Coverage Report

Created: 2025-10-10 07:00

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/fftw3/dft/direct.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
22
/* direct DFT solver, if we have a codelet */
23
24
#include "dft/dft.h"
25
26
typedef struct {
27
     solver super;
28
     const kdft_desc *desc;
29
     kdft k;
30
     int bufferedp;
31
} S;
32
33
typedef struct {
34
     plan_dft super;
35
36
     stride is, os, bufstride;
37
     INT n, vl, ivs, ovs;
38
     kdft k;
39
     const S *slv;
40
} P;
41
42
static void dobatch(const P *ego, R *ri, R *ii, R *ro, R *io, 
43
        R *buf, INT batchsz)
44
40
{
45
40
     X(cpy2d_pair_ci)(ri, ii, buf, buf+1,
46
40
          ego->n, WS(ego->is, 1), WS(ego->bufstride, 1),
47
40
          batchsz, ego->ivs, 2);
48
     
49
40
     if (IABS(WS(ego->os, 1)) < IABS(ego->ovs)) {
50
    /* transform directly to output */
51
40
    ego->k(buf, buf+1, ro, io, 
52
40
     ego->bufstride, ego->os, batchsz, 2, ego->ovs);
53
40
     } else {
54
    /* transform to buffer and copy back */
55
0
    ego->k(buf, buf+1, buf, buf+1, 
56
0
     ego->bufstride, ego->bufstride, batchsz, 2, 2);
57
0
    X(cpy2d_pair_co)(buf, buf+1, ro, io,
58
0
         ego->n, WS(ego->bufstride, 1), WS(ego->os, 1), 
59
0
         batchsz, 2, ego->ovs);
60
0
     }
61
40
}
62
63
static INT compute_batchsize(INT n)
64
2.14k
{
65
     /* round up to multiple of 4 */
66
2.14k
     n += 3;
67
2.14k
     n &= -4;
68
69
2.14k
     return (n + 2);
70
2.14k
}
71
72
static void apply_buf(const plan *ego_, R *ri, R *ii, R *ro, R *io)
73
40
{
74
40
     const P *ego = (const P *) ego_;
75
40
     R *buf;
76
40
     INT vl = ego->vl, n = ego->n, batchsz = compute_batchsize(n);
77
40
     INT i;
78
40
     size_t bufsz = n * batchsz * 2 * sizeof(R);
79
80
40
     BUF_ALLOC(R *, buf, bufsz);
81
82
40
     for (i = 0; i < vl - batchsz; i += batchsz) {
83
0
    dobatch(ego, ri, ii, ro, io, buf, batchsz);
84
0
    ri += batchsz * ego->ivs; ii += batchsz * ego->ivs;
85
0
    ro += batchsz * ego->ovs; io += batchsz * ego->ovs;
86
0
     }
87
40
     dobatch(ego, ri, ii, ro, io, buf, vl - i);
88
89
40
     BUF_FREE(buf, bufsz);
90
40
}
91
92
static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
93
1.35k
{
94
1.35k
     const P *ego = (const P *) ego_;
95
1.35k
     ASSERT_ALIGNED_DOUBLE;
96
1.35k
     ego->k(ri, ii, ro, io, ego->is, ego->os, ego->vl, ego->ivs, ego->ovs);
97
1.35k
}
98
99
static void apply_extra_iter(const plan *ego_, R *ri, R *ii, R *ro, R *io)
100
0
{
101
0
     const P *ego = (const P *) ego_;
102
0
     INT vl = ego->vl;
103
104
0
     ASSERT_ALIGNED_DOUBLE;
105
106
     /* for 4-way SIMD when VL is odd: iterate over an
107
  even vector length VL, and then execute the last
108
  iteration as a 2-vector with vector stride 0. */
109
0
     ego->k(ri, ii, ro, io, ego->is, ego->os, vl - 1, ego->ivs, ego->ovs);
110
111
0
     ego->k(ri + (vl - 1) * ego->ivs, ii + (vl - 1) * ego->ivs,
112
0
      ro + (vl - 1) * ego->ovs, io + (vl - 1) * ego->ovs,
113
0
