/src/fftw3/dft/scalar/codelets/n1_20.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Mon Sep 25 07:03:53 UTC 2023 */ |
23 | | |
24 | | #include "dft/codelet-dft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 20 -name n1_20 -include dft/scalar/n.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 208 FP additions, 72 FP multiplications, |
32 | | * (or, 136 additions, 0 multiplications, 72 fused multiply/add), |
33 | | * 81 stack variables, 4 constants, and 80 memory accesses |
34 | | */ |
35 | | #include "dft/scalar/n.h" |
36 | | |
37 | | static void n1_20(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
38 | | { |
39 | | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
40 | | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
41 | | DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
42 | | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
43 | | { |
44 | | INT i; |
45 | | for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(80, is), MAKE_VOLATILE_STRIDE(80, os)) { |
46 | | E T7, T2N, T3b, TD, TP, T1R, T2f, T1d, Tt, TA, TB, T2w, T2z, T2P, T35; |
47 | | E T36, T3d, TH, TI, TJ, T15, T1a, T1b, T1s, T1x, T1T, T29, T2a, T2h, T1h; |
48 | | E T1i, T1j, Te, Tl, Tm, T2D, T2G, T2O, T32, T33, T3c, TE, TF, TG, TU; |
49 | | E TZ, T10, T1D, T1I, T1S, T26, T27, T2g, T1e, T1f, T1g; |
50 | | { |
51 | | E T3, T1N, TN, T2L, T6, TO, T1Q, T2M; |
52 | | { |
53 | | E T1, T2, TL, TM; |
54 | | T1 = ri[0]; |
55 | | T2 = ri[WS(is, 10)]; |
56 | | T3 = T1 + T2; |
57 | | T1N = T1 - T2; |
58 | | TL = ii[0]; |
59 | | TM = ii[WS(is, 10)]; |
60 | | TN = TL - TM; |
61 | | T2L = TL + TM; |
62 | | } |
63 | | { |
64 | | E T4, T5, T1O, T1P; |
65 | | T4 = ri[WS(is, 5)]; |
66 | | T5 = ri[WS(is, 15)]; |
67 | | T6 = T4 + T5; |
68 | | TO = T4 - T5; |
69 | | T1O = ii[WS(is, 5)]; |
70 | | T1P = ii[WS(is, 15)]; |
71 | | T1Q = T1O - T1P; |
72 | | T2M = T1O + T1P; |
73 | | } |
74 | | T7 = T3 - T6; |
75 | | T2N = T2L - T2M; |
76 | | T3b = T2L + T2M; |
77 | | TD = T3 + T6; |
78 | | TP = TN - TO; |
79 | | T1R = T1N - T1Q; |
80 | | T2f = T1N + T1Q; |
81 | | T1d = TO + TN; |
82 | | } |
83 | | { |
84 | | E Tp, T1o, T13, T2u, Ts, T14, T1r, T2v, Tw, T1t, T18, T2x, Tz, T19, T1w; |
85 | | E T2y; |
86 | | { |
87 | | E Tn, To, T11, T12; |
88 | | Tn = ri[WS(is, 8)]; |
89 | | To = ri[WS(is, 18)]; |
90 | | Tp = Tn + To; |
91 | | T1o = Tn - To; |
92 | | T11 = ii[WS(is, 8)]; |
93 | | T12 = ii[WS(is, 18)]; |
94 | | T13 = T11 - T12; |
95 | | T2u = T11 + T12; |
96 | | } |
97 | | { |
98 | | E Tq, Tr, T1p, T1q; |
99 | | Tq = ri[WS(is, 13)]; |
100 | | Tr = ri[WS(is, 3)]; |
101 | | Ts = Tq + Tr; |
102 | | T14 = Tq - Tr; |
103 | | T1p = ii[WS(is, 13)]; |
104 | | T1q = ii[WS(is, 3)]; |
105 | | T1r = T1p - T1q; |
106 | | T2v = T1p + T1q; |
107 | | } |
108 | | { |
109 | | E Tu, Tv, T16, T17; |
110 | | Tu = ri[WS(is, 12)]; |
111 | | Tv = ri[WS(is, 2)]; |
112 | | Tw = Tu + Tv; |
113 | | T1t = Tu - Tv; |
