/src/fftw3/dft/scalar/codelets/n1_64.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Mon Sep 25 07:03:53 UTC 2023 */ |
23 | | |
24 | | #include "dft/codelet-dft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 64 -name n1_64 -include dft/scalar/n.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 912 FP additions, 392 FP multiplications, |
32 | | * (or, 520 additions, 0 multiplications, 392 fused multiply/add), |
33 | | * 172 stack variables, 15 constants, and 256 memory accesses |
34 | | */ |
35 | | #include "dft/scalar/n.h" |
36 | | |
37 | | static void n1_64(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
38 | | { |
39 | | DK(KP956940335, +0.956940335732208864935797886980269969482849206); |
40 | | DK(KP881921264, +0.881921264348355029712756863660388349508442621); |
41 | | DK(KP534511135, +0.534511135950791641089685961295362908582039528); |
42 | | DK(KP303346683, +0.303346683607342391675883946941299872384187453); |
43 | | DK(KP995184726, +0.995184726672196886244836953109479921575474869); |
44 | | DK(KP773010453, +0.773010453362736960810906609758469800971041293); |
45 | | DK(KP820678790, +0.820678790828660330972281985331011598767386482); |
46 | | DK(KP098491403, +0.098491403357164253077197521291327432293052451); |
47 | | DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
48 | | DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
49 | | DK(KP668178637, +0.668178637919298919997757686523080761552472251); |
50 | | DK(KP198912367, +0.198912367379658006911597622644676228597850501); |
51 | | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
52 | | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
53 | | DK(KP414213562, +0.414213562373095048801688724209698078569671875); |
54 | | { |
55 | | INT i; |
56 | | for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(256, is), MAKE_VOLATILE_STRIDE(256, os)) { |
57 | | E T37, T7B, T8F, T5Z, Tf, Td9, TbB, TcB, T62, T7C, T2i, TdH, Tah, Tcb, T3e; |
58 | | E T8G, Tu, TdI, Tak, TbC, Tan, TbD, T2x, Tda, T3m, T65, T7G, T8I, T7J, T8J; |
59 | | E T3t, T64, TK, Tdd, Tas, Tce, Tav, Tcf, T2N, Tdc, T3G, T6G, T7O, T9k, T7R; |
60 | | E T9l, T3N, T6H, T1L, TdA, Tbs, Tct, Tdx, Teo, T5j, T6Y, T5Q, T6V, T8y, T9z; |
61 | | E Tbb, Tcw, T8n, T9C, TZ, Tdf, Taz, Tch, TaC, Tci, T32, Tdg, T3Z, T6J, T7V; |
62 | | E T9n, T7Y, T9o, T46, T6K, T1g, Tdp, Tb1, Tcm, Tdm, Tej, T4q, T6R, T4X, T6O; |
63 | | E T8f, T9s, TaK, Tcp, T84, T9v, T1v, Tdn, Tb4, Tcq, Tds, Tek, T4N, T6P, T50; |
64 | | E T6S, T8i, T9w, TaV, Tcn, T8b, T9t, T20, Tdy, Tbv, Tcx, TdD, Tep, T5G, T6W; |
65 | | E T5T, T6Z, T8B, T9D, Tbm, Tcu, T8u, T9A; |
66 | | { |
67 | | E T3, T35, T26, T5Y, T6, T5X, T29, T36, Ta, T39, T2d, T38, Td, T3b, T2g; |
68 | | E T3c; |
69 | | { |
70 | | E T1, T2, T24, T25; |
71 | | T1 = ri[0]; |
72 | | T2 = ri[WS(is, 32)]; |
73 | | T3 = T1 + T2; |
74 | | T35 = T1 - T2; |
75 | | T24 = ii[0]; |
76 | | T25 = ii[WS(is, 32)]; |
77 | | T26 = T24 + T25; |
78 | | T5Y = T24 - T25; |
79 | | } |
80 | | { |
81 | | E T4, T5, T27, T28; |
82 | | T4 = ri[WS(is, 16)]; |
83 | | T5 = ri[WS(is, 48)]; |
84 | | T6 = T4 + T5; |
85 | | T5X = T4 - T5; |
86 | | T27 = ii[WS(is, 16)]; |
87 | | T28 = ii[WS(is, 48)]; |
88 | | T29 = T27 + T28; |
89 | | T36 = T27 - T28; |
90 | | } |
91 | | { |
92 | | E T8, T9, T2b, T2c; |
93 | | T8 = ri[WS(is, 8)]; |
94 | | T9 = ri[WS(is, 40)]; |
95 | | Ta = T8 + T9; |
96 | | T39 = T8 - T9; |
97 | | T2b = ii[WS(is, 8)]; |
98 | | T2c = ii[WS(is, 40)]; |
99 | | T2d = T2b + T2c; |
100 | | T38 = T2b - T2c; |
101 | | } |
102 | | { |
103 | | E Tb, Tc, T2e, T2f; |
104 | | Tb = ri[WS(is, 56)]; |
105 | | Tc = ri[WS(is, 24)]; |
106 | | Td = Tb + Tc; |
107 | | T3b = Tb - Tc; |
108 | | T2e = ii[WS(is, 56)]; |
109 | | T2f = ii[WS(is, 24)]; |
110 | | T2g = T2e + T2f; |
111 | | T3c = T2e - T2f; |
112 | | } |
113 | | { |
114 | | E T7, Te, T2a, T2h; |
115 | | T37 = T35 - T36; |
116 | | T7B = T35 + T36; |
117 | | T8F = T5Y - T5X; |
118 | | T5Z = T5X + T5Y; |
119 | | T7 = T3 + T6; |
120 | | Te = Ta + Td; |
121 | | Tf = T7 + Te; |
122 | | Td9 = T7 - Te; |
123 | | { |
124 | | E Tbz, TbA, T60, T61; |
125 | | Tbz = Td - Ta; |
126 | | TbA = T26 - T29; |
127 | | TbB = Tbz + TbA; |
128 | | TcB = TbA - Tbz; |
129 | | T60 = T3b - T3c; |
130 | | T61 = T39 + T38; |
131 | | T62 = T60 - T61; |
132 | | T7C = T61 + T60; |
133 | | } |
134 | | T2a = T26 + T29; |
135 | | T2h = T2d + T2g; |
136 | | T2i = T2a + T2h; |
137 | | TdH = T2a - T2h; |
138 | | { |
139 | | E Taf, Tag, T3a, T3d; |
140 | | Taf = T3 - T6; |
141 | | Tag = T2d - T2g; |
142 | | Tah = Taf + Tag; |
143 | | Tcb = Taf - Tag; |
144 | | T3a = T38 - T39; |
145 | | T3d = T3b + T3c; |
146 | | T3e = T3a - T3d; |
147 | | T8G = T3a + T3d; |
148 | | } |
149 | | } |
150 | | } |
151 | | { |
152 | | E Ti, T3j, T2l, T3h, Tl, T3g, T2o, T3k, Tp, T3q, T2s, T3o, Ts, T3n, T2v; |
153 | | E T3r; |
154 | | { |
155 | | E Tg, Th, T2j, T2k; |
156 | | Tg = ri[WS(is, 4)]; |
157 | | Th = ri[WS(is, 36)]; |
158 | | Ti = Tg + Th; |
159 | | T3j = Tg - Th; |
160 | | T2j = ii[WS(is, 4)]; |
161 | | T2k = ii[WS(is, 36)]; |
162 | | T2l = T2j + T2k; |
163 | | T3h = T2j - T2k; |
164 | | } |
165 | | { |
166 | | E Tj, Tk, T2m, T2n; |
167 | | Tj = ri[WS(is, 20)]; |
168 | | Tk = ri[WS(is, 52)]; |
169 | | Tl = Tj + Tk; |
170 | | T3g = Tj - Tk; |
171 | | T2m = ii[WS(is, 20)]; |
172 | | T2n = ii[WS(is, 52)]; |
173 | | T2o = T2m + T2n; |
174 | | T3k = T2m - T2n; |
175 | | } |
176 | | { |
177 | | E Tn, To, T2q, T2r; |
178 | | Tn = ri[WS(is, 60)]; |
179 | | To = ri[WS(is, 28)]; |
180 | | Tp = Tn + To; |
181 | | T3q = Tn - To; |
182 | | T2q = ii[WS(is, 60)]; |
183 | | T2r = ii[WS(is, 28)]; |
184 | | T2s = T2q + T2r; |
185 | | T3o = T2q - T2r; |
186 | | } |
187 | | { |
188 | | E Tq, Tr, T2t, T2u; |
189 | | Tq = ri[WS(is, 12)]; |
190 | | Tr = ri[WS(is, 44)]; |
191 | | Ts = Tq + Tr; |
192 | | T3n = Tq - Tr; |
193 | | T2t = ii[WS(is, 12)]; |
194 | | T2u = ii[WS(is, 44)]; |
195 | | T2v = T2t + T2u; |
196 | | T3r = T2t - T2u; |
197 | | } |
198 | | { |
199 | | E Tm, Tt, Tai, Taj; |
200 | | Tm = Ti + Tl; |
201 | | Tt = Tp + Ts; |
202 | | Tu = Tm + Tt; |
203 | | TdI = Tt - Tm; |
204 | | Tai = Ti - Tl; |
205 | | Taj = T2l - T2o; |
206 | | Tak = Tai + Taj; |
207 | | TbC = Taj - Tai; |
208 | | } |
209 | | { |
210 | | E Tal, Tam, T2p, T2w; |
211 | | Tal = Tp - Ts; |
212 | | Tam = T2s - T2v; |
213 | | Tan = Tal - Tam; |
214 | | TbD = Tal + Tam; |
215 | | T2p = T2l + T2o; |
216 | | T2w = T2s + T2v; |
217 | | T2x = T2p + T2w; |
218 | | Tda = T2p - T2w; |
219 | | } |
220 | | { |
221 | | E T3i, T3l, T7E, T7F; |
222 | | T3i = T3g + T3h; |
223 | | T3l = T3j - T3k; |
224 | | T3m = FMA(KP414213562, T3l, T3i); |
225 | | T65 = FNMS(KP414213562, T3i, T3l); |
226 | | T7E = T3j + T3k; |
227 | | T7F = T3h - T3g; |
228 | | T7G = FMA(KP414213562, T7F, T7E); |
229 | | T8I = FNMS(KP414213562, T7E, T7F); |
230 | | } |
231 | | { |
232 | | E T7H, T7I, T3p, T3s; |
233 | | T7H = T3q + T3r; |
234 | | T7I = T3o - T3n; |
235 | | T7J = FNMS(KP414213562, T7I, T7H); |
236 | | T8J = FMA(KP414213562, T7H, T7I); |
237 | | T3p = T3n + T3o; |
238 | | T3s = T3q - T3r; |
239 | | T3t = FNMS(KP414213562, T3s, T3p); |
240 | | T64 = FMA(KP414213562, T3p, T3s); |
241 | | } |
242 | | } |
243 | | { |
244 | | E Ty, T3H, T2B, T3x, TB, T3w, T2E, T3I, TI, T3K, T2L, T3E, TF, T3L, T2I; |
245 | | E T3B; |
246 | | { |
247 | | E Tw, Tx, T2C, T2D; |
248 | | Tw = ri[WS(is, 2)]; |
249 | | Tx = ri[WS(is, 34)]; |
250 | | Ty = Tw + Tx; |
251 | | T3H = Tw - Tx; |
252 | | { |
253 | | E T2z, T2A, Tz, TA; |
254 | | T2z = ii[WS(is, 2)]; |
255 | | T2A = ii[WS(is, 34)]; |
256 | | T2B = T2z + T2A; |
257 | | T3x = T2z - T2A; |
258 | | Tz = ri[WS(is, 18)]; |
259 | | TA = ri[WS(is, 50)]; |
260 | | TB = Tz + TA; |
261 | | T3w = Tz - TA; |
262 | | } |
263 | | T2C = ii[WS(is, 18)]; |
264 | | T2D = ii[WS(is, 50)]; |
265 | | T2E = T2C + T2D; |
266 | | T3I = T2C - T2D; |
267 | | { |
268 | | E TG, TH, T3C, T2J, T2K, T3D; |
269 | | TG = ri[WS(is, 58)]; |
270 | | TH = ri[WS(is, 26)]; |
271 | | T3C = TG - TH; |
272 | | T2J = ii[WS(is, 58)]; |
273 | | T2K = ii[WS(is, 26)]; |
274 | | T3D = T2J - T2K; |
275 | | TI = TG + TH; |
276 | | T3K = T3C + T3D; |
277 | | T2L = T2J + T2K; |
278 | | T3E = T3C - T3D; |
279 | | } |
280 | | { |
281 | | E TD, TE, T3z, T2G, T2H, T3A; |
282 | | TD = ri[WS(is, 10)]; |
283 | | TE = ri[WS(is, 42)]; |
284 | | T3z = TD - TE; |
285 | | T2G = ii[WS(is, 10)]; |
286 | | T2H = ii[WS(is, 42)]; |
287 | | T3A = T2G - T2H; |
288 | | TF = TD + TE; |
289 | | T3L = T3A - T3z; |
290 | | T2I = T2G + T2H; |
291 | | T3B = T3z + T3A; |
292 | | } |
293 | | } |
294 | | { |
295 | | E TC, TJ, Taq, Tar; |
296 | | TC = Ty + TB; |
297 | | TJ = TF + TI; |
298 | | TK = TC + TJ; |
299 | | Tdd = TC - TJ; |
300 | | Taq = TI - TF; |
301 | | Tar = T2B - T2E; |
302 | | Tas = Taq + Tar; |
303 | | Tce = Tar - Taq; |
304 | | } |
305 | | { |
306 | | E Tat, Tau, T2F, T2M; |
307 | | Tat = Ty - TB; |
308 | | Tau = T2I - T2L; |
309 | | Tav = Tat + Tau; |
310 | | Tcf = Tat - Tau; |
311 | | T2F = T2B + T2E; |
312 | | T2M = T2I + T2L; |
313 | | T2N = T2F + T2M; |
314 | | Tdc = T2F - T2M; |
315 | | } |
316 | | { |
317 | | E T3y, T3F, T7M, T7N; |
318 | | T3y = T3w + T3x; |
319 | | T3F = T3B - T3E; |
320 | | T3G = FNMS(KP707106781, T3F, T3y); |
321 | | T6G = FMA(KP707106781, T3F, T3y); |
322 | | T7M = T3x - T3w; |
323 | | T7N = T3L + T3K; |
324 | | T7O = FMA(KP707106781, T7N, T7M); |
325 | | T9k = FNMS(KP707106781, T7N, T7M); |
326 | | } |
327 | | { |
328 | | E T7P, T7Q, T3J, T3M; |
329 | | T7P = T3H + T3I; |
330 | | T7Q = T3B + T3E; |
331 | | T7R = FMA(KP707106781, T7Q, T7P); |
332 | | T9l = FNMS(KP707106781, T7Q, T7P); |