      ego->is, ego->os, 1, 0, 0);
114
0
}
115
116
static void destroy(plan *ego_)
117
1.49k
{
118
1.49k
     P *ego = (P *) ego_;
119
1.49k
     X(stride_destroy)(ego->is);
120
1.49k
     X(stride_destroy)(ego->os);
121
1.49k
     X(stride_destroy)(ego->bufstride);
122
1.49k
}
123
124
static void print(const plan *ego_, printer *p)
125
0
{
126
0
     const P *ego = (const P *) ego_;
127
0
     const S *s = ego->slv;
128
0
     const kdft_desc *d = s->desc;
129
130
0
     if (ego->slv->bufferedp)
131
0
    p->print(p, "(dft-directbuf/%D-%D%v \"%s\")", 
132
0
       compute_batchsize(d->sz), d->sz, ego->vl, d->nam);
133
0
     else
134
0
    p->print(p, "(dft-direct-%D%v \"%s\")", d->sz, ego->vl, d->nam);
135
0
}
136
137
static int applicable_buf(const solver *ego_, const problem *p_,
138
        const planner *plnr)
139
26.9k
{
140
26.9k
     const S *ego = (const S *) ego_;
141
26.9k
     const problem_dft *p = (const problem_dft *) p_;
142
26.9k
     const kdft_desc *d = ego->desc;
143
26.9k
     INT vl;
144
26.9k
     INT ivs, ovs;
145
26.9k
     INT batchsz;
146
147
26.9k
     return (
148
26.9k
    1
149
26.9k
    && p->sz->rnk == 1
150
20.8k
    && p->vecsz->rnk == 1
151
12.3k
    && p->sz->dims[0].n == d->sz
152
153
    /* check strides etc */
154
668
    && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
155
156
    /* UGLY if IS <= IVS */
157
668
    && !(NO_UGLYP(plnr) &&
158
668
         X(iabs)(p->sz->dims[0].is) <= X(iabs)(ivs))
159
160
609
    && (batchsz = compute_batchsize(d->sz), 1)
161
609
    && (d->genus->okp(d, 0, ((const R *)0) + 1, p->ro, p->io,
162
609
          2 * batchsz, p->sz->dims[0].os,
163
609
          batchsz, 2, ovs, plnr))
164
609
    && (d->genus->okp(d, 0, ((const R *)0) + 1, p->ro, p->io,
165
609
          2 * batchsz, p->sz->dims[0].os,
166
609
          vl % batchsz, 2, ovs, plnr))
167
168
169
609
    && (0
170
        /* can operate out-of-place */
171
609
        || p->ri != p->ro
172
173
        /* can operate in-place as long as strides are the same */
174
208
        || X(tensor_inplace_strides2)(p->sz, p->vecsz)
175
176
        /* can do it if the problem fits in the buffer, no matter
177
     what the strides are */
178
182
        || vl <= batchsz
179
609
         )
180
26.9k
    );
181
26.9k
}
182
183
static int applicable(const solver *ego_, const problem *p_,
184
          const planner *plnr, int *extra_iterp)
185
27.3k
{
186
27.3k
     const S *ego = (const S *) ego_;
187
27.3k
     const problem_dft *p = (const problem_dft *) p_;
188
27.3k
     const kdft_desc *d = ego->desc;
189
27.3k
     INT vl;
190
27.3k
     INT ivs, ovs;
191
192
27.3k
     return (
193
27.3k
    1
194
27.3k
    && p->sz->rnk == 1
195
21.2k
    && p->vecsz->rnk <= 1
196
17.6k
    && p->sz->dims[0].n == d->sz
197
198
    /* check strides etc */
199
1.06k
    && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
200
201
1.06k
    && ((*extra_iterp = 0,
202
1.06k
         (d->genus->okp(d, p->ri, p->ii, p->ro, p->io,
203
1.06k
            p->sz->dims[0].is, p->sz->dims[0].os,
204