114 | | T16 = ii[WS(is, 12)]; |
115 | | T17 = ii[WS(is, 2)]; |
116 | | T18 = T16 - T17; |
117 | | T2x = T16 + T17; |
118 | | } |
119 | | { |
120 | | E Tx, Ty, T1u, T1v; |
121 | | Tx = ri[WS(is, 17)]; |
122 | | Ty = ri[WS(is, 7)]; |
123 | | Tz = Tx + Ty; |
124 | | T19 = Tx - Ty; |
125 | | T1u = ii[WS(is, 17)]; |
126 | | T1v = ii[WS(is, 7)]; |
127 | | T1w = T1u - T1v; |
128 | | T2y = T1u + T1v; |
129 | | } |
130 | | Tt = Tp - Ts; |
131 | | TA = Tw - Tz; |
132 | | TB = Tt + TA; |
133 | | T2w = T2u - T2v; |
134 | | T2z = T2x - T2y; |
135 | | T2P = T2w + T2z; |
136 | | T35 = T2u + T2v; |
137 | | T36 = T2x + T2y; |
138 | | T3d = T35 + T36; |
139 | | TH = Tp + Ts; |
140 | | TI = Tw + Tz; |
141 | | TJ = TH + TI; |
142 | | T15 = T13 - T14; |
143 | | T1a = T18 - T19; |
144 | | T1b = T15 + T1a; |
145 | | T1s = T1o - T1r; |
146 | | T1x = T1t - T1w; |
147 | | T1T = T1s + T1x; |
148 | | T29 = T1o + T1r; |
149 | | T2a = T1t + T1w; |
150 | | T2h = T29 + T2a; |
151 | | T1h = T14 + T13; |
152 | | T1i = T19 + T18; |
153 | | T1j = T1h + T1i; |
154 | | } |
155 | | { |
156 | | E Ta, T1z, TS, T2B, Td, TT, T1C, T2C, Th, T1E, TX, T2E, Tk, TY, T1H; |
157 | | E T2F; |
158 | | { |
159 | | E T8, T9, TQ, TR; |
160 | | T8 = ri[WS(is, 4)]; |
161 | | T9 = ri[WS(is, 14)]; |
162 | | Ta = T8 + T9; |
163 | | T1z = T8 - T9; |
164 | | TQ = ii[WS(is, 4)]; |
165 | | TR = ii[WS(is, 14)]; |
166 | | TS = TQ - TR; |
167 | | T2B = TQ + TR; |
168 | | } |
169 | | { |
170 | | E Tb, Tc, T1A, T1B; |
171 | | Tb = ri[WS(is, 9)]; |
172 | | Tc = ri[WS(is, 19)]; |
173 | | Td = Tb + Tc; |
174 | | TT = Tb - Tc; |
175 | | T1A = ii[WS(is, 9)]; |
176 | | T1B = ii[WS(is, 19)]; |
177 | | T1C = T1A - T1B; |
178 | | T2C = T1A + T1B; |
179 | | } |
180 | | { |
181 | | E Tf, Tg, TV, TW; |
182 | | Tf = ri[WS(is, 16)]; |
183 | | Tg = ri[WS(is, 6)]; |
184 | | Th = Tf + Tg; |
185 | | T1E = Tf - Tg; |
186 | | TV = ii[WS(is, 16)]; |
187 | | TW = ii[WS(is, 6)]; |
188 | | TX = TV - TW; |
189 | | T2E = TV + TW; |
190 | | } |
191 | | { |
192 | | E Ti, Tj, T1F, T1G; |
193 | | Ti = ri[WS(is, 1)]; |
194 | | Tj = ri[WS(is, 11)]; |
195 | | Tk = Ti + Tj; |
196 | | TY = Ti - Tj; |
197 | | T1F = ii[WS(is, 1)]; |
198 | | T1G = ii[WS(is, 11)]; |
199 | | T1H = T1F - T1G; |
200 | | T2F = T1F + T1G; |
201 | | } |
202 | | Te = Ta - Td; |
203 | | Tl = Th - Tk; |
204 | | Tm = Te + Tl; |
205 | | T2D = T2B - T2C; |
206 | | T2G = T2E - T2F; |
207 | | T2O = T2D + T2G; |
208 | | T32 = T2B + T2C; |
209 | | T33 = T2E + T2F; |
210 | | T3c = T32 + T33; |
211 | | TE = Ta + Td; |
212 | | TF = Th + Tk; |
213 | | TG = TE + TF; |
214 | | TU = TS - TT; |
215 | | TZ = TX - TY; |
216 | | T10 = TU + TZ; |
217 | | T1D = T1z - T1C; |
218 | | T1I = T1E - T1H; |
219 | | T1S = T1D + T1I; |
220 | | T26 = T1z + T1C; |
221 | | T27 = T1E + T1H; |
222 | | T2g = T26 + T27; |
223 | | T1e = TT + TS; |
224 | | T1f = TY + TX; |
225 | | T1g = T1e + T1f; |
226 | | } |