333 | | T3J = T3H - T3I; |
334 | | T3M = T3K - T3L; |
335 | | T3N = FNMS(KP707106781, T3M, T3J); |
336 | | T6H = FMA(KP707106781, T3M, T3J); |
337 | | } |
338 | | } |
339 | | { |
340 | | E T1z, T5I, T56, Tb8, T1C, T53, T5L, Tb9, T1J, Tbq, T5h, T5N, T1G, Tbp, T5c; |
341 | | E T5O; |
342 | | { |
343 | | E T1x, T1y, T5J, T5K; |
344 | | T1x = ri[WS(is, 63)]; |
345 | | T1y = ri[WS(is, 31)]; |
346 | | T1z = T1x + T1y; |
347 | | T5I = T1x - T1y; |
348 | | { |
349 | | E T54, T55, T1A, T1B; |
350 | | T54 = ii[WS(is, 63)]; |
351 | | T55 = ii[WS(is, 31)]; |
352 | | T56 = T54 - T55; |
353 | | Tb8 = T54 + T55; |
354 | | T1A = ri[WS(is, 15)]; |
355 | | T1B = ri[WS(is, 47)]; |
356 | | T1C = T1A + T1B; |
357 | | T53 = T1A - T1B; |
358 | | } |
359 | | T5J = ii[WS(is, 15)]; |
360 | | T5K = ii[WS(is, 47)]; |
361 | | T5L = T5J - T5K; |
362 | | Tb9 = T5J + T5K; |
363 | | { |
364 | | E T1H, T1I, T5d, T5e, T5f, T5g; |
365 | | T1H = ri[WS(is, 55)]; |
366 | | T1I = ri[WS(is, 23)]; |
367 | | T5d = T1H - T1I; |
368 | | T5e = ii[WS(is, 55)]; |
369 | | T5f = ii[WS(is, 23)]; |
370 | | T5g = T5e - T5f; |
371 | | T1J = T1H + T1I; |
372 | | Tbq = T5e + T5f; |
373 | | T5h = T5d - T5g; |
374 | | T5N = T5d + T5g; |
375 | | } |
376 | | { |
377 | | E T1E, T1F, T58, T59, T5a, T5b; |
378 | | T1E = ri[WS(is, 7)]; |
379 | | T1F = ri[WS(is, 39)]; |
380 | | T58 = T1E - T1F; |
381 | | T59 = ii[WS(is, 7)]; |
382 | | T5a = ii[WS(is, 39)]; |
383 | | T5b = T59 - T5a; |
384 | | T1G = T1E + T1F; |
385 | | Tbp = T59 + T5a; |
386 | | T5c = T58 + T5b; |
387 | | T5O = T5b - T58; |
388 | | } |
389 | | } |
390 | | { |
391 | | E T1D, T1K, Tbo, Tbr; |
392 | | T1D = T1z + T1C; |
393 | | T1K = T1G + T1J; |
394 | | T1L = T1D + T1K; |
395 | | TdA = T1D - T1K; |
396 | | Tbo = T1z - T1C; |
397 | | Tbr = Tbp - Tbq; |
398 | | Tbs = Tbo + Tbr; |
399 | | Tct = Tbo - Tbr; |
400 | | } |
401 | | { |
402 | | E Tdv, Tdw, T57, T5i; |
403 | | Tdv = Tb8 + Tb9; |
404 | | Tdw = Tbp + Tbq; |
405 | | Tdx = Tdv - Tdw; |
406 | | Teo = Tdv + Tdw; |
407 | | T57 = T53 + T56; |
408 | | T5i = T5c - T5h; |
409 | | T5j = FNMS(KP707106781, T5i, T57); |
410 | | T6Y = FMA(KP707106781, T5i, T57); |
411 | | } |
412 | | { |
413 | | E T5M, T5P, T8w, T8x; |
414 | | T5M = T5I - T5L; |
415 | | T5P = T5N - T5O; |
416 | | T5Q = FNMS(KP707106781, T5P, T5M); |
417 | | T6V = FMA(KP707106781, T5P, T5M); |
418 | | T8w = T5I + T5L; |
419 | | T8x = T5c + T5h; |
420 | | T8y = FMA(KP707106781, T8x, T8w); |
421 | | T9z = FNMS(KP707106781, T8x, T8w); |
422 | | } |
423 | | { |
424 | | E Tb7, Tba, T8l, T8m; |
425 | | Tb7 = T1J - T1G; |
426 | | Tba = Tb8 - Tb9; |
427 | | Tbb = Tb7 + Tba; |
428 | | Tcw = Tba - Tb7; |
429 | | T8l = T56 - T53; |
430 | | T8m = T5O + T5N; |
431 | | T8n = FMA(KP707106781, T8m, T8l); |
432 | | T9C = FNMS(KP707106781, T8m, T8l); |
433 | | } |
434 | | } |
435 | | { |
436 | | E TN, T40, T2Q, T3Q, TQ, T3P, T2T, T41, TX, T43, T30, T3X, TU, T44, T2X; |
437 | | E T3U; |
438 | | { |
439 | | E TL, TM, T2R, T2S; |
440 | | TL = ri[WS(is, 62)]; |
441 | | TM = ri[WS(is, 30)]; |
442 | | TN = TL + TM; |
443 | | T40 = TL - TM; |
444 | | { |
445 | | E T2O, T2P, TO, TP; |
446 | | T2O = ii[WS(is, 62)]; |
447 | | T2P = ii[WS(is, 30)]; |
448 | | T2Q = T2O + T2P; |
449 | | T3Q = T2O - T2P; |
450 | | TO = ri[WS(is, 14)]; |
451 | | TP = ri[WS(is, 46)]; |
452 | | TQ = TO + TP; |
453 | | T3P = TO - TP; |
454 | | } |
455 | | T2R = ii[WS(is, 14)]; |
456 | | T2S = ii[WS(is, 46)]; |
457 | | T2T = T2R + T2S; |
458 | | T41 = T2R - T2S; |
459 | | { |
460 | | E TV, TW, T3V, T2Y, T2Z, T3W; |
461 | | TV = ri[WS(is, 54)]; |
462 | | TW = ri[WS(is, 22)]; |
463 | | T3V = TV - TW; |
464 | | T2Y = ii[WS(is, 54)]; |
465 | | T2Z = ii[WS(is, 22)]; |
466 | | T3W = T2Y - T2Z; |
467 | | TX = TV + TW; |
468 | | T43 = T3V + T3W; |
469 | | T30 = T2Y + T2Z; |
470 | | T3X = T3V - T3W; |
471 | | } |
472 | | { |
473 | | E TS, TT, T3S, T2V, T2W, T3T; |
474 | | TS = ri[WS(is, 6)]; |
475 | | TT = ri[WS(is, 38)]; |
476 | | T3S = TS - TT; |
477 | | T2V = ii[WS(is, 6)]; |
478 | | T2W = ii[WS(is, 38)]; |
479 | | T3T = T2V - T2W; |
480 | | TU = TS + TT; |
481 | | T44 = T3T - T3S; |
482 | | T2X = T2V + T2W; |
483 | | T3U = T3S + T3T; |
484 | | } |
485 | | } |
486 | | { |
487 | | E TR, TY, Tax, Tay; |
488 | | TR = TN + TQ; |
489 | | TY = TU + TX; |
490 | | TZ = TR + TY; |
491 | | Tdf = TR - TY; |
492 | | Tax = TX - TU; |
493 | | Tay = T2Q - T2T; |
494 | | Taz = Tax + Tay; |
495 | | Tch = Tay - Tax; |
496 | | } |
497 | | { |
498 | | E TaA, TaB, T2U, T31; |
499 | | TaA = TN - TQ; |
500 | | TaB = T2X - T30; |
501 | | TaC = TaA + TaB; |
502 | | Tci = TaA - TaB; |
503 | | T2U = T2Q + T2T; |
504 | | T31 = T2X + T30; |
505 | | T32 = T2U + T31; |
506 | | Tdg = T2U - T31; |
507 | | } |
508 | | { |
509 | | E T3R, T3Y, T7T, T7U; |
510 | | T3R = T3P + T3Q; |
511 | | T3Y = T3U - T3X; |
512 | | T3Z = FNMS(KP707106781, T3Y, T3R); |
513 | | T6J = FMA(KP707106781, T3Y, T3R); |
514 | | T7T = T3Q - T3P; |
515 | | T7U = T44 + T43; |
516 | | T7V = FMA(KP707106781, T7U, T7T); |
517 | | T9n = FNMS(KP707106781, T7U, T7T); |
518 | | } |
519 | | { |
520 | | E T7W, T7X, T42, T45; |
521 | | T7W = T40 + T41; |
522 | | T7X = T3U + T3X; |
523 | | T7Y = FMA(KP707106781, T7X, T7W); |
524 | | T9o = FNMS(KP707106781, T7X, T7W); |
525 | | T42 = T40 - T41; |
526 | | T45 = T43 - T44; |
527 | | T46 = FNMS(KP707106781, T45, T42); |
528 | | T6K = FMA(KP707106781, T45, T42); |
529 | | } |
530 | | } |
531 | | { |
532 | | E T14, T4P, T4d, TaH, T17, T4a, T4S, TaI, T1e, TaZ, T4o, T4U, T1b, TaY, T4j; |
533 | | E T4V; |
534 | | { |
535 | | E T12, T13, T4Q, T4R; |
536 | | T12 = ri[WS(is, 1)]; |
537 | | T13 = ri[WS(is, 33)]; |
538 | | T14 = T12 + T13; |
539 | | T4P = T12 - T13; |
540 | | { |
541 | | E T4b, T4c, T15, T16; |
542 | | T4b = ii[WS(is, 1)]; |
543 | | T4c = ii[WS(is, 33)]; |
544 | | T4d = T4b - T4c; |
545 | | TaH = T4b + T4c; |
546 | | T15 = ri[WS(is, 17)]; |
547 | | T16 = ri[WS(is, 49)]; |
548 | | T17 = T15 + T16; |
549 | | T4a = T15 - T16; |
550 | | } |
551 | | T4Q = ii[WS(is, 17)]; |
552 | | T4R = ii[WS(is, 49)]; |
553 | | T4S = T4Q - T4R; |
554 | | TaI = T4Q + T4R; |
555 | | { |
556 | | E T1c, T1d, T4k, T4l, T4m, T4n; |
557 | | T1c = ri[WS(is, 57)]; |
558 | | T1d = ri[WS(is, 25)]; |
559 | | T4k = T1c - T1d; |
560 | | T4l = ii[WS(is, 57)]; |
561 | | T4m = ii[WS(is, 25)]; |
562 | | T4n = T4l - T4m; |
563 | | T1e = T1c + T1d; |
564 | | TaZ = T4l + T4m; |
565 | | T4o = T4k - T4n; |
566 | | T4U = T4k + T4n; |
567 | | } |
568 | | { |
569 | | E T19, T1a, T4f, T4g, T4h, T4i; |
570 | | T19 = ri[WS(is, 9)]; |
571 | | T1a = ri[WS(is, 41)]; |
572 | | T4f = T19 - T1a; |
573 | | T4g = ii[WS(is, 9)]; |
574 | | T4h = ii[WS(is, 41)]; |
575 | | T4i = T4g - T4h; |
576 | | T1b = T19 + T1a; |
577 | | TaY = T4g + T4h; |
578 | | T4j = T4f + T4i; |
579 | | T4V = T4i - T4f; |
580 | | } |
581 | | } |
582 | | { |
583 | | E T18, T1f, TaX, Tb0; |
584 | | T18 = T14 + T17; |
585 | | T1f = T1b + T1e; |
586 | | T1g = T18 + T1f; |
587 | | Tdp = T18 - T1f; |
588 | | TaX = T14 - T17; |
589 | | Tb0 = TaY - TaZ; |
590 | | Tb1 = TaX + Tb0; |
591 | | Tcm = TaX - Tb0; |
592 | | } |
593 | | { |
594 | | E Tdk, Tdl, T4e, T4p; |
595 | | Tdk = TaH + TaI; |
596 | | Tdl = TaY + TaZ; |
597 | | Tdm = Tdk - Tdl; |
598 | | Tej = Tdk + Tdl; |
599 | | T4e = T4a + T4d; |
600 | | T4p = T4j - T4o; |
601 | | T4q = FNMS(KP707106781, T4p, T4e); |
602 | | T6R = FMA(KP707106781, T4p, T4e); |
603 | | } |
604 | | { |
605 | | E T4T, T4W, T8d, T8e; |
606 | | T4T = T4P - T4S; |
607 | | T4W = T4U - T4V; |
608 | | T4X = FNMS(KP707106781, T4W, T4T); |
609 | | T6O = FMA(KP707106781, T4W, T4T); |
610 | | T8d = T4P + T4S; |
611 | | T8e = T4j + T4o; |
612 | | T8f = FMA(KP707106781, T8e, T8d); |
613 | | T9s = FNMS(KP707106781, T8e, T8d); |
614 | | } |
615 | | { |
616 | | E TaG, TaJ, T82, T83; |
617 | | TaG = T1e - T1b; |
618 | | TaJ = TaH - TaI; |
619 | | TaK = TaG + TaJ; |
620 | | Tcp = TaJ - TaG; |
621 | | T82 = T4d - T4a; |
622 | | T83 = T4V + T4U; |
623 | | T84 = FMA(KP707106781, T83, T82); |
624 | | T9v = FNMS(KP707106781, T83, T82); |
625 | | } |
626 | | } |
627 | | { |
628 | | E T1j, TaL, T1m, TaM, T4G, T4L, TaO, TaN, T86, T85, T1q, TaR, T1t, TaS, T4v; |
629 | | E T4A, TaT, TaQ, T89, T88; |
630 | | { |
631 | | E T4C, T4K, T4H, T4F; |
632 | | { |
633 | | E T1h, T1i, T4I, T4J; |
634 | | T1h = ri[WS(is, 5)]; |
635 | | T1i = ri[WS(is, 37)]; |
636 | | T1j = T1h + T1i; |
637 | | T4C = T1h - T1i; |
638 | | T4I = ii[WS(is, 5)]; |
639 | | T4J = ii[WS(is, 37)]; |
640 | | T4K = T4I - T4J; |
641 | | TaL = T4I + T4J; |
642 | | } |
643 | | { |
644 | | E T1k, T1l, T4D, T4E; |
645 | | T1k = ri[WS(is, 21)]; |
646 | | T1l = ri[WS(is, 53)]; |
647 | | T1m = T1k + T1l; |
648 | | T4H = T1k - T1l; |
649 | | T4D = ii[WS(is, 21)]; |
650 | | T4E = ii[WS(is, 53)]; |
651 | | T4F = T4D - T4E; |
652 | | TaM = T4D + T4E; |
653 | | } |
654 | | T4G = T4C - T4F; |
655 | | T4L = T4H + T4K; |
656 | | TaO = T1j - T1m; |
657 | | TaN = TaL - TaM; |
658 | | T86 = T4C + T4F; |
659 | | T85 = T4K - T4H; |
660 | | } |
661 | | { |
662 | | E T4r, T4z, T4w, T4u; |
663 | | { |
664 | | E T1o, T1p, T4x, T4y; |
665 | | T1o = ri[WS(is, 61)]; |
666 | | T1p = ri[WS(is, 29)]; |
667 | | T1q = T1o + T1p; |
668 | | T4r = T1o - T1p; |
669 | | T4x = ii[WS(is, 61)]; |
670 | | T4y = ii[WS(is, 29)]; |
671 | | T4z = T4x - T4y; |
672 | | TaR = T4x + T4y; |
673 | | } |
674 | | { |
675 | | E T1r, T1s, T4s, T4t; |
676 | | T1r = ri[WS(is, 13)]; |
677 | | T1s = ri[WS(is, 45)]; |
678 | | T1t = T1r + T1s; |
679 | | T4w = T1r - T1s; |
680 | | T4s = ii[WS(is, 13)]; |
681 | | T4t = ii[WS(is, 45)]; |
682 | | T4u = T4s - T4t; |
