Coverage Report

Created: 2025-08-03 06:50

/src/fftw3/dft/indirect.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
22
23
/* solvers/plans for vectors of small DFT's that cannot be done
24
   in-place directly.  Use a rank-0 plan to rearrange the data
25
   before or after the transform.  Can also change an out-of-place
26
   plan into a copy + in-place (where the in-place transform
27
   is e.g. unit stride). */
28
29
/* FIXME: merge with rank-geq2.c(?), since this is just a special case
30
   of a rank split where the first/second transform has rank 0. */
31
32
#include "dft/dft.h"
33
34
typedef problem *(*mkcld_t) (const problem_dft *p);
35
36
typedef struct {
37
     dftapply apply;
38
     problem *(*mkcld)(const problem_dft *p);
39
     const char *nam;
40
} ndrct_adt;
41
42
typedef struct {
43
     solver super;
44
     const ndrct_adt *adt;
45
} S;
46
47
typedef struct {
48
     plan_dft super;
49
     plan *cldcpy, *cld;
50
     const S *slv;
51
} P;
52
53
/*-----------------------------------------------------------------------*/
54
/* first rearrange, then transform */
55
static void apply_before(const plan *ego_, R *ri, R *ii, R *ro, R *io)
56
0
{
57
0
     const P *ego = (const P *) ego_;
58
59
0
     {
60
0
          plan_dft *cldcpy = (plan_dft *) ego->cldcpy;
61
0
          cldcpy->apply(ego->cldcpy, ri, ii, ro, io);
62
0
     }
63
0
     {
64
0
          plan_dft *cld = (plan_dft *) ego->cld;
65
0
          cld->apply(ego->cld, ro, io, ro, io);
66
0
     }
67
0
}
68
69
static problem *mkcld_before(const problem_dft *p)
70
14
{
71
14
     return X(mkproblem_dft_d)(X(tensor_copy_inplace)(p->sz, INPLACE_OS),
72
14
             X(tensor_copy_inplace)(p->vecsz, INPLACE_OS),
73
14
             p->ro, p->io, p->ro, p->io);
74
14
}
75
76
static const ndrct_adt adt_before =
77
{
78
     apply_before, mkcld_before, "dft-indirect-before"
79
};
80
81
/*-----------------------------------------------------------------------*/
82
/* first transform, then rearrange */
83
84
static void apply_after(const plan *ego_, R *ri, R *ii, R *ro, R *io)
85
0
{
86
0
     const P *ego = (const P *) ego_;
87
88
0
     {
89
0
          plan_dft *cld = (plan_dft *) ego->cld;
90
0
          cld->apply(ego->cld, ri, ii, ri, ii);
91
0
     }
92
0
     {
93
0
          plan_dft *cldcpy = (plan_dft *) ego->cldcpy;
94
0
          cldcpy->apply(ego->cldcpy, ri, ii, ro, io);
95
0
     }
96
0
}
97
98
static problem *mkcld_after(const problem_dft *p)
99
22
{
100
22
     return X(mkproblem_dft_d)(X(tensor_copy_inplace)(p->sz, INPLACE_IS),
101
22
             X(tensor_copy_inplace)(p->vecsz, INPLACE_IS),
102
22
             p->ri, p->ii, p->ri, p->ii);
103
22
}
104
105
static const ndrct_adt adt_after =
106
{
107
     apply_after, mkcld_after, "dft-indirect-after"
108
};
109
110
/*-----------------------------------------------------------------------*/
111
static void destroy(plan *ego_)
112
36
{
113
36
     P *ego = (P *) ego_;
114
36
     X(plan_destroy_internal)(ego->cld);
115
36
     X(plan_destroy_internal)(ego->cldcpy);
116
36
}
117
118
static void awake(plan *ego_, enum wakefulness wakefulness)
119
0
{
120
0
     P *ego = (P *) ego_;
121
0
     X(plan_awake)(ego->cldcpy, wakefulness);
122
0
     X(plan_awake)(ego->cld, wakefulness);
123
0
}
124
125
static void print(const plan *ego_, printer *p)
126
0
{
127
0
     const P *ego = (const P *) ego_;
128
0
     const S *s = ego->slv;
129
0
     p->print(p, "(%s%(%p%)%(%p%))", s->adt->nam, ego->cld, ego->cldcpy);
130
0
}
131
132
static int applicable0(const solver *ego_, const problem *p_,
133
           const planner *plnr)
134
2.18k
{
135
2.18k
     const S *ego = (const S *) ego_;
136
2.18k
     const problem_dft *p = (const problem_dft *) p_;
137
2.18k
     return (1
138
2.18k
       && FINITE_RNK(p->vecsz->rnk)
139
140
       /* problem must be a nontrivial transform, not just a copy */
141
2.18k
       && p->sz->rnk > 0
142
143
2.18k
       && (0
144
145
     /* problem must be in-place & require some
146
        rearrangement of the data; to prevent
147
        infinite loops with indirect-transpose, we
148
        further require that at least some transform
149
        strides must decrease */
150
1.21k
     || (p->ri == p->ro
151
1.21k
         && !X(tensor_inplace_strides2)(p->sz, p->vecsz)
152
1.21k
         && X(tensor_strides_decrease)(
153
334
        p->sz, p->vecsz,
154
334
        ego->adt->apply == apply_after ? 
155
167
        INPLACE_IS : INPLACE_OS))
156
157
     /* or problem must be out of place, transforming
158
        from stride 1/2 to bigger stride, for apply_after */
159
1.21k
     || (p->ri != p->ro && ego->adt->apply == apply_after
160
1.04k
         && !NO_DESTROY_INPUTP(plnr)
161
1.04k
         && X(tensor_min_istride)(p->sz) <= 2
162
1.04k
         && X(tensor_min_ostride)(p->sz) > 2)
163
        
164
     /* or problem must be out of place, transforming
165
        to stride 1/2 from bigger stride, for apply_before */
166
1.21k
     || (p->ri != p->ro && ego->adt->apply == apply_before
167
1.04k
         && X(tensor_min_ostride)(p->sz) <= 2
168
1.04k
         && X(tensor_min_istride)(p->sz) > 2)
169
1.21k
      )
170
2.18k
    );
171
2.18k
}
172
173
static int applicable(const solver *ego_, const problem *p_,
174
          const planner *plnr)
175
2.18k
{
176
2.18k
     if (!applicable0(ego_, p_, plnr)) return 0;
177
462
     {
178
462
          const problem_dft *p = (const problem_dft *) p_;
179
462
    if (NO_INDIRECT_OP_P(plnr) && p->ri != p->ro) return 0;
180
462
     }
181
167
     return 1;
182
462
}
183
184
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
185
2.82k
{
186
2.82k
     const problem_dft *p = (const problem_dft *) p_;
187
2.82k
     const S *ego = (const S *) ego_;
188
2.82k
     P *pln;
189
2.82k
     plan *cld = 0, *cldcpy = 0;
190
191
2.82k
     static const plan_adt padt = {
192
2.82k
    X(dft_solve), awake, print, destroy
193
2.82k
     };
194
195
2.82k
     if (!applicable(ego_, p_, plnr))
196
2.66k
          return (plan *) 0;
197
198
167
     cldcpy =
199
167
    X(mkplan_d)(plnr, 
200
167
          X(mkproblem_dft_d)(X(mktensor_0d)(),
201
167
           X(tensor_append)(p->vecsz, p->sz),
202
167
           p->ri, p->ii, p->ro, p->io));
203
204
167
     if (!cldcpy) goto nada;
205
206
36
     cld = X(mkplan_f_d)(plnr, ego->adt->mkcld(p), NO_BUFFERING, 0, 0);
207
36
     if (!cld) goto nada;
208
209
36
     pln = MKPLAN_DFT(P, &padt, ego->adt->apply);
210
36
     pln->cld = cld;
211
36
     pln->cldcpy = cldcpy;
212
36
     pln->slv = ego;
213
36
     X(ops_add)(&cld->ops, &cldcpy->ops, &pln->super.super.ops);
214
215
36
     return &(pln->super.super);
216
217
131
 nada:
218
131
     X(plan_destroy_internal)(cld);
219
131
     X(plan_destroy_internal)(cldcpy);
220
131
     return (plan *)0;
221
36
}
222
223
static solver *mksolver(const ndrct_adt *adt)
224
4
{
225
4
     static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
226
4
     S *slv = MKSOLVER(S, &sadt);
227
4
     slv->adt = adt;
228
4
     return &(slv->super);
229
4
}
230
231
void X(dft_indirect_register)(planner *p)
232
1
{
233
1
     unsigned i;
234
1
     static const ndrct_adt *const adts[] = {
235
1
    &adt_before, &adt_after
236
1
     };
237
238
3
     for (i = 0; i < sizeof(adts) / sizeof(adts[0]); ++i)
239
2
          REGISTER_SOLVER(p, mksolver(adts[i]));
240
1
}