227 | | { |
228 | | E T2s, TC, T2r, T2I, T2K, T2A, T2H, T2J, T2t; |
229 | | T2s = Tm - TB; |
230 | | TC = Tm + TB; |
231 | | T2r = FNMS(KP250000000, TC, T7); |
232 | | T2A = T2w - T2z; |
233 | | T2H = T2D - T2G; |
234 | | T2I = FNMS(KP618033988, T2H, T2A); |
235 | | T2K = FMA(KP618033988, T2A, T2H); |
236 | | ro[WS(os, 10)] = T7 + TC; |
237 | | T2J = FMA(KP559016994, T2s, T2r); |
238 | | ro[WS(os, 14)] = FNMS(KP951056516, T2K, T2J); |
239 | | ro[WS(os, 6)] = FMA(KP951056516, T2K, T2J); |
240 | | T2t = FNMS(KP559016994, T2s, T2r); |
241 | | ro[WS(os, 2)] = FNMS(KP951056516, T2I, T2t); |
242 | | ro[WS(os, 18)] = FMA(KP951056516, T2I, T2t); |
243 | | } |
244 | | { |
245 | | E T2S, T2Q, T2R, T2W, T2Y, T2U, T2V, T2X, T2T; |
246 | | T2S = T2O - T2P; |
247 | | T2Q = T2O + T2P; |
248 | | T2R = FNMS(KP250000000, T2Q, T2N); |
249 | | T2U = Tt - TA; |
250 | | T2V = Te - Tl; |
251 | | T2W = FNMS(KP618033988, T2V, T2U); |
252 | | T2Y = FMA(KP618033988, T2U, T2V); |
253 | | io[WS(os, 10)] = T2N + T2Q; |
254 | | T2X = FMA(KP559016994, T2S, T2R); |
255 | | io[WS(os, 6)] = FNMS(KP951056516, T2Y, T2X); |
256 | | io[WS(os, 14)] = FMA(KP951056516, T2Y, T2X); |
257 | | T2T = FNMS(KP559016994, T2S, T2R); |
258 | | io[WS(os, 2)] = FMA(KP951056516, T2W, T2T); |
259 | | io[WS(os, 18)] = FNMS(KP951056516, T2W, T2T); |
260 | | } |
261 | | { |
262 | | E T30, TK, T2Z, T38, T3a, T34, T37, T39, T31; |
263 | | T30 = TG - TJ; |
264 | | TK = TG + TJ; |
265 | | T2Z = FNMS(KP250000000, TK, TD); |
266 | | T34 = T32 - T33; |
267 | | T37 = T35 - T36; |
268 | | T38 = FMA(KP618033988, T37, T34); |
269 | | T3a = FNMS(KP618033988, T34, T37); |
270 | | ro[0] = TD + TK; |
271 | | T39 = FNMS(KP559016994, T30, T2Z); |
272 | | ro[WS(os, 12)] = FNMS(KP951056516, T3a, T39); |
273 | | ro[WS(os, 8)] = FMA(KP951056516, T3a, T39); |
274 | | T31 = FMA(KP559016994, T30, T2Z); |
275 | | ro[WS(os, 4)] = FNMS(KP951056516, T38, T31); |
276 | | ro[WS(os, 16)] = FMA(KP951056516, T38, T31); |
277 | | } |
278 | | { |
279 | | E T3g, T3e, T3f, T3k, T3m, T3i, T3j, T3l, T3h; |
280 | | T3g = T3c - T3d; |
281 | | T3e = T3c + T3d; |
282 | | T3f = FNMS(KP250000000, T3e, T3b); |
283 | | T3i = TE - TF; |
284 | | T3j = TH - TI; |
285 | | T3k = FMA(KP618033988, T3j, T3i); |
286 | | T3m = FNMS(KP618033988, T3i, T3j); |
287 | | io[0] = T3b + T3e; |
288 | | T3l = FNMS(KP559016994, T3g, T3f); |
289 | | io[WS(os, 8)] = FNMS(KP951056516, T3m, T3l); |
290 | | io[WS(os, 12)] = FMA(KP951056516, T3m, T3l); |
291 | | T3h = FMA(KP559016994, T3g, T3f); |
292 | | io[WS(os, 4)] = FMA(KP951056516, T3k, T3h); |
293 | | io[WS(os, 16)] = FNMS(KP951056516, T3k, T3h); |
294 | | } |
295 | | { |
296 | | E T24, T1c, T23, T2c, T2e, T28, T2b, T2d, T25; |
297 | | T24 = T10 - T1b; |
298 | | T1c = T10 + T1b; |
299 | | T23 = FNMS(KP250000000, T1c, TP); |
300 | | T28 = T26 - T27; |
301 | | T2b = T29 - T2a; |
302 | | T2c = FMA(KP618033988, T2b, T28); |
