/src/fftw3/reodft/reodft00e-splitradix.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2005 Matteo Frigo |
3 | | * Copyright (c) 2005 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | |
22 | | /* Do an R{E,O}DFT00 problem (of an odd length n) recursively via an |
23 | | R{E,O}DFT00 problem and an RDFT problem of half the length. |
24 | | |
25 | | This works by "logically" expanding the array to a real-even/odd DFT of |
26 | | length 2n-/+2 and then applying the split-radix algorithm. |
27 | | |
28 | | In this way, we can avoid having to pad to twice the length |
29 | | (ala redft00-r2hc-pad), saving a factor of ~2 for n=2^m+/-1, |
30 | | but don't incur the accuracy loss that the "ordinary" algorithm |
31 | | sacrifices (ala redft00-r2hc.c). |
32 | | */ |
33 | | |
34 | | #include "reodft/reodft.h" |
35 | | |
36 | | typedef struct { |
37 | | solver super; |
38 | | } S; |
39 | | |
40 | | typedef struct { |
41 | | plan_rdft super; |
42 | | plan *clde, *cldo; |
43 | | twid *td; |
44 | | INT is, os; |
45 | | INT n; |
46 | | INT vl; |
47 | | INT ivs, ovs; |
48 | | } P; |
49 | | |
50 | | /* redft00 */ |
51 | | static void apply_e(const plan *ego_, R *I, R *O) |
52 | 0 | { |
53 | 0 | const P *ego = (const P *) ego_; |
54 | 0 | INT is = ego->is, os = ego->os; |
55 | 0 | INT i, j, n = ego->n + 1, n2 = (n-1)/2; |
56 | 0 | INT iv, vl = ego->vl; |
57 | 0 | INT ivs = ego->ivs, ovs = ego->ovs; |
58 | 0 | R *W = ego->td->W - 2; |
59 | 0 | R *buf; |
60 | |
|
61 | 0 | buf = (R *) MALLOC(sizeof(R) * n2, BUFFERS); |
62 | |
|
63 | 0 | for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { |
64 | | /* do size (n-1)/2 r2hc transform of odd-indexed elements |
65 | | with stride 4, "wrapping around" end of array with even |
66 | | boundary conditions */ |
67 | 0 | for (j = 0, i = 1; i < n; i += 4) |
68 | 0 | buf[j++] = I[is * i]; |
69 | 0 | for (i = 2*n-2-i; i > 0; i -= 4) |
70 | 0 | buf[j++] = I[is * i]; |
71 | 0 | { |
72 | 0 | plan_rdft *cld = (plan_rdft *) ego->cldo; |
73 | 0 | cld->apply((plan *) cld, buf, buf); |
74 | 0 | } |
75 | | |
76 | | /* do size (n+1)/2 redft00 of the even-indexed elements, |
77 | | writing to O: */ |
78 | 0 | { |
79 | 0 | plan_rdft *cld = (plan_rdft *) ego->clde; |
80 | 0 | cld->apply((plan *) cld, I, O); |
81 | 0 | } |
82 | | |
83 | | /* combine the results with the twiddle factors to get output */ |
84 | 0 | { /* DC element */ |
85 | 0 | E b20 = O[0], b0 = K(2.0) * buf[0]; |
86 | 0 | O[0] = b20 + b0; |
87 | 0 | O[2*(n2*os)] = b20 - b0; |
88 | | /* O[n2*os] = O[n2*os]; */ |
89 | 0 | } |
90 | 0 | for (i = 1; i < n2 - i; ++i) { |
91 | 0 | E ap, am, br, bi, wr, wi, wbr, wbi; |
92 | 0 | br = buf[i]; |
93 | 0 | bi = buf[n2 - i]; |
94 | 0 | wr = W[2*i]; |
95 | 0 | wi = W[2*i+1]; |
96 | 0 | #if FFT_SIGN == -1 |
97 | 0 | wbr = K(2.0) * (wr*br + wi*bi); |
98 | 0 | wbi = K(2.0) * (wr*bi - wi*br); |
99 | | #else |
100 | | wbr = K(2.0) * (wr*br - wi*bi); |
101 | | wbi = K(2.0) * (wr*bi + wi*br); |
