/src/fftw3/kernel/primes.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | |
22 | | #include "kernel/ifftw.h" |
23 | | |
24 | | /***************************************************************************/ |
25 | | |
26 | | /* Rader's algorithm requires lots of modular arithmetic, and if we |
27 | | aren't careful we can have errors due to integer overflows. */ |
28 | | |
29 | | /* Compute (x * y) mod p, but watch out for integer overflows; we must |
30 | | have 0 <= {x, y} < p. |
31 | | |
32 | | If overflow is common, this routine is somewhat slower than |
33 | | e.g. using 'long long' arithmetic. However, it has the advantage |
34 | | of working when INT is 64 bits, and is also faster when overflow is |
35 | | rare. FFTW calls this via the MULMOD macro, which further |
36 | | optimizes for the case of small integers. |
37 | | */ |
38 | | |
39 | 0 | #define ADD_MOD(x, y, p) ((x) >= (p) - (y)) ? ((x) + ((y) - (p))) : ((x) + (y)) |
40 | | |
41 | | INT X(safe_mulmod)(INT x, INT y, INT p) |
42 | 0 | { |
43 | 0 | INT r; |
44 | |
|
45 | 0 | if (y > x) |
46 | 0 | return X(safe_mulmod)(y, x, p); |
47 | | |
48 | 0 | A(0 <= y && x < p); |
49 | |
|
50 | 0 | r = 0; |
51 | 0 | while (y) { |
52 | 0 | r = ADD_MOD(r, x*(y&1), p); y >>= 1; |
53 | 0 | x = ADD_MOD(x, x, p); |
54 | 0 | } |
55 | |
|
56 | 0 | return r; |
57 | 0 | } |
58 | | |
59 | | /***************************************************************************/ |
60 | | |
61 | | /* Compute n^m mod p, where m >= 0 and p > 0. If we really cared, we |
62 | | could make this tail-recursive. */ |
63 | | |
64 | | INT X(power_mod)(INT n, INT m, INT p) |
65 | 7.25k | { |
66 | 7.25k | A(p > 0); |
67 | 7.25k | if (m == 0) |
68 | 2.13k | return 1; |
69 | 5.12k | else if (m % 2 == 0) { |
70 | 3.19k | INT x = X(power_mod)(n, m / 2, p); |
71 | 3.19k | return MULMOD(x, x, p); |
72 | 3.19k | } |
73 | 1.93k | else |
74 | 1.93k | return MULMOD(n, X(power_mod)(n, m - 1, p), p); |
75 | 7.25k | } |
76 | | |
77 | | /* the following two routines were contributed by Greg Dionne. */ |
78 | | static INT get_prime_factors(INT n, INT *primef) |
79 | 41 | { |
80 | 41 | INT i; |
81 | 41 | INT size = 0; |
82 | | |
83 | 41 | A(n % 2 == 0); /* this routine is designed only for even n */ |
84 | 41 | primef[size++] = (INT)2; |
85 | 102 | do { |
86 | 102 | n >>= 1; |
87 | 102 | } while ((n & 1) == 0); |
88 | | |
89 | 41 | if (n == 1) |
90 | 0 | return size; |
91 | | |
92 | 78 | for (i = 3; i * i <= n; i += 2) |
93 | 37 | if (!(n % i)) { |
94 | 34 | primef[size++] = i; |
95 | 68 | do { |
96 | 68 | n /= i; |
97 | 68 | } while (!(n % i)); |
98 | 34 | } |
99 | 41 | if (n == 1) |
100 | 25 | return size; |
101 | 16 | primef[size++] = n; |
102 | 16 | return size; |
103 | 41 | } |
104 | | |
105 | | INT X(find_generator)(INT p) |
106 | 41 | { |
107 | 41 | INT n, i, size; |
108 | 41 | INT primef[16]; /* smallest number = 32589158477190044730 > 2^64 */ |
109 | 41 | INT pm1 = p - 1; |
110 | | |
111 | 41 | if (p == 2) |
112 | 0 | return 1; |
113 | | |
114 | 41 | size = get_prime_factors(pm1, primef); |