303 | | T2e = FNMS(KP618033988, T28, T2b); |
304 | | io[WS(os, 5)] = TP + T1c; |
305 | | T2d = FNMS(KP559016994, T24, T23); |
306 | | io[WS(os, 13)] = FNMS(KP951056516, T2e, T2d); |
307 | | io[WS(os, 17)] = FMA(KP951056516, T2e, T2d); |
308 | | T25 = FMA(KP559016994, T24, T23); |
309 | | io[WS(os, 1)] = FNMS(KP951056516, T2c, T25); |
310 | | io[WS(os, 9)] = FMA(KP951056516, T2c, T25); |
311 | | } |
312 | | { |
313 | | E T2k, T2i, T2j, T2o, T2q, T2m, T2n, T2p, T2l; |
314 | | T2k = T2g - T2h; |
315 | | T2i = T2g + T2h; |
316 | | T2j = FNMS(KP250000000, T2i, T2f); |
317 | | T2m = TU - TZ; |
318 | | T2n = T15 - T1a; |
319 | | T2o = FMA(KP618033988, T2n, T2m); |
320 | | T2q = FNMS(KP618033988, T2m, T2n); |
321 | | ro[WS(os, 5)] = T2f + T2i; |
322 | | T2p = FNMS(KP559016994, T2k, T2j); |
323 | | ro[WS(os, 13)] = FMA(KP951056516, T2q, T2p); |
324 | | ro[WS(os, 17)] = FNMS(KP951056516, T2q, T2p); |
325 | | T2l = FMA(KP559016994, T2k, T2j); |
326 | | ro[WS(os, 1)] = FMA(KP951056516, T2o, T2l); |
327 | | ro[WS(os, 9)] = FNMS(KP951056516, T2o, T2l); |
328 | | } |
329 | | { |
330 | | E T1m, T1k, T1l, T1K, T1M, T1y, T1J, T1L, T1n; |
331 | | T1m = T1g - T1j; |
332 | | T1k = T1g + T1j; |
333 | | T1l = FNMS(KP250000000, T1k, T1d); |
334 | | T1y = T1s - T1x; |
335 | | T1J = T1D - T1I; |
336 | | T1K = FNMS(KP618033988, T1J, T1y); |
337 | | T1M = FMA(KP618033988, T1y, T1J); |
338 | | io[WS(os, 15)] = T1d + T1k; |
339 | | T1L = FMA(KP559016994, T1m, T1l); |
340 | | io[WS(os, 11)] = FNMS(KP951056516, T1M, T1L); |
341 | | io[WS(os, 19)] = FMA(KP951056516, T1M, T1L); |
342 | | T1n = FNMS(KP559016994, T1m, T1l); |
343 | | io[WS(os, 3)] = FNMS(KP951056516, T1K, T1n); |
344 | | io[WS(os, 7)] = FMA(KP951056516, T1K, T1n); |
345 | | } |
346 | | { |
347 | | E T1W, T1U, T1V, T20, T22, T1Y, T1Z, T21, T1X; |
348 | | T1W = T1S - T1T; |
349 | | T1U = T1S + T1T; |
350 | | T1V = FNMS(KP250000000, T1U, T1R); |
351 | | T1Y = T1h - T1i; |
352 | | T1Z = T1e - T1f; |
353 | | T20 = FNMS(KP618033988, T1Z, T1Y); |
354 | | T22 = FMA(KP618033988, T1Y, T1Z); |
355 | | ro[WS(os, 15)] = T1R + T1U; |
356 | | T21 = FMA(KP559016994, T1W, T1V); |
357 | | ro[WS(os, 11)] = FMA(KP951056516, T22, T21); |
358 | | ro[WS(os, 19)] = FNMS(KP951056516, T22, T21); |
359 | | T1X = FNMS(KP559016994, T1W, T1V); |
360 | | ro[WS(os, 3)] = FMA(KP951056516, T20, T1X); |
361 | | ro[WS(os, 7)] = FNMS(KP951056516, T20, T1X); |
362 | | } |
363 | | } |
364 | | } |
365 | | } |
366 | | |
367 | | static const kdft_desc desc = { 20, "n1_20", { 136, 0, 72, 0 }, &GENUS, 0, 0, 0, 0 }; |
368 | | |
369 | | void X(codelet_n1_20) (planner *p) { X(kdft_register) (p, n1_20, &desc); |
370 | | } |
371 | | |
372 | | #else |
373 | | |
374 | | /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 20 -name n1_20 -include dft/scalar/n.h */ |
375 | | |
376 | | /* |
377 | | * This function contains 208 FP additions, 48 FP multiplications, |