1.06k
            vl, ivs, ovs, plnr)))
205
0
        ||
206
0
        (*extra_iterp = 1,
207
0
         ((d->genus->okp(d, p->ri, p->ii, p->ro, p->io,
208
0
             p->sz->dims[0].is, p->sz->dims[0].os,
209
0
             vl - 1, ivs, ovs, plnr))
210
0
    &&
211
0
    (d->genus->okp(d, p->ri, p->ii, p->ro, p->io,
212
0
             p->sz->dims[0].is, p->sz->dims[0].os,
213
0
             2, 0, 0, plnr)))))
214
215
1.06k
    && (0
216
        /* can operate out-of-place */
217
1.06k
        || p->ri != p->ro
218
219
        /* can always compute one transform */
220
202
        || vl == 1
221
222
        /* can operate in-place as long as strides are the same */
223
202
        || X(tensor_inplace_strides2)(p->sz, p->vecsz)
224
1.06k
         )
225
27.3k
    );
226
27.3k
}
227
228
229
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
230
54.3k
{
231
54.3k
     const S *ego = (const S *) ego_;
232
54.3k
     P *pln;
233
54.3k
     const problem_dft *p;
234
54.3k
     iodim *d;
235
54.3k
     const kdft_desc *e = ego->desc;
236
237
54.3k
     static const plan_adt padt = {
238
54.3k
    X(dft_solve), X(null_awake), print, destroy
239
54.3k
     };
240
241
54.3k
     UNUSED(plnr);
242
243
54.3k
     if (ego->bufferedp) {
244
26.9k
    if (!applicable_buf(ego_, p_, plnr))
245
26.4k
         return (plan *)0;
246
556
    pln = MKPLAN_DFT(P, &padt, apply_buf);
247
27.3k
     } else {
248
27.3k
    int extra_iterp = 0;
249
27.3k
    if (!applicable(ego_, p_, plnr, &extra_iterp))
250
26.4k
         return (plan *)0;
251
942
    pln = MKPLAN_DFT(P, &padt, extra_iterp ? apply_extra_iter : apply);
252
942
     }
253
254
1.49k
     p = (const problem_dft *) p_;
255
1.49k
     d = p->sz->dims;
256
1.49k
     pln->k = ego->k;
257
1.49k
     pln->n = d[0].n;
258
1.49k
     pln->is = X(mkstride)(pln->n, d[0].is);
259
1.49k
     pln->os = X(mkstride)(pln->n, d[0].os);
260
1.49k
     pln->bufstride = X(mkstride)(pln->n, 2 * compute_batchsize(pln->n));
261
262
1.49k
     X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
263
1.49k
     pln->slv = ego;
264
265
1.49k
     X(ops_zero)(&pln->super.super.ops);
266
1.49k
     X(ops_madd2)(pln->vl / e->genus->vl, &e->ops, &pln->super.super.ops);
267
268
1.49k
     if (ego->bufferedp) 
269
556
    pln->super.super.ops.other += 4 * pln->n * pln->vl;
270
271
1.49k
     pln->super.super.could_prune_now_p = !ego->bufferedp;
272
1.49k
     return &(pln->super.super);
273
54.3k
}
274
275
static solver *mksolver(kdft k, const kdft_desc *desc, int bufferedp)
276
38
{
277
38
     static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
278
38
     S *slv = MKSOLVER(S, &sadt);
279
38
     slv->k = k;
280
38
     slv->desc = desc;
281
38
     slv->bufferedp = bufferedp;
282
38
     return &(slv->super);
283
38
}
284
285
solver *X(mksolver_dft_direct)(kdft k, const kdft_desc *desc)
286
19
{
287
19
     return mksolver(k, desc, 0);
288
19
}
289
290
solver *X(mksolver_dft_directbuf)(kdft k, const kdft_desc *desc)
291
19
{
292
19
     return mksolver(k, desc, 1);
293
19
}