102 | | #endif |
103 | 0 | ap = O[i*os]; |
104 | 0 | O[i*os] = ap + wbr; |
105 | 0 | O[(2*n2 - i)*os] = ap - wbr; |
106 | 0 | am = O[(n2 - i)*os]; |
107 | 0 | #if FFT_SIGN == -1 |
108 | 0 | O[(n2 - i)*os] = am - wbi; |
109 | 0 | O[(n2 + i)*os] = am + wbi; |
110 | | #else |
111 | | O[(n2 - i)*os] = am + wbi; |
112 | | O[(n2 + i)*os] = am - wbi; |
113 | | #endif |
114 | 0 | } |
115 | 0 | if (i == n2 - i) { /* Nyquist element */ |
116 | 0 | E ap, wbr; |
117 | 0 | wbr = K(2.0) * (W[2*i] * buf[i]); |
118 | 0 | ap = O[i*os]; |
119 | 0 | O[i*os] = ap + wbr; |
120 | 0 | O[(2*n2 - i)*os] = ap - wbr; |
121 | 0 | } |
122 | 0 | } |
123 | |
|
124 | 0 | X(ifree)(buf); |
125 | 0 | } |
126 | | |
127 | | /* rodft00 */ |
128 | | static void apply_o(const plan *ego_, R *I, R *O) |
129 | 0 | { |
130 | 0 | const P *ego = (const P *) ego_; |
131 | 0 | INT is = ego->is, os = ego->os; |
132 | 0 | INT i, j, n = ego->n - 1, n2 = (n+1)/2; |
133 | 0 | INT iv, vl = ego->vl; |
134 | 0 | INT ivs = ego->ivs, ovs = ego->ovs; |
135 | 0 | R *W = ego->td->W - 2; |
136 | 0 | R *buf; |
137 | |
|
138 | 0 | buf = (R *) MALLOC(sizeof(R) * n2, BUFFERS); |
139 | |
|
140 | 0 | for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { |
141 | | /* do size (n+1)/2 r2hc transform of even-indexed elements |
142 | | with stride 4, "wrapping around" end of array with odd |
143 | | boundary conditions */ |
144 | 0 | for (j = 0, i = 0; i < n; i += 4) |
145 | 0 | buf[j++] = I[is * i]; |
146 | 0 | for (i = 2*n-i; i > 0; i -= 4) |
147 | 0 | buf[j++] = -I[is * i]; |
148 | 0 | { |
149 | 0 | plan_rdft *cld = (plan_rdft *) ego->cldo; |
150 | 0 | cld->apply((plan *) cld, buf, buf); |
151 | 0 | } |
152 | | |
153 | | /* do size (n-1)/2 rodft00 of the odd-indexed elements, |
154 | | writing to O: */ |
155 | 0 | { |
156 | 0 | plan_rdft *cld = (plan_rdft *) ego->clde; |
157 | 0 | if (I == O) { |
158 | | /* can't use I+is and I, subplan would lose in-placeness */ |
159 | 0 | cld->apply((plan *) cld, I + is, I + is); |
160 | | /* we could maybe avoid this copy by modifying the |
161 | | twiddle loop, but currently I can't be bothered. */ |
162 | 0 | A(is >= os); |
163 | 0 | for (i = 0; i < n2-1; ++i) |
164 | 0 | O[os*i] = I[is*(i+1)]; |
165 | 0 | } |
166 | 0 | else |
167 | 0 | cld->apply((plan *) cld, I + is, O); |
168 | 0 | } |
169 | | |
170 | | /* combine the results with the twiddle factors to get output */ |
171 | 0 | O[(n2-1)*os] = K(2.0) * buf[0]; |
172 | 0 | for (i = 1; i < n2 - i; ++i) { |
173 | 0 | E ap, am, br, bi, wr, wi, wbr, wbi; |
174 | 0 | br = buf[i]; |
175 | 0 | bi = buf[n2 - i]; |
176 | 0 | wr = W[2*i]; |
177 | 0 | wi = W[2*i+1]; |
178 | 0 | #if FFT_SIGN == -1 |
179 | 0 | wbr = K(2.0) * (wr*br + wi*bi); |
180 | 0 | wbi = K(2.0) * (wi*br - wr*bi); |
181 | | #else |
182 | | wbr = K(2.0) * (wr*br - wi*bi); |
183 | | wbi = K(2.0) * (wr*bi + wi*br); |
184 | | #endif |
185 | 0 | ap = O[(i-1)*os]; |
186 | 0 | O[(i-1)*os] = wbi + ap; |
187 | 0 | O[(2*n2-1 - i)*os] = wbi - ap; |