378 | | * (or, 184 additions, 24 multiplications, 24 fused multiply/add), |
379 | | * 81 stack variables, 4 constants, and 80 memory accesses |
380 | | */ |
381 | | #include "dft/scalar/n.h" |
382 | | |
383 | | static void n1_20(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
384 | 5 | { |
385 | 5 | DK(KP587785252, +0.587785252292473129168705954639072768597652438); |
386 | 5 | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
387 | 5 | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
388 | 5 | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
389 | 5 | { |
390 | 5 | INT i; |
391 | 76 | for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(80, is), MAKE_VOLATILE_STRIDE(80, os)) { |
392 | 71 | E T7, T2Q, T3h, TD, TP, T1U, T2l, T1d, Tt, TA, TB, T2w, T2z, T2S, T35; |
393 | 71 | E T36, T3f, TH, TI, TJ, T15, T1a, T1b, T1s, T1x, T1W, T29, T2a, T2j, T1h; |
394 | 71 | E T1i, T1j, Te, Tl, Tm, T2D, T2G, T2R, T32, T33, T3e, TE, TF, TG, TU; |
395 | 71 | E TZ, T10, T1D, T1I, T1V, T26, T27, T2i, T1e, T1f, T1g; |
396 | 71 | { |
397 | 71 | E T3, T1Q, TN, T2O, T6, TO, T1T, T2P; |
398 | 71 | { |
399 | 71 | E T1, T2, TL, TM; |
400 | 71 | T1 = ri[0]; |
401 | 71 | T2 = ri[WS(is, 10)]; |
402 | 71 | T3 = T1 + T2; |
403 | 71 | T1Q = T1 - T2; |
404 | 71 | TL = ii[0]; |
405 | 71 | TM = ii[WS(is, 10)]; |
406 | 71 | TN = TL - TM; |
407 | 71 | T2O = TL + TM; |
408 | 71 | } |
409 | 71 | { |
410 | 71 | E T4, T5, T1R, T1S; |
411 | 71 | T4 = ri[WS(is, 5)]; |
412 | 71 | T5 = ri[WS(is, 15)]; |
413 | 71 | T6 = T4 + T5; |
414 | 71 | TO = T4 - T5; |
415 | 71 | T1R = ii[WS(is, 5)]; |
416 | 71 | T1S = ii[WS(is, 15)]; |
417 | 71 | T1T = T1R - T1S; |
418 | 71 | T2P = T1R + T1S; |
419 | 71 | } |
420 | 71 | T7 = T3 - T6; |
421 | 71 | T2Q = T2O - T2P; |
422 | 71 | T3h = T2O + T2P; |
423 | 71 | TD = T3 + T6; |
424 | 71 | TP = TN - TO; |
425 | 71 | T1U = T1Q - T1T; |
426 | 71 | T2l = T1Q + T1T; |
427 | 71 | T1d = TO + TN; |
428 | 71 | } |
429 | 71 | { |
430 | 71 | E Tp, T1o, T13, T2u, Ts, T14, T1r, T2v, Tw, T1t, T18, T2x, Tz, T19, T1w; |
431 | 71 | E T2y; |
432 | 71 | { |
433 | 71 | E Tn, To, T11, T12; |
434 | 71 | Tn = ri[WS(is, 8)]; |
435 | 71 | To = ri[WS(is, 18)]; |
436 | 71 | Tp = Tn + To; |
437 | 71 | T1o = Tn - To; |
438 | 71 | T11 = ii[WS(is, 8)]; |
439 | 71 | T12 = ii[WS(is, 18)]; |
440 | 71 | T13 = T11 - T12; |
441 | 71 | T2u = T11 + T12; |
442 | 71 | } |
443 | 71 | { |
444 | 71 | E Tq, Tr, T1p, T1q; |
445 | 71 | Tq = ri[WS(is, 13)]; |
446 | 71 | Tr = ri[WS(is, 3)]; |
447 | 71 | Ts = Tq + Tr; |
448 | 71 | T14 = Tq - Tr; |
449 | 71 | T1p = ii[WS(is, 13)]; |
450 | 71 | T1q = ii[WS(is, 3)]; |
451 | 71 | T1r = T1p - T1q; |
452 | 71 | T2v = T1p + T1q; |
453 | 71 | } |
454 | 71 | { |
455 | 71 | E Tu, Tv, T16, T17; |
456 | 71 | Tu = ri[WS(is, 12)]; |
457 | 71 | Tv = ri[WS(is, 2)]; |
458 | 71 | Tw = Tu + Tv; |
459 | 71 | T1t = Tu - Tv; |
460 | 71 | T16 = ii[WS(is, 12)]; |
461 | 71 | T17 = ii[WS(is, 2)]; |
462 | 71 | T18 = T16 - T17; |
463 | 71 | T2x = T16 + T17; |
464 | 71 | } |
465 | 71 | { |
466 | 71 | E Tx, Ty, T1u, T1v; |
467 | 71 | Tx = ri[WS(is, 17)]; |
468 | 71 | Ty = ri[WS(is, 7)]; |
469 | 71 | Tz = Tx + Ty; |
470 | 71 | T19 = Tx - Ty; |
471 | 71 | T1u = ii[WS(is, 17)]; |
472 | 71 | T1v = ii[WS(is, 7)]; |
473 | 71 | T1w = T1u - T1v; |
474 | 71 | T2y = T1u + T1v; |
475 | 71 | } |
476 | 71 | Tt = Tp - Ts; |
477 | 71 | TA = Tw - Tz; |
478 | 71 | TB = Tt + TA; |
479 | 71 | T2w = T2u - T2v; |
480 | 71 | T2z = T2x - T2y; |
481 | 71 | T2S = T2w + T2z; |
482 | 71 | T35 = T2u + T2v; |
483 | 71 | T36 = T2x + T2y; |
484 | 71 | T3f = T35 + T36; |
485 | 71 | TH = Tp + Ts; |
486 | 71 | TI = Tw + Tz; |
487 | 71 | TJ = TH + TI; |
488 | 71 | T15 = T13 - T14; |
489 | 71 | T1a = T18 - T19; |
490 | 71 | T1b = T15 + T1a; |
491 | 71 | T1s = T1o - T1r; |
492 | 71 | T1x = T1t - T1w; |
493 | 71 | T1W = T1s + T1x; |
494 | 71 | T29 = T1o + T1r; |
495 | 71 | T2a = T1t + T1w; |
496 | 71 | T2j = T29 + T2a; |
497 | 71 | T1h = T14 + T13; |
498 | 71 | T1i = T19 + T18; |
499 | 71 | T1j = T1h + T1i; |
500 | 71 | } |
501 | 71 | { |
502 | 71 | E Ta, T1z, TS, T2B, Td, TT, T1C, T2C, Th, T1E, TX, T2E, Tk, TY, T1H; |
503 | 71 | E T2F; |
504 | 71 | { |
505 | 71 | E T8, T9, TQ, TR; |
506 | 71 | T8 = ri[WS(is, 4)]; |
507 | 71 | T9 = ri[WS(is, 14)]; |
508 | 71 | Ta = T8 + T9; |
509 | 71 | T1z = T8 - T9; |
510 | 71 | TQ = ii[WS(is, 4)]; |
511 | 71 | TR = ii[WS(is, 14)]; |
512 | 71 | TS = TQ - TR; |
513 | 71 | T2B = TQ + TR; |
514 | 71 | } |
515 | 71 | { |
516 | 71 | E Tb, Tc, T1A, T1B; |
517 | 71 | Tb = ri[WS(is, 9)]; |
518 | 71 | Tc = ri[WS(is, 19)]; |
519 | 71 | Td = Tb + Tc; |
520 | 71 | TT = Tb - Tc; |
521 | 71 | T1A = ii[WS(is, 9)]; |
522 | 71 | T1B = ii[WS(is, 19)]; |
523 | 71 | T1C = T1A - T1B; |
524 | 71 | T2C = T1A + T1B; |
525 | 71 | } |
526 | 71 | { |
527 | 71 | E Tf, Tg, TV, TW; |
528 | 71 | Tf = ri[WS(is, 16)]; |
529 | 71 | Tg = ri[WS(is, 6)]; |
530 | 71 | Th = Tf + Tg; |
531 | 71 | T1E = Tf - Tg; |
532 | 71 | TV = ii[WS(is, 16)]; |
533 | 71 | TW = ii[WS(is, 6)]; |
534 | 71 | TX = TV - TW; |
535 | 71 | T2E = TV + TW; |
536 | 71 | } |
537 | 71 | { |
538 | 71 | E Ti, Tj, T1F, T1G; |
539 | 71 | Ti = ri[WS(is, 1)]; |
540 | 71 | Tj = ri[WS(is, 11)]; |
541 | 71 | Tk = Ti + Tj; |
542 | 71 | TY = Ti - Tj; |
543 | 71 | T1F = ii[WS(is, 1)]; |
544 | 71 | T1G = ii[WS(is, 11)]; |
545 | 71 | T1H = T1F - T1G; |
546 | 71 | T2F = T1F + T1G; |
547 | 71 | } |
548 | 71 | Te = Ta - Td; |
549 | 71 | Tl = Th - Tk; |
550 | 71 | Tm = Te + Tl; |
551 | 71 | T2D = T2B - T2C; |
552 | 71 | T2G = T2E - T2F; |
553 | 71 | T2R = T2D + T2G; |
554 | 71 | T32 = T2B + T2C; |
555 | 71 | T33 = T2E + T2F; |
556 | 71 | T3e = T32 + T33; |
557 | 71 | TE = Ta + Td; |
558 | 71 | TF = Th + Tk; |
559 | 71 | TG = TE + TF; |
560 | 71 | TU = TS - TT; |
561 | 71 | TZ = TX - TY; |
562 | 71 | T10 = TU + TZ; |