115 | 41 | n = 2; |
116 | 204 | for (i = 0; i < size; i++) |
117 | 163 | if (X(power_mod)(n, pm1 / primef[i], p) == 1) { |
118 | 64 | i = -1; |
119 | 64 | n++; |
120 | 64 | } |
121 | 41 | return n; |
122 | 41 | } |
123 | | |
124 | | /* Return first prime divisor of n (It would be at best slightly faster to |
125 | | search a static table of primes; there are 6542 primes < 2^16.) */ |
126 | | INT X(first_divisor)(INT n) |
127 | 4.23k | { |
128 | 4.23k | INT i; |
129 | 4.23k | if (n <= 1) |
130 | 0 | return n; |
131 | 4.23k | if (n % 2 == 0) |
132 | 1.73k | return 2; |
133 | 5.81k | for (i = 3; i*i <= n; i += 2) |
134 | 4.19k | if (n % i == 0) |
135 | 875 | return i; |
136 | 1.61k | return n; |
137 | 2.49k | } |
138 | | |
139 | | int X(is_prime)(INT n) |
140 | 3.23k | { |
141 | 3.23k | return(n > 1 && X(first_divisor)(n) == n); |
142 | 3.23k | } |
143 | | |
144 | | INT X(next_prime)(INT n) |
145 | 1.24k | { |
146 | 2.49k | while (!X(is_prime)(n)) ++n; |
147 | 1.24k | return n; |
148 | 1.24k | } |
149 | | |
150 | | int X(factors_into)(INT n, const INT *primes) |
151 | 896 | { |
152 | 3.58k | for (; *primes != 0; ++primes) |
153 | 4.59k | while ((n % *primes) == 0) |
154 | 1.90k | n /= *primes; |
155 | 896 | return (n == 1); |
156 | 896 | } |
157 | | |
158 | | /* integer square root. Return floor(sqrt(N)) */ |
159 | | INT X(isqrt)(INT n) |
160 | 4.72k | { |
161 | 4.72k | INT guess, iguess; |
162 | | |
163 | 4.72k | A(n >= 0); |
164 | 4.72k | if (n == 0) return 0; |
165 | | |
166 | 4.72k | guess = n; iguess = 1; |
167 | | |
168 | 15.1k | do { |
169 | 15.1k | guess = (guess + iguess) / 2; |
170 | 15.1k | iguess = n / guess; |
171 | 15.1k | } while (guess > iguess); |
172 | | |
173 | 4.72k | return guess; |
174 | 4.72k | } |
175 | | |
176 | | static INT isqrt_maybe(INT n) |
177 | 4.61k | { |
178 | 4.61k | INT guess = X(isqrt)(n); |
179 | 4.61k | return guess * guess == n ? guess : 0; |
180 | 4.61k | } |
181 | | |
182 | 78.6k | #define divides(a, b) (((b) % (a)) == 0) |
183 | | INT X(choose_radix)(INT r, INT n) |
184 | 84.2k | { |
185 | 84.2k | if (r > 0) { |
186 | 63.2k | if (divides(r, n)) return r; |
187 | 53.1k | return 0; |
188 | 63.2k | } else if (r == 0) { |
189 | 998 | return X(first_divisor)(n); |
190 | 20.0k | } else { |
191 | | /* r is negative. If n = (-r) * q^2, take q as the radix */ |
192 | 20.0k | r = 0 - r; |
193 | 20.0k | return (n > r && divides(r, n)) ? isqrt_maybe(n / r) : 0; |
194 | 20.0k | } |
195 | 84.2k | } |
196 | | |
197 | | /* return A mod N, works for all A including A < 0 */ |
198 | | INT X(modulo)(INT a, INT n) |
199 | 196 | { |
200 | 196 | A(n > 0); |
201 | 196 | if (a >= 0) |
202 | 48 | return a % n; |
203 | 148 | else |
204 | 148 | return (n - 1) - ((-(a + (INT)1)) % n); |
205 | 196 | } |
206 | | |
207 | | /* TRUE if N factors into small primes */ |
208 | | int X(factors_into_small_primes)(INT n) |
209 | 896 | { |
210 | 896 | static const INT primes[] = { 2, 3, 5, 0 }; |
211 | 896 | return X(factors_into)(n, primes); |
212 | 896 | } |