683 | | TaS = T4s + T4t; |
684 | | } |
685 | | T4v = T4r - T4u; |
686 | | T4A = T4w + T4z; |
687 | | TaT = TaR - TaS; |
688 | | TaQ = T1q - T1t; |
689 | | T89 = T4r + T4u; |
690 | | T88 = T4z - T4w; |
691 | | } |
692 | | { |
693 | | E T1n, T1u, Tb2, Tb3; |
694 | | T1n = T1j + T1m; |
695 | | T1u = T1q + T1t; |
696 | | T1v = T1n + T1u; |
697 | | Tdn = T1u - T1n; |
698 | | Tb2 = TaO + TaN; |
699 | | Tb3 = TaQ - TaT; |
700 | | Tb4 = Tb2 + Tb3; |
701 | | Tcq = Tb2 - Tb3; |
702 | | } |
703 | | { |
704 | | E Tdq, Tdr, T4B, T4M; |
705 | | Tdq = TaL + TaM; |
706 | | Tdr = TaR + TaS; |
707 | | Tds = Tdq - Tdr; |
708 | | Tek = Tdq + Tdr; |
709 | | T4B = FMA(KP414213562, T4A, T4v); |
710 | | T4M = FNMS(KP414213562, T4L, T4G); |
711 | | T4N = T4B - T4M; |
712 | | T6P = T4M + T4B; |
713 | | } |
714 | | { |
715 | | E T4Y, T4Z, T8g, T8h; |
716 | | T4Y = FMA(KP414213562, T4G, T4L); |
717 | | T4Z = FNMS(KP414213562, T4v, T4A); |
718 | | T50 = T4Y - T4Z; |
719 | | T6S = T4Y + T4Z; |
720 | | T8g = FMA(KP414213562, T85, T86); |
721 | | T8h = FNMS(KP414213562, T88, T89); |
722 | | T8i = T8g + T8h; |
723 | | T9w = T8g - T8h; |
724 | | } |
725 | | { |
726 | | E TaP, TaU, T87, T8a; |
727 | | TaP = TaN - TaO; |
728 | | TaU = TaQ + TaT; |
729 | | TaV = TaP + TaU; |
730 | | Tcn = TaU - TaP; |
731 | | T87 = FNMS(KP414213562, T86, T85); |
732 | | T8a = FMA(KP414213562, T89, T88); |
733 | | T8b = T87 + T8a; |
734 | | T9t = T8a - T87; |
735 | | } |
736 | | } |
737 | | { |
738 | | E T1O, Tbc, T1R, Tbd, T5z, T5E, Tbf, Tbe, T8p, T8o, T1V, Tbi, T1Y, Tbj, T5o; |
739 | | E T5t, Tbk, Tbh, T8s, T8r; |
740 | | { |
741 | | E T5v, T5D, T5A, T5y; |
742 | | { |
743 | | E T1M, T1N, T5B, T5C; |
744 | | T1M = ri[WS(is, 3)]; |
745 | | T1N = ri[WS(is, 35)]; |
746 | | T1O = T1M + T1N; |
747 | | T5v = T1M - T1N; |
748 | | T5B = ii[WS(is, 3)]; |
749 | | T5C = ii[WS(is, 35)]; |
750 | | T5D = T5B - T5C; |
751 | | Tbc = T5B + T5C; |
752 | | } |
753 | | { |
754 | | E T1P, T1Q, T5w, T5x; |
755 | | T1P = ri[WS(is, 19)]; |
756 | | T1Q = ri[WS(is, 51)]; |
757 | | T1R = T1P + T1Q; |
758 | | T5A = T1P - T1Q; |
759 | | T5w = ii[WS(is, 19)]; |
760 | | T5x = ii[WS(is, 51)]; |
761 | | T5y = T5w - T5x; |
762 | | Tbd = T5w + T5x; |
763 | | } |
764 | | T5z = T5v - T5y; |
765 | | T5E = T5A + T5D; |
766 | | Tbf = T1O - T1R; |
767 | | Tbe = Tbc - Tbd; |
768 | | T8p = T5v + T5y; |
769 | | T8o = T5D - T5A; |
770 | | } |
771 | | { |
772 | | E T5k, T5s, T5p, T5n; |
773 | | { |
774 | | E T1T, T1U, T5q, T5r; |
775 | | T1T = ri[WS(is, 59)]; |
776 | | T1U = ri[WS(is, 27)]; |
777 | | T1V = T1T + T1U; |
778 | | T5k = T1T - T1U; |
779 | | T5q = ii[WS(is, 59)]; |
780 | | T5r = ii[WS(is, 27)]; |
781 | | T5s = T5q - T5r; |
782 | | Tbi = T5q + T5r; |
783 | | } |
784 | | { |
785 | | E T1W, T1X, T5l, T5m; |
786 | | T1W = ri[WS(is, 11)]; |
787 | | T1X = ri[WS(is, 43)]; |
788 | | T1Y = T1W + T1X; |
789 | | T5p = T1W - T1X; |
790 | | T5l = ii[WS(is, 11)]; |
791 | | T5m = ii[WS(is, 43)]; |
792 | | T5n = T5l - T5m; |
793 | | Tbj = T5l + T5m; |
794 | | } |
795 | | T5o = T5k - T5n; |
796 | | T5t = T5p + T5s; |
797 | | Tbk = Tbi - Tbj; |
798 | | Tbh = T1V - T1Y; |
799 | | T8s = T5k + T5n; |
800 | | T8r = T5s - T5p; |
801 | | } |
802 | | { |
803 | | E T1S, T1Z, Tbt, Tbu; |
804 | | T1S = T1O + T1R; |
805 | | T1Z = T1V + T1Y; |
806 | | T20 = T1S + T1Z; |
807 | | Tdy = T1Z - T1S; |
808 | | Tbt = Tbf + Tbe; |
809 | | Tbu = Tbh - Tbk; |
810 | | Tbv = Tbt + Tbu; |
811 | | Tcx = Tbt - Tbu; |
812 | | } |
813 | | { |
814 | | E TdB, TdC, T5u, T5F; |
815 | | TdB = Tbc + Tbd; |
816 | | TdC = Tbi + Tbj; |
817 | | TdD = TdB - TdC; |
818 | | Tep = TdB + TdC; |
819 | | T5u = FMA(KP414213562, T5t, T5o); |
820 | | T5F = FNMS(KP414213562, T5E, T5z); |
821 | | T5G = T5u - T5F; |
822 | | T6W = T5F + T5u; |
823 | | } |
824 | | { |
825 | | E T5R, T5S, T8z, T8A; |
826 | | T5R = FMA(KP414213562, T5z, T5E); |
827 | | T5S = FNMS(KP414213562, T5o, T5t); |
828 | | T5T = T5R - T5S; |
829 | | T6Z = T5R + T5S; |
830 | | T8z = FMA(KP414213562, T8o, T8p); |
831 | | T8A = FNMS(KP414213562, T8r, T8s); |
832 | | T8B = T8z + T8A; |
833 | | T9D = T8z - T8A; |
834 | | } |
835 | | { |
836 | | E Tbg, Tbl, T8q, T8t; |
837 | | Tbg = Tbe - Tbf; |
838 | | Tbl = Tbh + Tbk; |
839 | | Tbm = Tbg + Tbl; |
840 | | Tcu = Tbl - Tbg; |
841 | | T8q = FNMS(KP414213562, T8p, T8o); |
842 | | T8t = FMA(KP414213562, T8s, T8r); |
843 | | T8u = T8q + T8t; |
844 | | T9A = T8t - T8q; |
845 | | } |
846 | | } |
847 | | { |
848 | | E T11, TeD, TeG, TeI, T22, T23, T34, TeH; |
849 | | { |
850 | | E Tv, T10, TeE, TeF; |
851 | | Tv = Tf + Tu; |
852 | | T10 = TK + TZ; |
853 | | T11 = Tv + T10; |
854 | | TeD = Tv - T10; |
855 | | TeE = Tej + Tek; |
856 | | TeF = Teo + Tep; |
857 | | TeG = TeE - TeF; |
858 | | TeI = TeE + TeF; |
859 | | } |
860 | | { |
861 | | E T1w, T21, T2y, T33; |
862 | | T1w = T1g + T1v; |
863 | | T21 = T1L + T20; |
864 | | T22 = T1w + T21; |
865 | | T23 = T21 - T1w; |
866 | | T2y = T2i + T2x; |
867 | | T33 = T2N + T32; |
868 | | T34 = T2y - T33; |
869 | | TeH = T2y + T33; |
870 | | } |
871 | | ro[WS(os, 32)] = T11 - T22; |
872 | | io[WS(os, 32)] = TeH - TeI; |
873 | | ro[0] = T11 + T22; |
874 | | io[0] = TeH + TeI; |
875 | | io[WS(os, 16)] = T23 + T34; |
876 | | ro[WS(os, 16)] = TeD + TeG; |
877 | | io[WS(os, 48)] = T34 - T23; |
878 | | ro[WS(os, 48)] = TeD - TeG; |
879 | | } |
880 | | { |
881 | | E Teh, Tex, Tev, TeB, Tem, Tey, Ter, Tez; |
882 | | { |
883 | | E Tef, Teg, Tet, Teu; |
884 | | Tef = Tf - Tu; |
885 | | Teg = T2N - T32; |
886 | | Teh = Tef + Teg; |
887 | | Tex = Tef - Teg; |
888 | | Tet = T2i - T2x; |
889 | | Teu = TZ - TK; |
890 | | Tev = Tet - Teu; |
891 | | TeB = Teu + Tet; |
892 | | } |
893 | | { |
894 | | E Tei, Tel, Ten, Teq; |
895 | | Tei = T1g - T1v; |
896 | | Tel = Tej - Tek; |
897 | | Tem = Tei + Tel; |
898 | | Tey = Tel - Tei; |
899 | | Ten = T1L - T20; |
900 | | Teq = Teo - Tep; |
901 | | Ter = Ten - Teq; |
902 | | Tez = Ten + Teq; |
903 | | } |
904 | | { |
905 | | E Tes, TeC, Tew, TeA; |
906 | | Tes = Tem + Ter; |
907 | | ro[WS(os, 40)] = FNMS(KP707106781, Tes, Teh); |
908 | | ro[WS(os, 8)] = FMA(KP707106781, Tes, Teh); |
909 | | TeC = Tey + Tez; |
910 | | io[WS(os, 40)] = FNMS(KP707106781, TeC, TeB); |
911 | | io[WS(os, 8)] = FMA(KP707106781, TeC, TeB); |
912 | | Tew = Ter - Tem; |
913 | | io[WS(os, 56)] = FNMS(KP707106781, Tew, Tev); |
914 | | io[WS(os, 24)] = FMA(KP707106781, Tew, Tev); |
915 | | TeA = Tey - Tez; |
916 | | ro[WS(os, 56)] = FNMS(KP707106781, TeA, Tex); |
917 | | ro[WS(os, 24)] = FMA(KP707106781, TeA, Tex); |
918 | | } |
919 | | } |
920 | | { |
921 | | E Tdb, TdV, Te5, TdJ, Tdi, Te6, Te3, Teb, TdM, TdW, Tdu, TdR, Te0, Tea, TdF; |
922 | | E TdQ; |
923 | | { |
924 | | E Tde, Tdh, Tdo, Tdt; |
925 | | Tdb = Td9 - Tda; |
926 | | TdV = Td9 + Tda; |
927 | | Te5 = TdI + TdH; |
928 | | TdJ = TdH - TdI; |
929 | | Tde = Tdc - Tdd; |
930 | | Tdh = Tdf + Tdg; |
931 | | Tdi = Tde - Tdh; |
932 | | Te6 = Tde + Tdh; |
933 | | { |
934 | | E Te1, Te2, TdK, TdL; |
935 | | Te1 = TdA + TdD; |
936 | | Te2 = Tdy + Tdx; |
937 | | Te3 = FNMS(KP414213562, Te2, Te1); |
938 | | Teb = FMA(KP414213562, Te1, Te2); |
939 | | TdK = Tdf - Tdg; |
940 | | TdL = Tdd + Tdc; |
941 | | TdM = TdK - TdL; |
942 | | TdW = TdL + TdK; |
943 | | } |
944 | | Tdo = Tdm - Tdn; |
945 | | Tdt = Tdp - Tds; |
946 | | Tdu = FMA(KP414213562, Tdt, Tdo); |
947 | | TdR = FNMS(KP414213562, Tdo, Tdt); |
948 | | { |
949 | | E TdY, TdZ, Tdz, TdE; |
950 | | TdY = Tdp + Tds; |
951 | | TdZ = Tdn + Tdm; |
952 | | Te0 = FMA(KP414213562, TdZ, TdY); |
953 | | Tea = FNMS(KP414213562, TdY, TdZ); |
954 | | Tdz = Tdx - Tdy; |
955 | | TdE = TdA - TdD; |
956 | | TdF = FNMS(KP414213562, TdE, Tdz); |
957 | | TdQ = FMA(KP414213562, Tdz, TdE); |
958 | | } |
959 | | } |
960 | | { |
961 | | E Tdj, TdG, TdP, TdS; |
962 | | Tdj = FMA(KP707106781, Tdi, Tdb); |
963 | | TdG = Tdu - TdF; |
964 | | ro[WS(os, 44)] = FNMS(KP923879532, TdG, Tdj); |
965 | | ro[WS(os, 12)] = FMA(KP923879532, TdG, Tdj); |
966 | | TdP = FMA(KP707106781, TdM, TdJ); |
967 | | TdS = TdQ - TdR; |
968 | | io[WS(os, 44)] = FNMS(KP923879532, TdS, TdP); |
969 | | io[WS(os, 12)] = FMA(KP923879532, TdS, TdP); |
970 | | } |
971 | | { |
972 | | E TdN, TdO, TdT, TdU; |
973 | | TdN = FNMS(KP707106781, TdM, TdJ); |
974 | | TdO = Tdu + TdF; |
975 | | io[WS(os, 28)] = FNMS(KP923879532, TdO, TdN); |
976 | | io[WS(os, 60)] = FMA(KP923879532, TdO, TdN); |
977 | | TdT = FNMS(KP707106781, Tdi, Tdb); |
978 | | TdU = TdR + TdQ; |
979 | | ro[WS(os, 28)] = FNMS(KP923879532, TdU, TdT); |
980 | | ro[WS(os, 60)] = FMA(KP923879532, TdU, TdT); |
981 | | } |
982 | | { |
983 | | E TdX, Te4, Ted, Tee; |
984 | | TdX = FMA(KP707106781, TdW, TdV); |
985 | | Te4 = Te0 + Te3; |
986 | | ro[WS(os, 36)] = FNMS(KP923879532, Te4, TdX); |
987 | | ro[WS(os, 4)] = FMA(KP923879532, Te4, TdX); |
988 | | Ted = FMA(KP707106781, Te6, Te5); |
989 | | Tee = Tea + Teb; |
990 | | io[WS(os, 36)] = FNMS(KP923879532, Tee, Ted); |
991 | | io[WS(os, 4)] = FMA(KP923879532, Tee, Ted); |
992 | | } |
993 | | { |
994 | | E Te7, Te8, Te9, Tec; |
995 | | Te7 = FNMS(KP707106781, Te6, Te5); |
996 | | Te8 = Te3 - Te0; |
997 | | io[WS(os, 52)] = FNMS(KP923879532, Te8, Te7); |
998 | | io[WS(os, 20)] = FMA(KP923879532, Te8, Te7); |
999 | | Te9 = FNMS(KP707106781, TdW, TdV); |
1000 | | Tec = Tea - Teb; |
1001 | | ro[WS(os, 52)] = FNMS(KP923879532, Tec, Te9); |
1002 | | ro[WS(os, 20)] = FMA(KP923879532, Tec, Te9); |
1003 | | } |
1004 | | } |
1005 | | { |
1006 | | E Tcd, TcP, TcD, TcZ, Tck, Td0, TcX, Td4, Tcs, TcK, TcG, TcQ, TcU, Td5, Tcz; |
1007 | | E TcL, Tcc, TcC; |