563 | 71 | T1D = T1z - T1C; |
564 | 71 | T1I = T1E - T1H; |
565 | 71 | T1V = T1D + T1I; |
566 | 71 | T26 = T1z + T1C; |
567 | 71 | T27 = T1E + T1H; |
568 | 71 | T2i = T26 + T27; |
569 | 71 | T1e = TT + TS; |
570 | 71 | T1f = TY + TX; |
571 | 71 | T1g = T1e + T1f; |
572 | 71 | } |
573 | 71 | { |
574 | 71 | E T2s, TC, T2r, T2I, T2K, T2A, T2H, T2J, T2t; |
575 | 71 | T2s = KP559016994 * (Tm - TB); |
576 | 71 | TC = Tm + TB; |
577 | 71 | T2r = FNMS(KP250000000, TC, T7); |
578 | 71 | T2A = T2w - T2z; |
579 | 71 | T2H = T2D - T2G; |
580 | 71 | T2I = FNMS(KP587785252, T2H, KP951056516 * T2A); |
581 | 71 | T2K = FMA(KP951056516, T2H, KP587785252 * T2A); |
582 | 71 | ro[WS(os, 10)] = T7 + TC; |
583 | 71 | T2J = T2s + T2r; |
584 | 71 | ro[WS(os, 14)] = T2J - T2K; |
585 | 71 | ro[WS(os, 6)] = T2J + T2K; |
586 | 71 | T2t = T2r - T2s; |
587 | 71 | ro[WS(os, 2)] = T2t - T2I; |
588 | 71 | ro[WS(os, 18)] = T2t + T2I; |
589 | 71 | } |
590 | 71 | { |
591 | 71 | E T2V, T2T, T2U, T2N, T2Y, T2L, T2M, T2X, T2W; |
592 | 71 | T2V = KP559016994 * (T2R - T2S); |
593 | 71 | T2T = T2R + T2S; |
594 | 71 | T2U = FNMS(KP250000000, T2T, T2Q); |
595 | 71 | T2L = Tt - TA; |
596 | 71 | T2M = Te - Tl; |
597 | 71 | T2N = FNMS(KP587785252, T2M, KP951056516 * T2L); |
598 | 71 | T2Y = FMA(KP951056516, T2M, KP587785252 * T2L); |
599 | 71 | io[WS(os, 10)] = T2Q + T2T; |
600 | 71 | T2X = T2V + T2U; |
601 | 71 | io[WS(os, 6)] = T2X - T2Y; |
602 | 71 | io[WS(os, 14)] = T2Y + T2X; |
603 | 71 | T2W = T2U - T2V; |
604 | 71 | io[WS(os, 2)] = T2N + T2W; |
605 | 71 | io[WS(os, 18)] = T2W - T2N; |
606 | 71 | } |
607 | 71 | { |
608 | 71 | E T2Z, TK, T30, T38, T3a, T34, T37, T39, T31; |
609 | 71 | T2Z = KP559016994 * (TG - TJ); |
610 | 71 | TK = TG + TJ; |
611 | 71 | T30 = FNMS(KP250000000, TK, TD); |
612 | 71 | T34 = T32 - T33; |
613 | 71 | T37 = T35 - T36; |
614 | 71 | T38 = FMA(KP951056516, T34, KP587785252 * T37); |
615 | 71 | T3a = FNMS(KP587785252, T34, KP951056516 * T37); |
616 | 71 | ro[0] = TD + TK; |
617 | 71 | T39 = T30 - T2Z; |
618 | 71 | ro[WS(os, 12)] = T39 - T3a; |
619 | 71 | ro[WS(os, 8)] = T39 + T3a; |
620 | 71 | T31 = T2Z + T30; |
621 | 71 | ro[WS(os, 4)] = T31 - T38; |
622 | 71 | ro[WS(os, 16)] = T31 + T38; |
623 | 71 | } |
624 | 71 | { |
625 | 71 | E T3g, T3i, T3j, T3d, T3m, T3b, T3c, T3l, T3k; |
626 | 71 | T3g = KP559016994 * (T3e - T3f); |
627 | 71 | T3i = T3e + T3f; |
628 | 71 | T3j = FNMS(KP250000000, T3i, T3h); |
629 | 71 | T3b = TE - TF; |
630 | 71 | T3c = TH - TI; |
631 | 71 | T3d = FMA(KP951056516, T3b, KP587785252 * T3c); |
632 | 71 | T3m = FNMS(KP587785252, T3b, KP951056516 * T3c); |
633 | 71 | io[0] = T3h + T3i; |
634 | 71 | T3l = T3j - T3g; |
635 | 71 | io[WS(os, 8)] = T3l - T3m; |
636 | 71 | io[WS(os, 12)] = T3m + T3l; |
637 | 71 | T3k = T3g + T3j; |
638 | 71 | io[WS(os, 4)] = T3d + T3k; |
639 | 71 | io[WS(os, 16)] = T3k - T3d; |
640 | 71 | } |
641 | 71 | { |
642 | 71 | E T23, T1c, T24, T2c, T2e, T28, T2b, T2d, T25; |
643 | 71 | T23 = KP559016994 * (T10 - T1b); |
644 | 71 | T1c = T10 + T1b; |
645 | 71 | T24 = FNMS(KP250000000, T1c, TP); |
646 | 71 | T28 = T26 - T27; |
647 | 71 | T2b = T29 - T2a; |
648 | 71 | T2c = FMA(KP951056516, T28, KP587785252 * T2b); |
649 | 71 | T2e = FNMS(KP587785252, T28, KP951056516 * T2b); |
650 | 71 | io[WS(os, 5)] = TP + T1c; |
651 | 71 | T2d = T24 - T23; |
652 | 71 | io[WS(os, 13)] = T2d - T2e; |
653 | 71 | io[WS(os, 17)] = T2d + T2e; |
654 | 71 | T25 = T23 + T24; |
655 | 71 | io[WS(os, 1)] = T25 - T2c; |
656 | 71 | io[WS(os, 9)] = T25 + T2c; |
657 | 71 | } |
658 | 71 | { |
659 | 71 | E T2k, T2m, T2n, T2h, T2p, T2f, T2g, T2q, T2o; |
660 | 71 | T2k = KP559016994 * (T2i - T2j); |
661 | 71 | T2m = T2i + T2j; |
662 | 71 | T2n = FNMS(KP250000000, T2m, T2l); |
663 | 71 | T2f = TU - TZ; |
664 | 71 | T2g = T15 - T1a; |
665 | 71 | T2h = FMA(KP951056516, T2f, KP587785252 * T2g); |
666 | 71 | T2p = FNMS(KP587785252, T2f, KP951056516 * T2g); |
667 | 71 | ro[WS(os, 5)] = T2l + T2m; |
668 | 71 | T2q = T2n - T2k; |
669 | 71 | ro[WS(os, 13)] = T2p + T2q; |
670 | 71 | ro[WS(os, 17)] = T2q - T2p; |
671 | 71 | T2o = T2k + T2n; |
672 | 71 | ro[WS(os, 1)] = T2h + T2o; |
673 | 71 | ro[WS(os, 9)] = T2o - T2h; |
674 | 71 | } |
675 | 71 | { |
676 | 71 | E T1m, T1k, T1l, T1K, T1M, T1y, T1J, T1L, T1n; |
677 | 71 | T1m = KP559016994 * (T1g - T1j); |
678 | 71 | T1k = T1g + T1j; |
679 | 71 | T1l = FNMS(KP250000000, T1k, T1d); |
680 | 71 | T1y = T1s - T1x; |
681 | 71 | T1J = T1D - T1I; |
682 | 71 | T1K = FNMS(KP587785252, T1J, KP951056516 * T1y); |
683 | 71 | T1M = FMA(KP951056516, T1J, KP587785252 * T1y); |
684 | 71 | io[WS(os, 15)] = T1d + T1k; |
685 | 71 | T1L = T1m + T1l; |
686 | 71 | io[WS(os, 11)] = T1L - T1M; |
687 | 71 | io[WS(os, 19)] = T1L + T1M; |
688 | 71 | T1n = T1l - T1m; |
689 | 71 | io[WS(os, 3)] = T1n - T1K; |
690 | 71 | io[WS(os, 7)] = T1n + T1K; |
691 | 71 | } |
692 | 71 | { |
693 | 71 | E T1Z, T1X, T1Y, T1P, T21, T1N, T1O, T22, T20; |
694 | 71 | T1Z = KP559016994 * (T1V - T1W); |
695 | 71 | T1X = T1V + T1W; |
696 | 71 | T1Y = FNMS(KP250000000, T1X, T1U); |
697 | 71 | T1N = T1h - T1i; |
698 | 71 | T1O = T1e - T1f; |
699 | 71 | T1P = FNMS(KP587785252, T1O, KP951056516 * T1N); |
700 | 71 | T21 = FMA(KP951056516, T1O, KP587785252 * T1N); |
701 | 71 | ro[WS(os, 15)] = T1U + T1X; |
702 | 71 | T22 = T1Z + T1Y; |
703 | 71 | ro[WS(os, 11)] = T21 + T22; |
704 | 71 | ro[WS(os, 19)] = T22 - T21; |
705 | 71 | T20 = T1Y - T1Z; |
706 | 71 | ro[WS(os, 3)] = T1P + T20; |
707 | 71 | ro[WS(os, 7)] = T20 - T1P; |
708 | 71 | } |
709 | 71 | } |
710 | 5 | } |
711 | 5 | } |
712 | | |
713 | | static const kdft_desc desc = { 20, "n1_20", { 184, 24, 24, 0 }, &GENUS, 0, 0, 0, 0 }; |
714 | | |
715 | 1 | void X(codelet_n1_20) (planner *p) { X(kdft_register) (p, n1_20, &desc); |
716 | 1 | } |
717 | | |
718 | | #endif |