188 | 0 | am = O[(n2-1 - i)*os]; |
189 | 0 | #if FFT_SIGN == -1 |
190 | 0 | O[(n2-1 - i)*os] = wbr + am; |
191 | 0 | O[(n2-1 + i)*os] = wbr - am; |
192 | | #else |
193 | | O[(n2-1 - i)*os] = wbr + am; |
194 | | O[(n2-1 + i)*os] = wbr - am; |
195 | | #endif |
196 | 0 | } |
197 | 0 | if (i == n2 - i) { /* Nyquist element */ |
198 | 0 | E ap, wbi; |
199 | 0 | wbi = K(2.0) * (W[2*i+1] * buf[i]); |
200 | 0 | ap = O[(i-1)*os]; |
201 | 0 | O[(i-1)*os] = wbi + ap; |
202 | 0 | O[(2*n2-1 - i)*os] = wbi - ap; |
203 | 0 | } |
204 | 0 | } |
205 | |
|
206 | 0 | X(ifree)(buf); |
207 | 0 | } |
208 | | |
209 | | static void awake(plan *ego_, enum wakefulness wakefulness) |
210 | 0 | { |
211 | 0 | P *ego = (P *) ego_; |
212 | 0 | static const tw_instr reodft00e_tw[] = { |
213 | 0 | { TW_COS, 1, 1 }, |
214 | 0 | { TW_SIN, 1, 1 }, |
215 | 0 | { TW_NEXT, 1, 0 } |
216 | 0 | }; |
217 | |
|
218 | 0 | X(plan_awake)(ego->clde, wakefulness); |
219 | 0 | X(plan_awake)(ego->cldo, wakefulness); |
220 | 0 | X(twiddle_awake)(wakefulness, &ego->td, reodft00e_tw, |
221 | 0 | 2*ego->n, 1, ego->n/4); |
222 | 0 | } |
223 | | |
224 | | static void destroy(plan *ego_) |
225 | 0 | { |
226 | 0 | P *ego = (P *) ego_; |
227 | 0 | X(plan_destroy_internal)(ego->cldo); |
228 | 0 | X(plan_destroy_internal)(ego->clde); |
229 | 0 | } |
230 | | |
231 | | static void print(const plan *ego_, printer *p) |
232 | 0 | { |
233 | 0 | const P *ego = (const P *) ego_; |
234 | 0 | if (ego->super.apply == apply_e) |
235 | 0 | p->print(p, "(redft00e-splitradix-%D%v%(%p%)%(%p%))", |
236 | 0 | ego->n + 1, ego->vl, ego->clde, ego->cldo); |
237 | 0 | else |
238 | 0 | p->print(p, "(rodft00e-splitradix-%D%v%(%p%)%(%p%))", |
239 | 0 | ego->n - 1, ego->vl, ego->clde, ego->cldo); |
240 | 0 | } |
241 | | |
242 | | static int applicable0(const solver *ego_, const problem *p_) |
243 | 0 | { |
244 | 0 | const problem_rdft *p = (const problem_rdft *) p_; |
245 | 0 | UNUSED(ego_); |
246 | |
|
247 | 0 | return (1 |
248 | 0 | && p->sz->rnk == 1 |
249 | 0 | && p->vecsz->rnk <= 1 |
250 | 0 | && (p->kind[0] == REDFT00 || p->kind[0] == RODFT00) |
251 | 0 | && p->sz->dims[0].n > 1 /* don't create size-0 sub-plans */ |
252 | 0 | && p->sz->dims[0].n % 2 /* odd: 4 divides "logical" DFT */ |
253 | 0 | && (p->I != p->O || p->vecsz->rnk == 0 |
254 | 0 | || p->vecsz->dims[0].is == p->vecsz->dims[0].os) |
255 | 0 | && (p->kind[0] != RODFT00 || p->I != p->O || |
256 | 0 | p->sz->dims[0].is >= p->sz->dims[0].os) /* laziness */ |
257 | 0 | ); |
258 | 0 | } |
259 | | |
260 | | static int applicable(const solver *ego, const problem *p, const planner *plnr) |
261 | 330 | { |
262 | 330 | return (!NO_SLOWP(plnr) && applicable0(ego, p)); |
263 | 330 | } |
264 | | |
265 | | static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) |
266 | 330 | { |
267 | 330 | P *pln; |
268 | 330 | const problem_rdft *p; |
269 | 330 | plan *clde, *cldo; |
270 | 330 | R *buf; |
271 | 330 | INT n, n0; |
272 | 330 | opcnt ops; |
273 | 330 | int inplace_odd; |
274 | | |
275 | 330 | static const plan_adt padt = { |
276 | 330 | X(rdft_solve), awake, print, destroy |
277 | 330 | }; |
278 | | |
279 | 330 | if (!applicable(ego_, p_, plnr)) |
280 | 330 | return (plan *)0; |
281 | | |
282 | 0 | p = (const problem_rdft *) p_; |
283 | |
|
284 | 0 | n = (n0 = p->sz->dims[0].n) + (p->kind[0] == REDFT00 ? (INT)-1 : (INT)1); |
285 | 0 | A(n > 0 && n % 2 == 0); |
286 | 0 | buf = (R *) MALLOC(sizeof(R) * (n/2), BUFFERS); |
287 | |
|
288 | 0 | inplace_odd = p->kind[0]==RODFT00 && p->I == p->O; |
289 | 0 | clde = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)( |
290 | 0 | X(mktensor_1d)(n0-n/2, 2*p->sz->dims[0].is, |
291 | 0 | inplace_odd ? p->sz->dims[0].is |
292 | 0 | : p->sz->dims[0].os), |
293 | 0 | X(mktensor_0d)(), |
294 | 0 | TAINT(p->I |
295 | 0 | + p->sz->dims[0].is * (p->kind[0]==RODFT00), |
296 | 0 | p->vecsz->rnk ? p->vecsz->dims[0].is : 0), |
297 | 0 | TAINT(p->O |
298 | 0 | + p->sz->dims[0].is * inplace_odd, |
299 | 0 | p->vecsz->rnk ? p->vecsz->dims[0].os : 0), |
300 | 0 | p->kind[0])); |
301 | 0 | if (!clde) { |
302 | 0 | X(ifree)(buf); |
303 | 0 | return (plan *)0; |
304 | 0 | } |
305 | | |
306 | 0 | cldo = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)( |
307 | 0 | X(mktensor_1d)(n/2, 1, 1), |
308 | 0 | X(mktensor_0d)(), |
309 | 0 | buf, buf, R2HC)); |
310 | 0 | X(ifree)(buf); |
311 | 0 | if (!cldo) |
312 | 0 | return (plan *)0; |
313 | | |
314 | 0 | pln = MKPLAN_RDFT(P, &padt, p->kind[0] == REDFT00 ? apply_e : apply_o); |
315 | |
|
316 | 0 | pln->n = n; |
317 | 0 | pln->is = p->sz->dims[0].is; |
318 | 0 | pln->os = p->sz->dims[0].os; |
319 | 0 | pln->clde = clde; |
320 | 0 | pln->cldo = cldo; |
321 | 0 | pln->td = 0; |
322 | |
|
323 | 0 | X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); |
324 | | |
325 | 0 | X(ops_zero)(&ops); |
326 | 0 | ops.other = n/2; |
327 | 0 | ops.add = (p->kind[0]==REDFT00 ? (INT)2 : (INT)0) + |
328 | 0 | (n/2-1)/2 * 6 + ((n/2)%2==0) * 2; |
329 | 0 | ops.mul = 1 + (n/2-1)/2 * 6 + ((n/2)%2==0) * 2; |
330 | | |
331 | | /* tweak ops.other so that r2hc-pad is used for small sizes, which |
332 | | seems to be a lot faster on my machine: */ |
333 | 0 | ops.other += 256; |
334 | |
|
335 | 0 | X(ops_zero)(&pln->super.super.ops); |
336 | 0 | X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); |
337 | 0 | X(ops_madd2)(pln->vl, &clde->ops, &pln->super.super.ops); |
338 | 0 | X(ops_madd2)(pln->vl, &cldo->ops, &pln->super.super.ops); |
339 | |
|
340 | 0 | return &(pln->super.super); |
341 | 0 | } |
342 | | |
343 | | /* constructor */ |
344 | | static solver *mksolver(void) |
345 | 1 | { |
346 | 1 | static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; |
347 | 1 | S *slv = MKSOLVER(S, &sadt); |
348 | 1 | return &(slv->super); |
349 | 1 | } |
350 | | |
351 | | void X(reodft00e_splitradix_register)(planner *p) |
352 | 1 | { |
353 | 1 | REGISTER_SOLVER(p, mksolver()); |
354 | 1 | } |