1008 | | Tcc = TbC - TbD; |
1009 | | Tcd = FMA(KP707106781, Tcc, Tcb); |
1010 | | TcP = FNMS(KP707106781, Tcc, Tcb); |
1011 | | TcC = Tan - Tak; |
1012 | | TcD = FMA(KP707106781, TcC, TcB); |
1013 | | TcZ = FNMS(KP707106781, TcC, TcB); |
1014 | | { |
1015 | | E Tcg, Tcj, TcV, TcW; |
1016 | | Tcg = FMA(KP414213562, Tcf, Tce); |
1017 | | Tcj = FNMS(KP414213562, Tci, Tch); |
1018 | | Tck = Tcg - Tcj; |
1019 | | Td0 = Tcg + Tcj; |
1020 | | TcV = FMA(KP707106781, Tcx, Tcw); |
1021 | | TcW = FMA(KP707106781, Tcu, Tct); |
1022 | | TcX = FNMS(KP198912367, TcW, TcV); |
1023 | | Td4 = FMA(KP198912367, TcV, TcW); |
1024 | | } |
1025 | | { |
1026 | | E Tco, Tcr, TcE, TcF; |
1027 | | Tco = FNMS(KP707106781, Tcn, Tcm); |
1028 | | Tcr = FNMS(KP707106781, Tcq, Tcp); |
1029 | | Tcs = FMA(KP668178637, Tcr, Tco); |
1030 | | TcK = FNMS(KP668178637, Tco, Tcr); |
1031 | | TcE = FMA(KP414213562, Tch, Tci); |
1032 | | TcF = FNMS(KP414213562, Tce, Tcf); |
1033 | | TcG = TcE - TcF; |
1034 | | TcQ = TcF + TcE; |
1035 | | } |
1036 | | { |
1037 | | E TcS, TcT, Tcv, Tcy; |
1038 | | TcS = FMA(KP707106781, Tcq, Tcp); |
1039 | | TcT = FMA(KP707106781, Tcn, Tcm); |
1040 | | TcU = FMA(KP198912367, TcT, TcS); |
1041 | | Td5 = FNMS(KP198912367, TcS, TcT); |
1042 | | Tcv = FNMS(KP707106781, Tcu, Tct); |
1043 | | Tcy = FNMS(KP707106781, Tcx, Tcw); |
1044 | | Tcz = FNMS(KP668178637, Tcy, Tcv); |
1045 | | TcL = FMA(KP668178637, Tcv, Tcy); |
1046 | | } |
1047 | | { |
1048 | | E Tcl, TcA, TcN, TcO; |
1049 | | Tcl = FMA(KP923879532, Tck, Tcd); |
1050 | | TcA = Tcs + Tcz; |
1051 | | ro[WS(os, 38)] = FNMS(KP831469612, TcA, Tcl); |
1052 | | ro[WS(os, 6)] = FMA(KP831469612, TcA, Tcl); |
1053 | | TcN = FMA(KP923879532, TcG, TcD); |
1054 | | TcO = TcK + TcL; |
1055 | | io[WS(os, 38)] = FNMS(KP831469612, TcO, TcN); |
1056 | | io[WS(os, 6)] = FMA(KP831469612, TcO, TcN); |
1057 | | } |
1058 | | { |
1059 | | E TcH, TcI, TcJ, TcM; |
1060 | | TcH = FNMS(KP923879532, TcG, TcD); |
1061 | | TcI = Tcz - Tcs; |
1062 | | io[WS(os, 54)] = FNMS(KP831469612, TcI, TcH); |
1063 | | io[WS(os, 22)] = FMA(KP831469612, TcI, TcH); |
1064 | | TcJ = FNMS(KP923879532, Tck, Tcd); |
1065 | | TcM = TcK - TcL; |
1066 | | ro[WS(os, 54)] = FNMS(KP831469612, TcM, TcJ); |
1067 | | ro[WS(os, 22)] = FMA(KP831469612, TcM, TcJ); |
1068 | | } |
1069 | | { |
1070 | | E TcR, TcY, Td3, Td6; |
1071 | | TcR = FNMS(KP923879532, TcQ, TcP); |
1072 | | TcY = TcU - TcX; |
1073 | | ro[WS(os, 46)] = FNMS(KP980785280, TcY, TcR); |
1074 | | ro[WS(os, 14)] = FMA(KP980785280, TcY, TcR); |
1075 | | Td3 = FNMS(KP923879532, Td0, TcZ); |
1076 | | Td6 = Td4 - Td5; |
1077 | | io[WS(os, 46)] = FNMS(KP980785280, Td6, Td3); |
1078 | | io[WS(os, 14)] = FMA(KP980785280, Td6, Td3); |
1079 | | } |
1080 | | { |
1081 | | E Td1, Td2, Td7, Td8; |
1082 | | Td1 = FMA(KP923879532, Td0, TcZ); |
1083 | | Td2 = TcU + TcX; |
1084 | | io[WS(os, 30)] = FNMS(KP980785280, Td2, Td1); |
1085 | | io[WS(os, 62)] = FMA(KP980785280, Td2, Td1); |
1086 | | Td7 = FMA(KP923879532, TcQ, TcP); |
1087 | | Td8 = Td5 + Td4; |
1088 | | ro[WS(os, 30)] = FNMS(KP980785280, Td8, Td7); |
1089 | | ro[WS(os, 62)] = FMA(KP980785280, Td8, Td7); |
1090 | | } |
1091 | | } |
1092 | | { |
1093 | | E Tap, TbR, TbF, Tc1, TaE, Tc2, TbZ, Tc7, Tb6, TbN, TbI, TbS, TbW, Tc6, Tbx; |
1094 | | E TbM, Tao, TbE; |
1095 | | Tao = Tak + Tan; |
1096 | | Tap = FNMS(KP707106781, Tao, Tah); |
1097 | | TbR = FMA(KP707106781, Tao, Tah); |
1098 | | TbE = TbC + TbD; |
1099 | | TbF = FNMS(KP707106781, TbE, TbB); |
1100 | | Tc1 = FMA(KP707106781, TbE, TbB); |
1101 | | { |
1102 | | E Taw, TaD, TbX, TbY; |
1103 | | Taw = FNMS(KP414213562, Tav, Tas); |
1104 | | TaD = FMA(KP414213562, TaC, Taz); |
1105 | | TaE = Taw - TaD; |
1106 | | Tc2 = Taw + TaD; |
1107 | | TbX = FMA(KP707106781, Tbv, Tbs); |
1108 | | TbY = FMA(KP707106781, Tbm, Tbb); |
1109 | | TbZ = FNMS(KP198912367, TbY, TbX); |
1110 | | Tc7 = FMA(KP198912367, TbX, TbY); |
1111 | | } |
1112 | | { |
1113 | | E TaW, Tb5, TbG, TbH; |
1114 | | TaW = FNMS(KP707106781, TaV, TaK); |
1115 | | Tb5 = FNMS(KP707106781, Tb4, Tb1); |
1116 | | Tb6 = FMA(KP668178637, Tb5, TaW); |
1117 | | TbN = FNMS(KP668178637, TaW, Tb5); |
1118 | | TbG = FNMS(KP414213562, Taz, TaC); |
1119 | | TbH = FMA(KP414213562, Tas, Tav); |
1120 | | TbI = TbG - TbH; |
1121 | | TbS = TbH + TbG; |
1122 | | } |
1123 | | { |
1124 | | E TbU, TbV, Tbn, Tbw; |
1125 | | TbU = FMA(KP707106781, Tb4, Tb1); |
1126 | | TbV = FMA(KP707106781, TaV, TaK); |
1127 | | TbW = FMA(KP198912367, TbV, TbU); |
1128 | | Tc6 = FNMS(KP198912367, TbU, TbV); |
1129 | | Tbn = FNMS(KP707106781, Tbm, Tbb); |
1130 | | Tbw = FNMS(KP707106781, Tbv, Tbs); |
1131 | | Tbx = FNMS(KP668178637, Tbw, Tbn); |
1132 | | TbM = FMA(KP668178637, Tbn, Tbw); |
1133 | | } |
1134 | | { |
1135 | | E TaF, Tby, TbL, TbO; |
1136 | | TaF = FMA(KP923879532, TaE, Tap); |
1137 | | Tby = Tb6 - Tbx; |
1138 | | ro[WS(os, 42)] = FNMS(KP831469612, Tby, TaF); |
1139 | | ro[WS(os, 10)] = FMA(KP831469612, Tby, TaF); |
1140 | | TbL = FMA(KP923879532, TbI, TbF); |
1141 | | TbO = TbM - TbN; |
1142 | | io[WS(os, 42)] = FNMS(KP831469612, TbO, TbL); |
1143 | | io[WS(os, 10)] = FMA(KP831469612, TbO, TbL); |
1144 | | } |
1145 | | { |
1146 | | E TbJ, TbK, TbP, TbQ; |
1147 | | TbJ = FNMS(KP923879532, TbI, TbF); |
1148 | | TbK = Tb6 + Tbx; |
1149 | | io[WS(os, 26)] = FNMS(KP831469612, TbK, TbJ); |
1150 | | io[WS(os, 58)] = FMA(KP831469612, TbK, TbJ); |
1151 | | TbP = FNMS(KP923879532, TaE, Tap); |
1152 | | TbQ = TbN + TbM; |
1153 | | ro[WS(os, 26)] = FNMS(KP831469612, TbQ, TbP); |
1154 | | ro[WS(os, 58)] = FMA(KP831469612, TbQ, TbP); |
1155 | | } |
1156 | | { |
1157 | | E TbT, Tc0, Tc9, Tca; |
1158 | | TbT = FMA(KP923879532, TbS, TbR); |
1159 | | Tc0 = TbW + TbZ; |
1160 | | ro[WS(os, 34)] = FNMS(KP980785280, Tc0, TbT); |
1161 | | ro[WS(os, 2)] = FMA(KP980785280, Tc0, TbT); |
1162 | | Tc9 = FMA(KP923879532, Tc2, Tc1); |
1163 | | Tca = Tc6 + Tc7; |
1164 | | io[WS(os, 34)] = FNMS(KP980785280, Tca, Tc9); |
1165 | | io[WS(os, 2)] = FMA(KP980785280, Tca, Tc9); |
1166 | | } |
1167 | | { |
1168 | | E Tc3, Tc4, Tc5, Tc8; |
1169 | | Tc3 = FNMS(KP923879532, Tc2, Tc1); |
1170 | | Tc4 = TbZ - TbW; |
1171 | | io[WS(os, 50)] = FNMS(KP980785280, Tc4, Tc3); |
1172 | | io[WS(os, 18)] = FMA(KP980785280, Tc4, Tc3); |
1173 | | Tc5 = FNMS(KP923879532, TbS, TbR); |
1174 | | Tc8 = Tc6 - Tc7; |
1175 | | ro[WS(os, 50)] = FNMS(KP980785280, Tc8, Tc5); |
1176 | | ro[WS(os, 18)] = FMA(KP980785280, Tc8, Tc5); |
1177 | | } |
1178 | | } |
1179 | | { |
1180 | | E T6F, T7h, T7m, T7x, T7p, T7w, T6M, T7s, T6U, T7c, T75, T7r, T78, T7i, T71; |
1181 | | E T7d; |
1182 | | { |
1183 | | E T6D, T6E, T7k, T7l; |
1184 | | T6D = FNMS(KP707106781, T3e, T37); |
1185 | | T6E = T65 + T64; |
1186 | | T6F = FNMS(KP923879532, T6E, T6D); |
1187 | | T7h = FMA(KP923879532, T6E, T6D); |
1188 | | T7k = FMA(KP923879532, T6S, T6R); |
1189 | | T7l = FMA(KP923879532, T6P, T6O); |
1190 | | T7m = FMA(KP098491403, T7l, T7k); |
1191 | | T7x = FNMS(KP098491403, T7k, T7l); |
1192 | | } |
1193 | | { |
1194 | | E T7n, T7o, T6I, T6L; |
1195 | | T7n = FMA(KP923879532, T6Z, T6Y); |
1196 | | T7o = FMA(KP923879532, T6W, T6V); |
1197 | | T7p = FNMS(KP098491403, T7o, T7n); |
1198 | | T7w = FMA(KP098491403, T7n, T7o); |
1199 | | T6I = FMA(KP198912367, T6H, T6G); |
1200 | | T6L = FNMS(KP198912367, T6K, T6J); |
1201 | | T6M = T6I - T6L; |
1202 | | T7s = T6I + T6L; |
1203 | | } |
1204 | | { |
1205 | | E T6Q, T6T, T73, T74; |
1206 | | T6Q = FNMS(KP923879532, T6P, T6O); |
1207 | | T6T = FNMS(KP923879532, T6S, T6R); |
1208 | | T6U = FMA(KP820678790, T6T, T6Q); |
1209 | | T7c = FNMS(KP820678790, T6Q, T6T); |
1210 | | T73 = FNMS(KP707106781, T62, T5Z); |
1211 | | T74 = T3m + T3t; |
1212 | | T75 = FNMS(KP923879532, T74, T73); |
1213 | | T7r = FMA(KP923879532, T74, T73); |
1214 | | } |
1215 | | { |
1216 | | E T76, T77, T6X, T70; |
1217 | | T76 = FMA(KP198912367, T6J, T6K); |
1218 | | T77 = FNMS(KP198912367, T6G, T6H); |
1219 | | T78 = T76 - T77; |
1220 | | T7i = T77 + T76; |
1221 | | T6X = FNMS(KP923879532, T6W, T6V); |
1222 | | T70 = FNMS(KP923879532, T6Z, T6Y); |
1223 | | T71 = FNMS(KP820678790, T70, T6X); |
1224 | | T7d = FMA(KP820678790, T6X, T70); |
1225 | | } |
1226 | | { |
1227 | | E T6N, T72, T7f, T7g; |
1228 | | T6N = FMA(KP980785280, T6M, T6F); |
1229 | | T72 = T6U + T71; |
1230 | | ro[WS(os, 39)] = FNMS(KP773010453, T72, T6N); |
1231 | | ro[WS(os, 7)] = FMA(KP773010453, T72, T6N); |
1232 | | T7f = FMA(KP980785280, T78, T75); |
1233 | | T7g = T7c + T7d; |
1234 | | io[WS(os, 39)] = FNMS(KP773010453, T7g, T7f); |
1235 | | io[WS(os, 7)] = FMA(KP773010453, T7g, T7f); |
1236 | | } |
1237 | | { |
1238 | | E T79, T7a, T7b, T7e; |
1239 | | T79 = FNMS(KP980785280, T78, T75); |
1240 | | T7a = T71 - T6U; |
1241 | | io[WS(os, 55)] = FNMS(KP773010453, T7a, T79); |
1242 | | io[WS(os, 23)] = FMA(KP773010453, T7a, T79); |
1243 | | T7b = FNMS(KP980785280, T6M, T6F); |
1244 | | T7e = T7c - T7d; |
1245 | | ro[WS(os, 55)] = FNMS(KP773010453, T7e, T7b); |
1246 | | ro[WS(os, 23)] = FMA(KP773010453, T7e, T7b); |
1247 | | } |
1248 | | { |
1249 | | E T7j, T7q, T7v, T7y; |
1250 | | T7j = FNMS(KP980785280, T7i, T7h); |
1251 | | T7q = T7m - T7p; |
1252 | | ro[WS(os, 47)] = FNMS(KP995184726, T7q, T7j); |
1253 | | ro[WS(os, 15)] = FMA(KP995184726, T7q, T7j); |
1254 | | T7v = FNMS(KP980785280, T7s, T7r); |
1255 | | T7y = T7w - T7x; |
1256 | | io[WS(os, 47)] = FNMS(KP995184726, T7y, T7v); |
1257 | | io[WS(os, 15)] = FMA(KP995184726, T7y, T7v); |
1258 | | } |
1259 | | { |
1260 | | E T7t, T7u, T7z, T7A; |
1261 | | T7t = FMA(KP980785280, T7s, T7r); |
1262 | | T7u = T7m + T7p; |
1263 | | io[WS(os, 31)] = FNMS(KP995184726, T7u, T7t); |
1264 | | io[WS(os, 63)] = FMA(KP995184726, T7u, T7t); |
1265 | | T7z = FMA(KP980785280, T7i, T7h); |
1266 | | T7A = T7x + T7w; |
1267 | | ro[WS(os, 31)] = FNMS(KP995184726, T7A, T7z); |
1268 | | ro[WS(os, 63)] = FMA(KP995184726, T7A, T7z); |
1269 | | } |
1270 | | } |
1271 | | { |
1272 | | E T9j, T9V, Ta0, Tab, Ta3, Taa, T9q, Ta6, T9y, T9Q, T9J, Ta5, T9M, T9W, T9F; |
1273 | | E T9R; |
1274 | | { |
1275 | | E T9h, T9i, T9Y, T9Z; |
1276 | | T9h = FNMS(KP707106781, T7C, T7B); |
1277 | | T9i = T8I - T8J; |
1278 | | T9j = FMA(KP923879532, T9i, T9h); |
1279 | | T9V = FNMS(KP923879532, T9i, T9h); |
1280 | | T9Y = FMA(KP923879532, T9w, T9v); |
1281 | | T9Z = FMA(KP923879532, T9t, T9s); |
1282 | | Ta0 = FMA(KP303346683, T9Z, T9Y); |
1283 | | Tab = FNMS(KP303346683, T9Y, T9Z); |
1284 | | } |
1285 | | { |
1286 | | E Ta1, Ta2, T9m, T9p; |
1287 | | Ta1 = FMA(KP923879532, T9D, T9C); |
1288 | | Ta2 = FMA(KP923879532, T9A, T9z); |
1289 | | Ta3 = FNMS(KP303346683, Ta2, Ta1); |
1290 | | Taa = FMA(KP303346683, Ta1, Ta2); |
1291 | | T9m = FMA(KP668178637, T9l, T9k); |
1292 | | T9p = FNMS(KP668178637, T9o, T9n); |
1293 | | T9q = T9m - T9p; |
1294 | | Ta6 = T9m + T9p; |
1295 | | } |
1296 | | { |
1297 | | E T9u, T9x, T9H, T9I; |
1298 | | T9u = FNMS(KP923879532, T9t, T9s); |
1299 | | T9x = FNMS(KP923879532, T9w, T9v); |
1300 | | T9y = FMA(KP534511135, T9x, T9u); |
1301 | | T9Q = FNMS(KP534511135, T9u, T9x); |
1302 | | T9H = FNMS(KP707106781, T8G, T8F); |
1303 | | T9I = T7J - T7G; |
1304 | | T9J = FMA(KP923879532, T9I, T9H); |
1305 | | Ta5 = FNMS(KP923879532, T9I, T9H); |
1306 | | } |
1307 | | { |
1308 | | E T9K, T9L, T9B, T9E; |
1309 | | T9K = FMA(KP668178637, T9n, T9o); |
1310 | | T9L = FNMS(KP668178637, T9k, T9l); |
1311 | | T9M = T9K - T9L; |
1312 | | T9W = T9L + T9K; |
1313 | | T9B = FNMS(KP923879532, T9A, T9z); |
1314 | | T9E = FNMS(KP923879532, T9D, T9C); |
1315 | | T9F = FNMS(KP534511135, T9E, T9B); |
1316 | | T9R = FMA(KP534511135, T9B, T9E); |
1317 | | } |
1318 | | { |
1319 | | E T9r, T9G, T9T, T9U; |
1320 | | T9r = FMA(KP831469612, T9q, T9j); |
1321 | | T9G = T9y + T9F; |
1322 | | ro[WS(os, 37)] = FNMS(KP881921264, T9G, T9r); |
1323 | | ro[WS(os, 5)] = FMA(KP881921264, T9G, T9r); |
1324 | | T9T = FMA(KP831469612, T9M, T9J); |
1325 | | T9U = T9Q + T9R; |
1326 | | io[WS(os, 37)] = FNMS(KP881921264, T9U, T9T); |
1327 | | io[WS(os, 5)] = FMA(KP881921264, T9U, T9T); |
1328 | | } |
1329 | | { |
1330 | | E T9N, T9O, T9P, T9S; |
1331 | | T9N = FNMS(KP831469612, T9M, T9J); |
1332 | | T9O = T9F - T9y; |
1333 | | io[WS(os, 53)] = FNMS(KP881921264, T9O, T9N); |
1334 | | io[WS(os, 21)] = FMA(KP881921264, T9O, T9N); |
1335 | | T9P = FNMS(KP831469612, T9q, T9j); |
1336 | | T9S = T9Q - T9R; |
1337 | | ro[WS(os, 53)] = FNMS(KP881921264, T9S, T9P); |
1338 | | ro[WS(os, 21)] = FMA(KP881921264, T9S, T9P); |
1339 | | } |
1340 | | { |
1341 | | E T9X, Ta4, Ta9, Tac; |
1342 | | T9X = FNMS(KP831469612, T9W, T9V); |
1343 | | Ta4 = Ta0 - Ta3; |
1344 | | ro[WS(os, 45)] = FNMS(KP956940335, Ta4, T9X); |
1345 | | ro[WS(os, 13)] = FMA(KP956940335, Ta4, T9X); |
1346 | | Ta9 = FNMS(KP831469612, Ta6, Ta5); |
1347 | | Tac = Taa - Tab; |
1348 | | io[WS(os, 45)] = FNMS(KP956940335, Tac, Ta9); |
1349 | | io[WS(os, 13)] = FMA(KP956940335, Tac, Ta9); |
1350 | | } |
1351 | | { |
1352 | | E Ta7, Ta8, Tad, Tae; |
1353 | | Ta7 = FMA(KP831469612, Ta6, Ta5); |
1354 | | Ta8 = Ta0 + Ta3; |
1355 | | io[WS(os, 29)] = FNMS(KP956940335, Ta8, Ta7); |
1356 | | io[WS(os, 61)] = FMA(KP956940335, Ta8, Ta7); |
1357 | | Tad = FMA(KP831469612, T9W, T9V); |
1358 | | Tae = Tab + Taa; |
1359 | | ro[WS(os, 29)] = FNMS(KP956940335, Tae, Tad); |
1360 | | ro[WS(os, 61)] = FMA(KP956940335, Tae, Tad); |
1361 | | } |
1362 | | } |
1363 | | { |
1364 | | E T3v, T6j, T6o, T6y, T6r, T6z, T48, T6u, T52, T6f, T67, T6t, T6a, T6k, T5V; |
1365 | | E T6e; |
1366 | | { |
1367 | | E T3f, T3u, T6m, T6n; |
1368 | | T3f = FMA(KP707106781, T3e, T37); |
1369 | | T3u = T3m - T3t; |
1370 | | T3v = FNMS(KP923879532, T3u, T3f); |
1371 | | T6j = FMA(KP923879532, T3u, T3f); |
1372 | | T6m = FMA(KP923879532, T50, T4X); |
1373 | | T6n = FMA(KP923879532, T4N, T4q); |
1374 | | T6o = FMA(KP303346683, T6n, T6m); |
1375 | | T6y = FNMS(KP303346683, T6m, T6n); |
1376 | | } |
1377 | | { |
1378 | | E T6p, T6q, T3O, T47; |
1379 | | T6p = FMA(KP923879532, T5T, T5Q); |
1380 | | T6q = FMA(KP923879532, T5G, T5j); |
1381 | | T6r = FNMS(KP303346683, T6q, T6p); |
1382 | | T6z = FMA(KP303346683, T6p, T6q); |
1383 | | T3O = FNMS(KP668178637, T3N, T3G); |
1384 | | T47 = FMA(KP668178637, T46, T3Z); |
1385 | | T48 = T3O - T47; |
1386 | | T6u = T3O + T47; |
1387 | | } |
1388 | | { |
1389 | | E T4O, T51, T63, T66; |
1390 | | T4O = FNMS(KP923879532, T4N, T4q); |
1391 | | T51 = FNMS(KP923879532, T50, T4X); |
1392 | | T52 = FMA(KP534511135, T51, T4O); |
1393 | | T6f = FNMS(KP534511135, T4O, T51); |
1394 | | T63 = FMA(KP707106781, T62, T5Z); |
1395 | | T66 = T64 - T65; |
1396 | | T67 = FNMS(KP923879532, T66, T63); |
1397 | | T6t = FMA(KP923879532, T66, T63); |
1398 | | } |
1399 | | { |
1400 | | E T68, T69, T5H, T5U; |
1401 | | T68 = FNMS(KP668178637, T3Z, T46); |
1402 | | T69 = FMA(KP668178637, T3G, T3N); |
1403 | | T6a = T68 - T69; |
1404 | | T6k = T69 + T68; |
1405 | | T5H = FNMS(KP923879532, T5G, T5j); |
1406 | | T5U = FNMS(KP923879532, T5T, T5Q); |
1407 | | T5V = FNMS(KP534511135, T5U, T5H); |
1408 | | T6e = FMA(KP534511135, T5H, T5U); |
1409 | | } |
1410 | | { |
1411 | | E T49, T5W, T6d, T6g; |
1412 | | T49 = FMA(KP831469612, T48, T3v); |
1413 | | T5W = T52 - T5V; |
1414 | | ro[WS(os, 43)] = FNMS(KP881921264, T5W, T49); |
1415 | | ro[WS(os, 11)] = FMA(KP881921264, T5W, T49); |
1416 | | T6d = FMA(KP831469612, T6a, T67); |
1417 | | T6g = T6e - T6f; |
1418 | | io[WS(os, 43)] = FNMS(KP881921264, T6g, T6d); |
1419 | | io[WS(os, 11)] = FMA(KP881921264, T6g, T6d); |
1420 | | } |
1421 | | { |
1422 | | E T6b, T6c, T6h, T6i; |
1423 | | T6b = FNMS(KP831469612, T6a, T67); |
1424 | | T6c = T52 + T5V; |
1425 | | io[WS(os, 27)] = FNMS(KP881921264, T6c, T6b); |
1426 | | io[WS(os, 59)] = FMA(KP881921264, T6c, T6b); |
1427 | | T6h = FNMS(KP831469612, T48, T3v); |
1428 | | T6i = T6f + T6e; |
1429 | | ro[WS(os, 27)] = FNMS(KP881921264, T6i, T6h); |
1430 | | ro[WS(os, 59)] = FMA(KP881921264, T6i, T6h); |
1431 | | } |
1432 | | { |
1433 | | E T6l, T6s, T6B, T6C; |
1434 | | T6l = FMA(KP831469612, T6k, T6j); |
1435 | | T6s = T6o + T6r; |
1436 | | ro[WS(os, 35)] = FNMS(KP956940335, T6s, T6l); |
1437 | | ro[WS(os, 3)] = FMA(KP956940335, T6s, T6l); |
1438 | | T6B = FMA(KP831469612, T6u, T6t); |
1439 | | T6C = T6y + T6z; |
1440 | | io[WS(os, 35)] = FNMS(KP956940335, T6C, T6B); |
1441 | | io[WS(os, 3)] = FMA(KP956940335, T6C, T6B); |
1442 | | } |
1443 | | { |
1444 | | E T6v, T6w, T6x, T6A; |
1445 | | T6v = FNMS(KP831469612, T6u, T6t); |
1446 | | T6w = T6r - T6o; |
1447 | | io[WS(os, 51)] = FNMS(KP956940335, T6w, T6v); |
1448 | | io[WS(os, 19)] = FMA(KP956940335, T6w, T6v); |
1449 | | T6x = FNMS(KP831469612, T6k, T6j); |
1450 | | T6A = T6y - T6z; |
1451 | | ro[WS(os, 51)] = FNMS(KP956940335, T6A, T6x); |
1452 | | ro[WS(os, 19)] = FMA(KP956940335, T6A, T6x); |
1453 | | } |
1454 | | } |
1455 | | { |
1456 | | E T7L, T8X, T92, T9c, T95, T9d, T80, T98, T8k, T8T, T8L, T97, T8O, T8Y, T8D; |
1457 | | E T8S; |
1458 | | { |
1459 | | E T7D, T7K, T90, T91; |
1460 | | T7D = FMA(KP707106781, T7C, T7B); |
1461 | | T7K = T7G + T7J; |
1462 | | T7L = FNMS(KP923879532, T7K, T7D); |
1463 | | T8X = FMA(KP923879532, T7K, T7D); |
1464 | | T90 = FMA(KP923879532, T8i, T8f); |
1465 | | T91 = FMA(KP923879532, T8b, T84); |
1466 | | T92 = FMA(KP098491403, T91, T90); |
1467 | | T9c = FNMS(KP098491403, T90, T91); |
1468 | | } |
1469 | | { |
1470 | | E T93, T94, T7S, T7Z; |
1471 | | T93 = FMA(KP923879532, T8B, T8y); |
1472 | | T94 = FMA(KP923879532, T8u, T8n); |
1473 | | T95 = FNMS(KP098491403, T94, T93); |
1474 | | T9d = FMA(KP098491403, T93, T94); |
1475 | | T7S = FNMS(KP198912367, T7R, T7O); |
1476 | | T7Z = FMA(KP198912367, T7Y, T7V); |
1477 | | T80 = T7S - T7Z; |
1478 | | T98 = T7S + T7Z; |
1479 | | } |
1480 | | { |
1481 | | E T8c, T8j, T8H, T8K; |
1482 | | T8c = FNMS(KP923879532, T8b, T84); |
1483 | | T8j = FNMS(KP923879532, T8i, T8f); |
1484 | | T8k = FMA(KP820678790, T8j, T8c); |
1485 | | T8T = FNMS(KP820678790, T8c, T8j); |
1486 | | T8H = FMA(KP707106781, T8G, T8F); |
1487 | | T8K = T8I + T8J; |
1488 | | T8L = FNMS(KP923879532, T8K, T8H); |
1489 | | T97 = FMA(KP923879532, T8K, T8H); |
1490 | | } |
1491 | | { |
1492 | | E T8M, T8N, T8v, T8C; |
1493 | | T8M = FNMS(KP198912367, T7V, T7Y); |
1494 | | T8N = FMA(KP198912367, T7O, T7R); |
1495 | | T8O = T8M - T8N; |
1496 | | T8Y = T8N + T8M; |
1497 | | T8v = FNMS(KP923879532, T8u, T8n); |
1498 | | T8C = FNMS(KP923879532, T8B, T8y); |
1499 | | T8D = FNMS(KP820678790, T8C, T8v); |
1500 | | T8S = FMA(KP820678790, T8v, T8C); |
1501 | | } |
1502 | | { |
1503 | | E T81, T8E, T8R, T8U; |
1504 | | T81 = FMA(KP980785280, T80, T7L); |
1505 | | T8E = T8k - T8D; |
1506 | | ro[WS(os, 41)] = FNMS(KP773010453, T8E, T81); |
1507 | | ro[WS(os, 9)] = FMA(KP773010453, T8E, T81); |
1508 | | T8R = FMA(KP980785280, T8O, T8L); |
1509 | | T8U = T8S - T8T; |
1510 | | io[WS(os, 41)] = FNMS(KP773010453, T8U, T8R); |
1511 | | io[WS(os, 9)] = FMA(KP773010453, T8U, T8R); |
1512 | | } |
1513 | | { |
1514 | | E T8P, T8Q, T8V, T8W; |
1515 | | T8P = FNMS(KP980785280, T8O, T8L); |
1516 | | T8Q = T8k + T8D; |
1517 | | io[WS(os, 25)] = FNMS(KP773010453, T8Q, T8P); |
1518 | | io[WS(os, 57)] = FMA(KP773010453, T8Q, T8P); |
1519 | | T8V = FNMS(KP980785280, T80, T7L); |
1520 | | T8W = T8T + T8S; |
1521 | | ro[WS(os, 25)] = FNMS(KP773010453, T8W, T8V); |
1522 | | ro[WS(os, 57)] = FMA(KP773010453, T8W, T8V); |
1523 | | } |
1524 | | { |
1525 | | E T8Z, T96, T9f, T9g; |
1526 | | T8Z = FMA(KP980785280, T8Y, T8X); |
1527 | | T96 = T92 + T95; |
1528 | | ro[WS(os, 33)] = FNMS(KP995184726, T96, T8Z); |
1529 | | ro[WS(os, 1)] = FMA(KP995184726, T96, T8Z); |
1530 | | T9f = FMA(KP980785280, T98, T97); |
1531 | | T9g = T9c + T9d; |
1532 | | io[WS(os, 33)] = FNMS(KP995184726, T9g, T9f); |
1533 | | io[WS(os, 1)] = FMA(KP995184726, T9g, T9f); |
1534 | | } |
1535 | | { |
1536 | | E T99, T9a, T9b, T9e; |
1537 | | T99 = FNMS(KP980785280, T98, T97); |
1538 | | T9a = T95 - T92; |
1539 | | io[WS(os, 49)] = FNMS(KP995184726, T9a, T99); |
1540 | | io[WS(os, 17)] = FMA(KP995184726, T9a, T99); |
1541 | | T9b = FNMS(KP980785280, T8Y, T8X); |
1542 | | T9e = T9c - T9d; |
1543 | | ro[WS(os, 49)] = FNMS(KP995184726, T9e, T9b); |
1544 | | ro[WS(os, 17)] = FMA(KP995184726, T9e, T9b); |
1545 | | } |
1546 | | } |
1547 | | } |
1548 | | } |
1549 | | } |
1550 | | |
1551 | | static const kdft_desc desc = { 64, "n1_64", { 520, 0, 392, 0 }, &GENUS, 0, 0, 0, 0 }; |
1552 | | |
1553 | | void X(codelet_n1_64) (planner *p) { X(kdft_register) (p, n1_64, &desc); |
1554 | | } |
1555 | | |
1556 | | #else |
1557 | | |
1558 | | /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 64 -name n1_64 -include dft/scalar/n.h */ |
1559 | | |
1560 | | /* |
1561 | | * This function contains 912 FP additions, 248 FP multiplications, |
1562 | | * (or, 808 additions, 144 multiplications, 104 fused multiply/add), |
1563 | | * 172 stack variables, 15 constants, and 256 memory accesses |
1564 | | */ |
1565 | | #include "dft/scalar/n.h" |
1566 | | |
1567 | | static void n1_64(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
1568 | 0 | { |
1569 | 0 | DK(KP773010453, +0.773010453362736960810906609758469800971041293); |
1570 | 0 | DK(KP634393284, +0.634393284163645498215171613225493370675687095); |
1571 | 0 | DK(KP098017140, +0.098017140329560601994195563888641845861136673); |
1572 | 0 | DK(KP995184726, +0.995184726672196886244836953109479921575474869); |
1573 | 0 | DK(KP881921264, +0.881921264348355029712756863660388349508442621); |
1574 | 0 | DK(KP471396736, +0.471396736825997648556387625905254377657460319); |
1575 | 0 | DK(KP290284677, +0.290284677254462367636192375817395274691476278); |
1576 | 0 | DK(KP956940335, +0.956940335732208864935797886980269969482849206); |
1577 | 0 | DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
1578 | 0 | DK(KP555570233, +0.555570233019602224742830813948532874374937191); |
1579 | 0 | DK(KP195090322, +0.195090322016128267848284868477022240927691618); |
1580 | 0 | DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
1581 | 0 | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
1582 | 0 | DK(KP382683432, +0.382683432365089771728459984030398866761344562); |
1583 | 0 | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
1584 | 0 | { |
1585 | 0 | INT i; |
1586 | 0 | for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(256, is), MAKE_VOLATILE_STRIDE(256, os)) { |
1587 | 0 | E T37, T7B, T8F, T5Z, Tf, Td9, TbB, TcB, T62, T7C, T2i, TdH, Tah, Tcb, T3e; |
1588 | 0 | E T8G, Tu, TdI, Tak, TbD, Tan, TbC, T2x, Tda, T3m, T65, T7G, T8J, T7J, T8I; |
1589 | 0 | E T3t, T64, TK, Tdd, Tas, Tce, Tav, Tcf, T2N, Tdc, T3G, T6G, T7O, T9k, T7R; |
1590 | 0 | E T9l, T3N, T6H, T1L, Tdv, Tbs, Tcw, TdC, Teo, T5j, T6V, T5Q, T6Y, T8y, T9C; |
1591 | 0 | E Tbb, Tct, T8n, T9z, TZ, Tdf, Taz, Tch, TaC, Tci, T32, Tdg, T3Z, T6J, T7V; |
1592 | 0 | E T9n, T7Y, T9o, T46, T6K, T1g, Tdp, Tb1, Tcm, Tdm, Tej, T4q, T6R, T4X, T6O; |
1593 | 0 | E T8f, T9s, TaK, Tcp, T84, T9v, T1v, Tdn, Tb4, Tcq, Tds, Tek, T4N, T6P, T50; |
1594 | 0 | E T6S, T8i, T9w, TaV, Tcn, T8b, T9t, T20, TdD, Tbv, Tcu, Tdy, Tep, T5G, T6Z; |
1595 | 0 | E T5T, T6W, T8B, T9A, Tbm, Tcx, T8u, T9D; |
1596 | 0 | { |
1597 | 0 | E T3, T35, T26, T5Y, T6, T5X, T29, T36, Ta, T39, T2d, T38, Td, T3b, T2g; |
1598 | 0 | E T3c; |
1599 | 0 | { |
1600 | 0 | E T1, T2, T24, T25; |
1601 | 0 | T1 = ri[0]; |
1602 | 0 | T2 = ri[WS(is, 32)]; |
1603 | 0 | T3 = T1 + T2; |
1604 | 0 | T35 = T1 - T2; |
1605 | 0 | T24 = ii[0]; |
1606 | 0 | T25 = ii[WS(is, 32)]; |
1607 | 0 | T26 = T24 + T25; |
1608 | 0 | T5Y = T24 - T25; |
1609 | 0 | } |
1610 | 0 | { |
1611 | 0 | E T4, T5, T27, T28; |
1612 | 0 | T4 = ri[WS(is, 16)]; |
1613 | 0 | T5 = ri[WS(is, 48)]; |
1614 | 0 | T6 = T4 + T5; |
1615 | 0 | T5X = T4 - T5; |
1616 | 0 | T27 = ii[WS(is, 16)]; |
1617 | 0 | T28 = ii[WS(is, 48)]; |
1618 | 0 | T29 = T27 + T28; |
1619 | 0 | T36 = T27 - T28; |
1620 | 0 | } |
1621 | 0 | { |
1622 | 0 | E T8, T9, T2b, T2c; |
1623 | 0 | T8 = ri[WS(is, 8)]; |
1624 | 0 | T9 = ri[WS(is, 40)]; |
1625 | 0 | Ta = T8 + T9; |
1626 | 0 | T39 = T8 - T9; |
1627 | 0 | T2b = ii[WS(is, 8)]; |
1628 | 0 | T2c = ii[WS(is, 40)]; |
1629 | 0 | T2d = T2b + T2c; |
1630 | 0 | T38 = T2b - T2c; |
1631 | 0 | } |
1632 | 0 | { |
1633 | 0 | E Tb, Tc, T2e, T2f; |
1634 | 0 | Tb = ri[WS(is, 56)]; |
1635 | 0 | Tc = ri[WS(is, 24)]; |
1636 | 0 | Td = Tb + Tc; |
1637 | 0 | T3b = Tb - Tc; |
1638 | 0 | T2e = ii[WS(is, 56)]; |
1639 | 0 | T2f = ii[WS(is, 24)]; |
1640 | 0 | T2g = T2e + T2f; |
1641 | 0 | T3c = T2e - T2f; |
1642 | 0 | } |
1643 | 0 | { |
1644 | 0 | E T7, Te, T2a, T2h; |
1645 | 0 | T37 = T35 - T36; |
1646 | 0 | T7B = T35 + T36; |
1647 | 0 | T8F = T5Y - T5X; |
1648 | 0 | T5Z = T5X + T5Y; |
1649 | 0 | T7 = T3 + T6; |
1650 | 0 | Te = Ta + Td; |
1651 | 0 | Tf = T7 + Te; |
1652 | 0 | Td9 = T7 - Te; |
1653 | 0 | { |
1654 | 0 | E Tbz, TbA, T60, T61; |
1655 | 0 | Tbz = T26 - T29; |
1656 | 0 | TbA = Td - Ta; |
1657 | 0 | TbB = Tbz - TbA; |
1658 | 0 | TcB = TbA + Tbz; |
1659 | 0 | T60 = T3b - T3c; |
1660 | 0 | T61 = T39 + T38; |
1661 | 0 | T62 = KP707106781 * (T60 - T61); |
1662 | 0 | T7C = KP707106781 * (T61 + T60); |
1663 | 0 | } |
1664 | 0 | T2a = T26 + T29; |
1665 | 0 | T2h = T2d + T2g; |
1666 | 0 | T2i = T2a + T2h; |
1667 | 0 | TdH = T2a - T2h; |
1668 | 0 | { |
1669 | 0 | E Taf, Tag, T3a, T3d; |
1670 | 0 | Taf = T3 - T6; |
1671 | 0 | Tag = T2d - T2g; |
1672 | 0 | Tah = Taf - Tag; |
1673 | 0 | Tcb = Taf + Tag; |
1674 | 0 | T3a = T38 - T39; |
1675 | 0 | T3d = T3b + T3c; |
1676 | 0 | T3e = KP707106781 * (T3a - T3d); |
1677 | 0 | T8G = KP707106781 * (T3a + T3d); |
1678 | 0 | } |
1679 | 0 | } |
1680 | 0 | } |
1681 | 0 | { |
1682 | 0 | E Ti, T3j, T2l, T3h, Tl, T3g, T2o, T3k, Tp, T3q, T2s, T3o, Ts, T3n, T2v; |
1683 | 0 | E T3r; |
1684 | 0 | { |
1685 | 0 | E Tg, Th, T2j, T2k; |
1686 | 0 | Tg = ri[WS(is, 4)]; |
1687 | 0 | Th = ri[WS(is, 36)]; |
1688 | 0 | Ti = Tg + Th; |
1689 | 0 | T3j = Tg - Th; |
1690 | 0 | T2j = ii[WS(is, 4)]; |
1691 | 0 | T2k = ii[WS(is, 36)]; |
1692 | 0 | T2l = T2j + T2k; |
1693 | 0 | T3h = T2j - T2k; |
1694 | 0 | } |
1695 | 0 | { |
1696 | 0 | E Tj, Tk, T2m, T2n; |
1697 | 0 | Tj = ri[WS(is, 20)]; |
1698 | 0 | Tk = ri[WS(is, 52)]; |
1699 | 0 | Tl = Tj + Tk; |
1700 | 0 | T3g = Tj - Tk; |
1701 | 0 | T2m = ii[WS(is, 20)]; |
1702 | 0 | T2n = ii[WS(is, 52)]; |
1703 | 0 | T2o = T2m + T2n; |
1704 | 0 | T3k = T2m - T2n; |
1705 | 0 | } |
1706 | 0 | { |
1707 | 0 | E Tn, To, T2q, T2r; |
1708 | 0 | Tn = ri[WS(is, 60)]; |
1709 | 0 | To = ri[WS(is, 28)]; |
1710 | 0 | Tp = Tn + To; |
1711 | 0 | T3q = Tn - To; |
1712 | 0 | T2q = ii[WS(is, 60)]; |
1713 | 0 | T2r = ii[WS(is, 28)]; |
1714 | 0 | T2s = T2q + T2r; |
1715 | 0 | T3o = T2q - T2r; |
1716 | 0 | } |
1717 | 0 | { |
1718 | 0 | E Tq, Tr, T2t, T2u; |
1719 | 0 | Tq = ri[WS(is, 12)]; |
1720 | 0 | Tr = ri[WS(is, 44)]; |
1721 | 0 | Ts = Tq + Tr; |
1722 | 0 | T3n = Tq - Tr; |
1723 | 0 | T2t = ii[WS(is, 12)]; |
1724 | 0 | T2u = ii[WS(is, 44)]; |
1725 | 0 | T2v = T2t + T2u; |
1726 | 0 | T3r = T2t - T2u; |
1727 | 0 | } |
1728 | 0 | { |
1729 | 0 | E Tm, Tt, Tai, Taj; |
1730 | 0 | Tm = Ti + Tl; |
1731 | 0 | Tt = Tp + Ts; |
1732 | 0 | Tu = Tm + Tt; |
1733 | 0 | TdI = Tt - Tm; |
1734 | 0 | Tai = T2l - T2o; |
1735 | 0 | Taj = Ti - Tl; |
1736 | 0 | Tak = Tai - Taj; |
1737 | 0 | TbD = Taj + Tai; |
1738 | 0 | } |
1739 | 0 | { |
1740 | 0 | E Tal, Tam, T2p, T2w; |
1741 | 0 | Tal = Tp - Ts; |
1742 | 0 | Tam = T2s - T2v; |
1743 | 0 | Tan = Tal + Tam; |
1744 | 0 | TbC = Tal - Tam; |
1745 | 0 | T2p = T2l + T2o; |
1746 | 0 | T2w = T2s + T2v; |
1747 | 0 | T2x = T2p + T2w; |
1748 | 0 | Tda = T2p - T2w; |
1749 | 0 | } |
1750 | 0 | { |
1751 | 0 | E T3i, T3l, T7E, T7F; |
1752 | 0 | T3i = T3g + T3h; |
1753 | 0 | T3l = T3j - T3k; |
1754 | 0 | T3m = FNMS(KP923879532, T3l, KP382683432 * T3i); |
1755 | 0 | T65 = FMA(KP923879532, T3i, KP382683432 * T3l); |
1756 | 0 | T7E = T3h - T3g; |
1757 | 0 | T7F = T3j + T3k; |
1758 | 0 | T7G = FNMS(KP382683432, T7F, KP923879532 * T7E); |
1759 | 0 | T8J = FMA(KP382683432, T7E, KP923879532 * T7F); |
1760 | 0 | } |
1761 | 0 | { |
1762 | 0 | E T7H, T7I, T3p, T3s; |
1763 | 0 | T7H = T3o - T3n; |
1764 | 0 | T7I = T3q + T3r; |
1765 | 0 | T7J = FMA(KP923879532, T7H, KP382683432 * T7I); |
1766 | 0 | T8I = FNMS(KP382683432, T7H, KP923879532 * T7I); |
1767 | 0 | T3p = T3n + T3o; |
1768 | 0 | T3s = T3q - T3r; |
1769 | 0 | T3t = FMA(KP382683432, T3p, KP923879532 * T3s); |
1770 | 0 | T64 = FNMS(KP923879532, T3p, KP382683432 * T3s); |
1771 | 0 | } |
1772 | 0 | } |
1773 | 0 | { |
1774 | 0 | E Ty, T3H, T2B, T3x, TB, T3w, T2E, T3I, TI, T3L, T2L, T3B, TF, T3K, T2I; |
1775 | 0 | E T3E; |
1776 | 0 | { |
1777 | 0 | E Tw, Tx, T2C, T2D; |
1778 | 0 | Tw = ri[WS(is, 2)]; |
1779 | 0 | Tx = ri[WS(is, 34)]; |
1780 | 0 | Ty = Tw + Tx; |
1781 | 0 | T3H = Tw - Tx; |
1782 | 0 | { |
1783 | 0 | E T2z, T2A, Tz, TA; |
1784 | 0 | T2z = ii[WS(is, 2)]; |
1785 | 0 | T2A = ii[WS(is, 34)]; |
1786 | 0 | T2B = T2z + T2A; |
1787 | 0 | T3x = T2z - T2A; |
1788 | 0 | Tz = ri[WS(is, 18)]; |
1789 | 0 | TA = ri[WS(is, 50)]; |
1790 | 0 | TB = Tz + TA; |
1791 | 0 | T3w = Tz - TA; |
1792 | 0 | } |
1793 | 0 | T2C = ii[WS(is, 18)]; |
1794 | 0 | T2D = ii[WS(is, 50)]; |
1795 | 0 | T2E = T2C + T2D; |
1796 | 0 | T3I = T2C - T2D; |
1797 | 0 | { |
1798 | 0 | E TG, TH, T3z, T2J, T2K, T3A; |
1799 | 0 | TG = ri[WS(is, 58)]; |
1800 | 0 | TH = ri[WS(is, 26)]; |
1801 | 0 | T3z = TG - TH; |
1802 | 0 | T2J = ii[WS(is, 58)]; |
1803 | 0 | T2K = ii[WS(is, 26)]; |
1804 | 0 | T3A = T2J - T2K; |
1805 | 0 | TI = TG + TH; |
1806 | 0 | T3L = T3z + T3A; |
1807 | 0 | T2L = T2J + T2K; |
1808 | 0 | T3B = T3z - T3A; |
1809 | 0 | } |
1810 | 0 | { |
1811 | 0 | E TD, TE, T3C, T2G, T2H, T3D; |
1812 | 0 | TD = ri[WS(is, 10)]; |
1813 | 0 | TE = ri[WS(is, 42)]; |
1814 | 0 | T3C = TD - TE; |
1815 | 0 | T2G = ii[WS(is, 10)]; |
1816 | 0 | T2H = ii[WS(is, 42)]; |
1817 | 0 | T3D = T2G - T2H; |
1818 | 0 | TF = TD + TE; |
1819 | 0 | T3K = T3D - T3C; |
1820 | 0 | T2I = T2G + T2H; |
1821 | 0 | T3E = T3C + T3D; |
1822 | 0 | } |
1823 | 0 | } |
1824 | 0 | { |
1825 | 0 | E TC, TJ, Taq, Tar; |
1826 | 0 | TC = Ty + TB; |
1827 | 0 | TJ = TF + TI; |
1828 | 0 | TK = TC + TJ; |
1829 | 0 | Tdd = TC - TJ; |
1830 | 0 | Taq = T2B - T2E; |
1831 | 0 | Tar = TI - TF; |
1832 | 0 | Tas = Taq - Tar; |
1833 | 0 | Tce = Tar + Taq; |
1834 | 0 | } |
1835 | 0 | { |
1836 | 0 | E Tat, Tau, T2F, T2M; |
1837 | 0 | Tat = Ty - TB; |
1838 | 0 | Tau = T2I - T2L; |
1839 | 0 | Tav = Tat - Tau; |
1840 | 0 | Tcf = Tat + Tau; |
1841 | 0 | T2F = T2B + T2E; |
1842 | 0 | T2M = T2I + T2L; |
1843 | 0 | T2N = T2F + T2M; |
1844 | 0 | Tdc = T2F - T2M; |
1845 | 0 | } |
1846 | 0 | { |
1847 | 0 | E T3y, T3F, T7M, T7N; |
1848 | 0 | T3y = T3w + T3x; |
1849 | 0 | T3F = KP707106781 * (T3B - T3E); |
1850 | 0 | T3G = T3y - T3F; |
1851 | 0 | T6G = T3y + T3F; |
1852 | 0 | T7M = T3x - T3w; |
1853 | 0 | T7N = KP707106781 * (T3K + T3L); |
1854 | 0 | T7O = T7M - T7N; |
1855 | 0 | T9k = T7M + T7N; |
1856 | 0 | } |
1857 | 0 | { |
1858 | 0 | E T7P, T7Q, T3J, T3M; |
1859 | 0 | T7P = T3H + T3I; |
1860 | 0 | T7Q = KP707106781 * (T3E + T3B); |
1861 | 0 | T7R = T7P - T7Q; |
1862 | 0 | T9l = T7P + T7Q; |
1863 | 0 | T3J = T3H - T3I; |
1864 | 0 | T3M = KP707106781 * (T3K - T3L); |
1865 | 0 | T3N = T3J - T3M; |
1866 | 0 | T6H = T3J + T3M; |
1867 | 0 | } |
1868 | 0 | } |
1869 | 0 | { |
1870 | 0 | E T1z, T53, T5L, Tbo, T1C, T5I, T56, Tbp, T1J, Tb9, T5h, T5N, T1G, Tb8, T5c; |
1871 | 0 | E T5O; |
1872 | 0 | { |
1873 | 0 | E T1x, T1y, T54, T55; |
1874 | 0 | T1x = ri[WS(is, 63)]; |
1875 | 0 | T1y = ri[WS(is, 31)]; |
1876 | 0 | T1z = T1x + T1y; |
1877 | 0 | T53 = T1x - T1y; |
1878 | 0 | { |
1879 | 0 | E T5J, T5K, T1A, T1B; |
1880 | 0 | T5J = ii[WS(is, 63)]; |
1881 | 0 | T5K = ii[WS(is, 31)]; |
1882 | 0 | T5L = T5J - T5K; |
1883 | 0 | Tbo = T5J + T5K; |
1884 | 0 | T1A = ri[WS(is, 15)]; |
1885 | 0 | T1B = ri[WS(is, 47)]; |
1886 | 0 | T1C = T1A + T1B; |
1887 | 0 | T5I = T1A - T1B; |
1888 | 0 | } |
1889 | 0 | T54 = ii[WS(is, 15)]; |
1890 | 0 | T55 = ii[WS(is, 47)]; |
1891 | 0 | T56 = T54 - T55; |
1892 | 0 | Tbp = T54 + T55; |
1893 | 0 | { |
1894 | 0 | E T1H, T1I, T5d, T5e, T5f, T5g; |
1895 | 0 | T1H = ri[WS(is, 55)]; |
1896 | 0 | T1I = ri[WS(is, 23)]; |
1897 | 0 | T5d = T1H - T1I; |
1898 | 0 | T5e = ii[WS(is, 55)]; |
1899 | 0 | T5f = ii[WS(is, 23)]; |
1900 | 0 | T5g = T5e - T5f; |
1901 | 0 | T1J = T1H + T1I; |
1902 | 0 | Tb9 = T5e + T5f; |
1903 | 0 | T5h = T5d + T5g; |
1904 | 0 | T5N = T5d - T5g; |
1905 | 0 | } |
1906 | 0 | { |
1907 | 0 | E T1E, T1F, T5b, T58, T59, T5a; |
1908 | 0 | T1E = ri[WS(is, 7)]; |
1909 | 0 | T1F = ri[WS(is, 39)]; |
1910 | 0 | T5b = T1E - T1F; |
1911 | 0 | T58 = ii[WS(is, 7)]; |
1912 | 0 | T59 = ii[WS(is, 39)]; |
1913 | 0 | T5a = T58 - T59; |
1914 | 0 | T1G = T1E + T1F; |
1915 | 0 | Tb8 = T58 + T59; |
1916 | 0 | T5c = T5a - T5b; |
1917 | 0 | T5O = T5b + T5a; |
1918 | 0 | } |
1919 | 0 | } |
1920 | 0 | { |
1921 | 0 | E T1D, T1K, Tbq, Tbr; |
1922 | 0 | T1D = T1z + T1C; |
1923 | 0 | T1K = T1G + T1J; |
1924 | 0 | T1L = T1D + T1K; |
1925 | 0 | Tdv = T1D - T1K; |
1926 | 0 | Tbq = Tbo - Tbp; |
1927 | 0 | Tbr = T1J - T1G; |
1928 | 0 | Tbs = Tbq - Tbr; |
1929 | 0 | Tcw = Tbr + Tbq; |
1930 | 0 | } |
1931 | 0 | { |
1932 | 0 | E TdA, TdB, T57, T5i; |
1933 | 0 | TdA = Tbo + Tbp; |
1934 | 0 | TdB = Tb8 + Tb9; |
1935 | 0 | TdC = TdA - TdB; |
1936 | 0 | Teo = TdA + TdB; |
1937 | 0 | T57 = T53 - T56; |
1938 | 0 | T5i = KP707106781 * (T5c - T5h); |
1939 | 0 | T5j = T57 - T5i; |
1940 | 0 | T6V = T57 + T5i; |
1941 | 0 | } |
1942 | 0 | { |
1943 | 0 | E T5M, T5P, T8w, T8x; |
1944 | 0 | T5M = T5I + T5L; |
1945 | 0 | T5P = KP707106781 * (T5N - T5O); |
1946 | 0 | T5Q = T5M - T5P; |
1947 | 0 | T6Y = T5M + T5P; |
1948 | 0 | T8w = T5L - T5I; |
1949 | 0 | T8x = KP707106781 * (T5c + T5h); |
1950 | 0 | T8y = T8w - T8x; |
1951 | 0 | T9C = T8w + T8x; |
1952 | 0 | } |
1953 | 0 | { |
1954 | 0 | E Tb7, Tba, T8l, T8m; |
1955 | 0 | Tb7 = T1z - T1C; |
1956 | 0 | Tba = Tb8 - Tb9; |
1957 | 0 | Tbb = Tb7 - Tba; |
1958 | 0 | Tct = Tb7 + Tba; |
1959 | 0 | T8l = T53 + T56; |
1960 | 0 | T8m = KP707106781 * (T5O + T5N); |
1961 | 0 | T8n = T8l - T8m; |
1962 | 0 | T9z = T8l + T8m; |
1963 | 0 | } |
1964 | 0 | } |
1965 | 0 | { |
1966 | 0 | E TN, T40, T2Q, T3Q, TQ, T3P, T2T, T41, TX, T44, T30, T3U, TU, T43, T2X; |
1967 | 0 | E T3X; |
1968 | 0 | { |
1969 | 0 | E TL, TM, T2R, T2S; |
1970 | 0 | TL = ri[WS(is, 62)]; |
1971 | 0 | TM = ri[WS(is, 30)]; |
1972 | 0 | TN = TL + TM; |
1973 | 0 | T40 = TL - TM; |
1974 | 0 | { |
1975 | 0 | E T2O, T2P, TO, TP; |
1976 | 0 | T2O = ii[WS(is, 62)]; |
1977 | 0 | T2P = ii[WS(is, 30)]; |
1978 | 0 | T2Q = T2O + T2P; |
1979 | 0 | T3Q = T2O - T2P; |
1980 | 0 | TO = ri[WS(is, 14)]; |
1981 | 0 | TP = ri[WS(is, 46)]; |
1982 | 0 | TQ = TO + TP; |
1983 | 0 | T3P = TO - TP; |
1984 | 0 | } |
1985 | 0 | T2R = ii[WS(is, 14)]; |
1986 | 0 | T2S = ii[WS(is, 46)]; |
1987 | 0 | T2T = T2R + T2S; |
1988 | 0 | T41 = T2R - T2S; |
1989 | 0 | { |
1990 | 0 | E TV, TW, T3S, T2Y, T2Z, T3T; |
1991 | 0 | TV = ri[WS(is, 54)]; |
1992 | 0 | TW = ri[WS(is, 22)]; |
1993 | 0 | T3S = TV - TW; |
1994 | 0 | T2Y = ii[WS(is, 54)]; |
1995 | 0 | T2Z = ii[WS(is, 22)]; |
1996 | 0 | T3T = T2Y - T2Z; |
1997 | 0 | TX = TV + TW; |
1998 | 0 | T44 = T3S + T3T; |
1999 | 0 | T30 = T2Y + T2Z; |
2000 | 0 | T3U = T3S - T3T; |
2001 | 0 | } |
2002 | 0 | { |
2003 | 0 | E TS, TT, T3V, T2V, T2W, T3W; |
2004 | 0 | TS = ri[WS(is, 6)]; |
2005 | 0 | TT = ri[WS(is, 38)]; |
2006 | 0 | T3V = TS - TT; |
2007 | 0 | T2V = ii[WS(is, 6)]; |
2008 | 0 | T2W = ii[WS(is, 38)]; |
2009 | 0 | T3W = T2V - T2W; |
2010 | 0 | TU = TS + TT; |
2011 | 0 | T43 = T3W - T3V; |
2012 | 0 | T2X = T2V + T2W; |
2013 | 0 | T3X = T3V + T3W; |
2014 | 0 | } |
2015 | 0 | } |
2016 | 0 | { |
2017 | 0 | E TR, TY, Tax, Tay; |
2018 | 0 | TR = TN + TQ; |
2019 | 0 | TY = TU + TX; |
2020 | 0 | TZ = TR + TY; |
2021 | 0 | Tdf = TR - TY; |
2022 | 0 | Tax = T2Q - T2T; |
2023 | 0 | Tay = TX - TU; |
2024 | 0 | Taz = Tax - Tay; |
2025 | 0 | Tch = Tay + Tax; |
2026 | 0 | } |
2027 | 0 | { |
2028 | 0 | E TaA, TaB, T2U, T31; |
2029 | 0 | TaA = TN - TQ; |
2030 | 0 | TaB = T2X - T30; |
2031 | 0 | TaC = TaA - TaB; |
2032 | 0 | Tci = TaA + TaB; |
2033 | 0 | T2U = T2Q + T2T; |
2034 | 0 | T31 = T2X + T30; |
2035 | 0 | T32 = T2U + T31; |
2036 | 0 | Tdg = T2U - T31; |
2037 | 0 | } |
2038 | 0 | { |
2039 | 0 | E T3R, T3Y, T7T, T7U; |
2040 | 0 | T3R = T3P + T3Q; |
2041 | 0 | T3Y = KP707106781 * (T3U - T3X); |
2042 | 0 | T3Z = T3R - T3Y; |
2043 | 0 | T6J = T3R + T3Y; |
2044 | 0 | T7T = T40 + T41; |
2045 | 0 | T7U = KP707106781 * (T3X + T3U); |
2046 | 0 | T7V = T7T - T7U; |
2047 | 0 | T9n = T7T + T7U; |
2048 | 0 | } |
2049 | 0 | { |
2050 | 0 | E T7W, T7X, T42, T45; |
2051 | 0 | T7W = T3Q - T3P; |
2052 | 0 | T7X = KP707106781 * (T43 + T44); |
2053 | 0 | T7Y = T7W - T7X; |
2054 | 0 | T9o = T7W + T7X; |
2055 | 0 | T42 = T40 - T41; |
2056 | 0 | T45 = KP707106781 * (T43 - T44); |
2057 | 0 | T46 = T42 - T45; |
2058 | 0 | T6K = T42 + T45; |
2059 | 0 | } |
2060 | 0 | } |
2061 | 0 | { |
2062 | 0 | E T14, T4P, T4d, TaG, T17, T4a, T4S, TaH, T1e, TaZ, T4j, T4V, T1b, TaY, T4o; |
2063 | 0 | E T4U; |
2064 | 0 | { |
2065 | 0 | E T12, T13, T4Q, T4R; |
2066 | 0 | T12 = ri[WS(is, 1)]; |
2067 | 0 | T13 = ri[WS(is, 33)]; |
2068 | 0 | T14 = T12 + T13; |
2069 | 0 | T4P = T12 - T13; |
2070 | 0 | { |
2071 | 0 | E T4b, T4c, T15, T16; |
2072 | 0 | T4b = ii[WS(is, 1)]; |
2073 | 0 | T4c = ii[WS(is, 33)]; |
2074 | 0 | T4d = T4b - T4c; |
2075 | 0 | TaG = T4b + T4c; |
2076 | 0 | T15 = ri[WS(is, 17)]; |
2077 | 0 | T16 = ri[WS(is, 49)]; |
2078 | 0 | T17 = T15 + T16; |
2079 | 0 | T4a = T15 - T16; |
2080 | 0 | } |
2081 | 0 | T4Q = ii[WS(is, 17)]; |
2082 | 0 | T4R = ii[WS(is, 49)]; |
2083 | 0 | T4S = T4Q - T4R; |
2084 | 0 | TaH = T4Q + T4R; |
2085 | 0 | { |
2086 | 0 | E T1c, T1d, T4f, T4g, T4h, T4i; |
2087 | 0 | T1c = ri[WS(is, 57)]; |
2088 | 0 | T1d = ri[WS(is, 25)]; |
2089 | 0 | T4f = T1c - T1d; |
2090 | 0 | T4g = ii[WS(is, 57)]; |
2091 | 0 | T4h = ii[WS(is, 25)]; |
2092 | 0 | T4i = T4g - T4h; |
2093 | 0 | T1e = T1c + T1d; |
2094 | 0 | TaZ = T4g + T4h; |
2095 | 0 | T4j = T4f - T4i; |
2096 | 0 | T4V = T4f + T4i; |
2097 | 0 | } |
2098 | 0 | { |
2099 | 0 | E T19, T1a, T4k, T4l, T4m, T4n; |
2100 | 0 | T19 = ri[WS(is, 9)]; |
2101 | 0 | T1a = ri[WS(is, 41)]; |
2102 | 0 | T4k = T19 - T1a; |
2103 | 0 | T4l = ii[WS(is, 9)]; |
2104 | 0 | T4m = ii[WS(is, 41)]; |
2105 | 0 | T4n = T4l - T4m; |
2106 | 0 | T1b = T19 + T1a; |
2107 | 0 | TaY = T4l + T4m; |
2108 | 0 | T4o = T4k + T4n; |
2109 | 0 | T4U = T4n - T4k; |
2110 | 0 | } |
2111 | 0 | } |
2112 | 0 | { |
2113 | 0 | E T18, T1f, TaX, Tb0; |
2114 | 0 | T18 = T14 + T17; |
2115 | 0 | T1f = T1b + T1e; |
2116 | 0 | T1g = T18 + T1f; |
2117 | 0 | Tdp = T18 - T1f; |
2118 | 0 | TaX = T14 - T17; |
2119 | 0 | Tb0 = TaY - TaZ; |
2120 | 0 | Tb1 = TaX - Tb0; |
2121 | 0 | Tcm = TaX + Tb0; |
2122 | 0 | } |
2123 | 0 | { |
2124 | 0 | E Tdk, Tdl, T4e, T4p; |
2125 | 0 | Tdk = TaG + TaH; |
2126 | 0 | Tdl = TaY + TaZ; |
2127 | 0 | Tdm = Tdk - Tdl; |
2128 | 0 | Tej = Tdk + Tdl; |
2129 | 0 | T4e = T4a + T4d; |
2130 | 0 | T4p = KP707106781 * (T4j - T4o); |
2131 | 0 | T4q = T4e - T4p; |
2132 | 0 | T6R = T4e + T4p; |
2133 | 0 | } |
2134 | 0 | { |
2135 | 0 | E T4T, T4W, T8d, T8e; |
2136 | 0 | T4T = T4P - T4S; |
2137 | 0 | T4W = KP707106781 * (T4U - T4V); |
2138 | 0 | T4X = T4T - T4W; |
2139 | 0 | T6O = T4T + T4W; |
2140 | 0 | T8d = T4P + T4S; |
2141 | 0 | T8e = KP707106781 * (T4o + T4j); |
2142 | 0 | T8f = T8d - T8e; |
2143 | 0 | T9s = T8d + T8e; |
2144 | 0 | } |
2145 | 0 | { |
2146 | 0 | E TaI, TaJ, T82, T83; |
2147 | 0 | TaI = TaG - TaH; |
2148 | 0 | TaJ = T1e - T1b; |
2149 | 0 | TaK = TaI - TaJ; |
2150 | 0 | Tcp = TaJ + TaI; |
2151 | 0 | T82 = T4d - T4a; |
2152 | 0 | T83 = KP707106781 * (T4U + T4V); |
2153 | 0 | T84 = T82 - T83; |
2154 | 0 | T9v = T82 + T83; |
2155 | 0 | } |
2156 | 0 | } |
2157 | 0 | { |
2158 | 0 | E T1j, TaR, T1m, TaS, T4G, T4L, TaT, TaQ, T89, T88, T1q, TaM, T1t, TaN, T4v; |
2159 | 0 | E T4A, TaO, TaL, T86, T85; |
2160 | 0 | { |
2161 | 0 | E T4H, T4F, T4C, T4K; |
2162 | 0 | { |
2163 | 0 | E T1h, T1i, T4D, T4E; |
2164 | 0 | T1h = ri[WS(is, 5)]; |
2165 | 0 | T1i = ri[WS(is, 37)]; |
2166 | 0 | T1j = T1h + T1i; |
2167 | 0 | T4H = T1h - T1i; |
2168 | 0 | T4D = ii[WS(is, 5)]; |
2169 | 0 | T4E = ii[WS(is, 37)]; |
2170 | 0 | T4F = T4D - T4E; |
2171 | 0 | TaR = T4D + T4E; |
2172 | 0 | } |
2173 | 0 | { |
2174 | 0 | E T1k, T1l, T4I, T4J; |
2175 | 0 | T1k = ri[WS(is, 21)]; |
2176 | 0 | T1l = ri[WS(is, 53)]; |
2177 | 0 | T1m = T1k + T1l; |
2178 | 0 | T4C = T1k - T1l; |
2179 | 0 | T4I = ii[WS(is, 21)]; |
2180 | 0 | T4J = ii[WS(is, 53)]; |
2181 | 0 | T4K = T4I - T4J; |
2182 | 0 | TaS = T4I + T4J; |
2183 | 0 | } |
2184 | 0 | T4G = T4C + T4F; |
2185 | 0 | T4L = T4H - T4K; |
2186 | 0 | TaT = TaR - TaS; |
2187 | 0 | TaQ = T1j - T1m; |
2188 | 0 | T89 = T4H + T4K; |
2189 | 0 | T88 = T4F - T4C; |
2190 | 0 | } |
2191 | 0 | { |
2192 | 0 | E T4r, T4z, T4w, T4u; |
2193 | 0 | { |
2194 | 0 | E T1o, T1p, T4x, T4y; |
2195 | 0 | T1o = ri[WS(is, 61)]; |
2196 | 0 | T1p = ri[WS(is, 29)]; |
2197 | 0 | T1q = T1o + T1p; |
2198 | 0 | T4r = T1o - T1p; |
2199 | 0 | T4x = ii[WS(is, 61)]; |
2200 | 0 | T4y = ii[WS(is, 29)]; |
2201 | 0 | T4z = T4x - T4y; |
2202 | 0 | TaM = T4x + T4y; |
2203 | 0 | } |
2204 | 0 | { |
2205 | 0 | E T1r, T1s, T4s, T4t; |
2206 | 0 | T1r = ri[WS(is, 13)]; |
2207 | 0 | T1s = ri[WS(is, 45)]; |
2208 | 0 | T1t = T1r + T1s; |
2209 | 0 | T4w = T1r - T1s; |
2210 | 0 | T4s = ii[WS(is, 13)]; |
2211 | 0 | T4t = ii[WS(is, 45)]; |
2212 | 0 | T4u = T4s - T4t; |
2213 | 0 | TaN = T4s + T4t; |
2214 | 0 | } |
2215 | 0 | T4v = T4r - T4u; |
2216 | 0 | T4A = T4w + T4z; |
2217 | 0 | TaO = TaM - TaN; |
2218 | 0 | TaL = T1q - T1t; |
2219 | 0 | T86 = T4z - T4w; |
2220 | 0 | T85 = T4r + T4u; |
2221 | 0 | } |
2222 | 0 | { |
2223 | 0 | E T1n, T1u, Tb2, Tb3; |
2224 | 0 | T1n = T1j + T1m; |
2225 | 0 | T1u = T1q + T1t; |
2226 | 0 | T1v = T1n + T1u; |
2227 | 0 | Tdn = T1u - T1n; |
2228 | 0 | Tb2 = TaT - TaQ; |
2229 | 0 | Tb3 = TaL + TaO; |
2230 | 0 | Tb4 = KP707106781 * (Tb2 - Tb3); |
2231 | 0 | Tcq = KP707106781 * (Tb2 + Tb3); |
2232 | 0 | } |
2233 | 0 | { |
2234 | 0 | E Tdq, Tdr, T4B, T4M; |
2235 | 0 | Tdq = TaR + TaS; |
2236 | 0 | Tdr = TaM + TaN; |
2237 | 0 | Tds = Tdq - Tdr; |
2238 | 0 | Tek = Tdq + Tdr; |
2239 | 0 | T4B = FNMS(KP923879532, T4A, KP382683432 * T4v); |
2240 | 0 | T4M = FMA(KP923879532, T4G, KP382683432 * T4L); |
2241 | 0 | T4N = T4B - T4M; |
2242 | 0 | T6P = T4M + T4B; |
2243 | 0 | } |
2244 | 0 | { |
2245 | 0 | E T4Y, T4Z, T8g, T8h; |
2246 | 0 | T4Y = FNMS(KP923879532, T4L, KP382683432 * T4G); |
2247 | 0 | T4Z = FMA(KP382683432, T4A, KP923879532 * T4v); |
2248 | 0 | T50 = T4Y - T4Z; |
2249 | 0 | T6S = T4Y + T4Z; |
2250 | 0 | T8g = FNMS(KP382683432, T89, KP923879532 * T88); |
2251 | 0 | T8h = FMA(KP923879532, T86, KP382683432 * T85); |
2252 | 0 | T8i = T8g - T8h; |
2253 | 0 | T9w = T8g + T8h; |
2254 | 0 | } |
2255 | 0 | { |
2256 | 0 | E TaP, TaU, T87, T8a; |
2257 | 0 | TaP = TaL - TaO; |
2258 | 0 | TaU = TaQ + TaT; |
2259 | 0 | TaV = KP707106781 * (TaP - TaU); |
2260 | 0 | Tcn = KP707106781 * (TaU + TaP); |
2261 | 0 | T87 = FNMS(KP382683432, T86, KP923879532 * T85); |
2262 | 0 | T8a = FMA(KP382683432, T88, KP923879532 * T89); |
2263 | 0 | T8b = T87 - T8a; |
2264 | 0 | T9t = T8a + T87; |
2265 | 0 | } |
2266 | 0 | } |
2267 | 0 | { |
2268 | 0 | E T1O, Tbc, T1R, Tbd, T5o, T5t, Tbf, Tbe, T8p, T8o, T1V, Tbi, T1Y, Tbj, T5z; |
2269 | 0 | E T5E, Tbk, Tbh, T8s, T8r; |
2270 | 0 | { |
2271 | 0 | E T5p, T5n, T5k, T5s; |
2272 | 0 | { |
2273 | 0 | E T1M, T1N, T5l, T5m; |
2274 | 0 | T1M = ri[WS(is, 3)]; |
2275 | 0 | T1N = ri[WS(is, 35)]; |
2276 | 0 | T1O = T1M + T1N; |
2277 | 0 | T5p = T1M - T1N; |
2278 | 0 | T5l = ii[WS(is, 3)]; |
2279 | 0 | T5m = ii[WS(is, 35)]; |
2280 | 0 | T5n = T5l - T5m; |
2281 | 0 | Tbc = T5l + T5m; |
2282 | 0 | } |
2283 | 0 | { |
2284 | 0 | E T1P, T1Q, T5q, T5r; |
2285 | 0 | T1P = ri[WS(is, 19)]; |
2286 | 0 | T1Q = ri[WS(is, 51)]; |
2287 | 0 | T1R = T1P + T1Q; |
2288 | 0 | T5k = T1P - T1Q; |
2289 | 0 | T5q = ii[WS(is, 19)]; |
2290 | 0 | T5r = ii[WS(is, 51)]; |
2291 | 0 | T5s = T5q - T5r; |
2292 | 0 | Tbd = T5q + T5r; |
2293 | 0 | } |
2294 | 0 | T5o = T5k + T5n; |
2295 | 0 | T5t = T5p - T5s; |
2296 | 0 | Tbf = T1O - T1R; |
2297 | 0 | Tbe = Tbc - Tbd; |
2298 | 0 | T8p = T5p + T5s; |
2299 | 0 | T8o = T5n - T5k; |
2300 | 0 | } |
2301 | 0 | { |
2302 | 0 | E T5A, T5y, T5v, T5D; |
2303 | 0 | { |
2304 | 0 | E T1T, T1U, T5w, T5x; |
2305 | 0 | T1T = ri[WS(is, 59)]; |
2306 | 0 | T1U = ri[WS(is, 27)]; |
2307 | 0 | T1V = T1T + T1U; |
2308 | 0 | T5A = T1T - T1U; |
2309 | 0 | T5w = ii[WS(is, 59)]; |
2310 | 0 | T5x = ii[WS(is, 27)]; |
2311 | 0 | T5y = T5w - T5x; |
2312 | 0 | Tbi = T5w + T5x; |
2313 | 0 | } |
2314 | 0 | { |
2315 | 0 | E T1W, T1X, T5B, T5C; |
2316 | 0 | T1W = ri[WS(is, 11)]; |
2317 | 0 | T1X = ri[WS(is, 43)]; |
2318 | 0 | T1Y = T1W + T1X; |
2319 | 0 | T5v = T1W - T1X; |
2320 | 0 | T5B = ii[WS(is, 11)]; |
2321 | 0 | T5C = ii[WS(is, 43)]; |
2322 | 0 | T5D = T5B - T5C; |
2323 | 0 | Tbj = T5B + T5C; |
2324 | 0 | } |
2325 | 0 | T5z = T5v + T5y; |
2326 | 0 | T5E = T5A - T5D; |
2327 | 0 | Tbk = Tbi - Tbj; |
2328 | 0 | Tbh = T1V - T1Y; |
2329 | 0 | T8s = T5A + T5D; |
2330 | 0 | T8r = T5y - T5v; |
2331 | 0 | } |
2332 | 0 | { |
2333 | 0 | E T1S, T1Z, Tbt, Tbu; |
2334 | 0 | T1S = T1O + T1R; |
2335 | 0 | T1Z = T1V + T1Y; |
2336 | 0 | T20 = T1S + T1Z; |
2337 | 0 | TdD = T1Z - T1S; |
2338 | 0 | Tbt = Tbh - Tbk; |
2339 | 0 | Tbu = Tbf + Tbe; |
2340 | 0 | Tbv = KP707106781 * (Tbt - Tbu); |
2341 | 0 | Tcu = KP707106781 * (Tbu + Tbt); |
2342 | 0 | } |
2343 | 0 | { |
2344 | 0 | E Tdw, Tdx, T5u, T5F; |
2345 | 0 | Tdw = Tbc + Tbd; |
2346 | 0 | Tdx = Tbi + Tbj; |
2347 | 0 | Tdy = Tdw - Tdx; |
2348 | 0 | Tep = Tdw + Tdx; |
2349 | 0 | T5u = FNMS(KP923879532, T5t, KP382683432 * T5o); |
2350 | 0 | T5F = FMA(KP382683432, T5z, KP923879532 * T5E); |
2351 | 0 | T5G = T5u - T5F; |
2352 | 0 | T6Z = T5u + T5F; |
2353 | 0 | } |
2354 | 0 | { |
2355 | 0 | E T5R, T5S, T8z, T8A; |
2356 | 0 | T5R = FNMS(KP923879532, T5z, KP382683432 * T5E); |
2357 | 0 | T5S = FMA(KP923879532, T5o, KP382683432 * T5t); |
2358 | 0 | T5T = T5R - T5S; |
2359 | 0 | T6W = T5S + T5R; |
2360 | 0 | T8z = FNMS(KP382683432, T8r, KP923879532 * T8s); |
2361 | 0 | T8A = FMA(KP382683432, T8o, KP923879532 * T8p); |
2362 | 0 | T8B = T8z - T8A; |
2363 | 0 | T9A = T8A + T8z; |
2364 | 0 | } |
2365 | 0 | { |
2366 | 0 | E Tbg, Tbl, T8q, T8t; |
2367 | 0 | Tbg = Tbe - Tbf; |
2368 | 0 | Tbl = Tbh + Tbk; |
2369 | 0 | Tbm = KP707106781 * (Tbg - Tbl); |
2370 | 0 | Tcx = KP707106781 * (Tbg + Tbl); |
2371 | 0 | T8q = FNMS(KP382683432, T8p, KP923879532 * T8o); |
2372 | 0 | T8t = FMA(KP923879532, T8r, KP382683432 * T8s); |
2373 | 0 | T8u = T8q - T8t; |
2374 | 0 | T9D = T8q + T8t; |
2375 | 0 | } |
2376 | 0 | } |
2377 | 0 | { |
2378 | 0 | E T11, TeD, TeG, TeI, T22, T23, T34, TeH; |
2379 | 0 | { |
2380 | 0 | E Tv, T10, TeE, TeF; |
2381 | 0 | Tv = Tf + Tu; |
2382 | 0 | T10 = TK + TZ; |
2383 | 0 | T11 = Tv + T10; |
2384 | 0 | TeD = Tv - T10; |
2385 | 0 | TeE = Tej + Tek; |
2386 | 0 | TeF = Teo + Tep; |
2387 | 0 | TeG = TeE - TeF; |
2388 | 0 | TeI = TeE + TeF; |
2389 | 0 | } |
2390 | 0 | { |
2391 | 0 | E T1w, T21, T2y, T33; |
2392 | 0 | T1w = T1g + T1v; |
2393 | 0 | T21 = T1L + T20; |
2394 | 0 | T22 = T1w + T21; |
2395 | 0 | T23 = T21 - T1w; |
2396 | 0 | T2y = T2i + T2x; |
2397 | 0 | T33 = T2N + T32; |
2398 | 0 | T34 = T2y - T33; |
2399 | 0 | TeH = T2y + T33; |
2400 | 0 | } |
2401 | 0 | ro[WS(os, 32)] = T11 - T22; |
2402 | 0 | io[WS(os, 32)] = TeH - TeI; |
2403 | 0 | ro[0] = T11 + T22; |
2404 | 0 | io[0] = TeH + TeI; |
2405 | 0 | io[WS(os, 16)] = T23 + T34; |
2406 | 0 | ro[WS(os, 16)] = TeD + TeG; |
2407 | 0 | io[WS(os, 48)] = T34 - T23; |
2408 | 0 | ro[WS(os, 48)] = TeD - TeG; |
2409 | 0 | } |
2410 | 0 | { |
2411 | 0 | E Teh, Tex, Tev, TeB, Tem, Tey, Ter, Tez; |
2412 | 0 | { |
2413 | 0 | E Tef, Teg, Tet, Teu; |
2414 | 0 | Tef = Tf - Tu; |
2415 | 0 | Teg = T2N - T32; |
2416 | 0 | