
     const kr2c_desc *desc;
29
     kr2c k;
30
} S;
31
32
typedef struct {
33
     plan_rdft2 super;
34
35
     stride rs, cs;
36
     INT vl;
37
     INT ivs, ovs;
38
     kr2c k;
39
     const S *slv;
40
     INT ilast;
41
} P;
42
43
static void apply(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
44
0
{
45
0
     const P *ego = (const P *) ego_;
46
0
     ASSERT_ALIGNED_DOUBLE;
47
0
     ego->k(r0, r1, cr, ci,
48
0
      ego->rs, ego->cs, ego->cs,
49
0
      ego->vl, ego->ivs, ego->ovs);
50
0
}
51
52
static void apply_r2hc(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
53
0
{
54
0
     const P *ego = (const P *) ego_;
55
0
     INT i, vl = ego->vl, ovs = ego->ovs;
56
0
     ASSERT_ALIGNED_DOUBLE;
57
0
     ego->k(r0, r1, cr, ci,
58
0
      ego->rs, ego->cs, ego->cs,
59
0
      vl, ego->ivs, ovs);
60
0
     for (i = 0; i < vl; ++i, ci += ovs)
61
0
    ci[0] = ci[ego->ilast] = 0;
62
0
}
63
64
static void destroy(plan *ego_)
65
0
{
66
0
     P *ego = (P *) ego_;
67
0
     X(stride_destroy)(ego->rs);
68
0
     X(stride_destroy)(ego->cs);
69
0
}
70
71
static void print(const plan *ego_, printer *p)
72
0
{
73
0
     const P *ego = (const P *) ego_;
74
0
     const S *s = ego->slv;
75
76
0
     p->print(p, "(rdft2-%s-direct-%D%v \"%s\")", 
77
0
        X(rdft_kind_str)(s->desc->genus->kind), s->desc->n, 
78
0
        ego->vl, s->desc->nam);
79
0
}
80
81
static int applicable(const solver *ego_, const problem *p_)
82
0
{
83
0
     const S *ego = (const S *) ego_;
84
0
     const kr2c_desc *desc = ego->desc;
85
0
     const problem_rdft2 *p = (const problem_rdft2 *) p_;
86
0
     INT vl;
87
0
     INT ivs, ovs;
88
89
0
     return (
90
0
    1
91
0
    && p->sz->rnk == 1
92
0
    && p->vecsz->rnk <= 1
93
0
    && p->sz->dims[0].n == desc->n
94
0
    && p->kind == desc->genus->kind
95
96
    /* check strides etc */
97
0
    && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
98
99
0
    && (0
100
        /* can operate out-of-place */
101
0
        || p->r0 != p->cr
102
103
        /*
104
         * can compute one transform in-place, no matter
105
         * what the strides are.
106
         */
107
0
        || p->vecsz->rnk == 0
108
109
        /* can operate in-place as long as strides are the same */
110
0
        || X(rdft2_inplace_strides)(p, RNK_MINFTY)
111
0
         )
112
0
    );
113
0
}
114
115
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
116
0
{
117
0
     const S *ego = (const S *) ego_;
118
0
     P *pln;
119
0
     const problem_rdft2 *p;
120
0
     iodim *d;
121
0
     int r2hc_kindp;
122
123
0
     static const plan_adt padt = {
124
0
    X(rdft2_solve), X(null_awake), print, destroy
125
0
     };
126
127
0
     UNUSED(plnr);
128
129
0
     if (!applicable(ego_, p_))
130
0
          return (plan *)0;
131
132
0
     p = (const problem_rdft2 *) p_;
133
134
0
     r2hc_kindp = R2HC_KINDP(p->kind);
135
0
     A(r2hc_kindp || HC2R_KINDP(p->kind));
136
137
0
     pln = MKPLAN_RDFT2(P, &padt, p->kind == R2HC ? apply_r2hc : apply);
138
139
0
     d = p->sz->dims;
140
141
0
     pln->k = ego->k;
142
143
0
     pln->rs = X(mkstride)(d->n, r2hc_kindp ? d->is : d->os);
144
0
     pln->cs = X(mkstride)(d->n, r2hc_kindp ? d->os : d->is);
145
146
0
     X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
147
148
     /* Nyquist freq., if any */
149
0
     pln->ilast = (d->n % 2) ? 0 : (d->n/2) * d->os;
150
151
0
     pln->slv = ego;
152
0
     X(ops_zero)(&pln->super.super.ops);
153
0
     X(ops_madd2)(pln->vl / ego->desc->genus->vl,
154
0
      &ego->desc->ops,
155
0
      &pln->super.super.ops);
156
0
     if (p->kind == R2HC)
157
0
    pln->super.super.ops.other += 2 * pln->vl; /* + 2 stores */
158
159
0
     pln->super.super.could_prune_now_p = 1;
160
0
     return &(pln->super.super);
161
0
}
162
163
/* constructor */
164
solver *X(mksolver_rdft2_direct)(kr2c k, const kr2c_desc *desc)
165
72
{
166
72
     static const solver_adt sadt = { PROBLEM_RDFT2, mkplan, 0 };
167
72
     S *slv = MKSOLVER(S, &sadt);
168
72
     slv->k = k;
169
72
     slv->desc = desc;
170
72
     return &(slv->super);
171
72
}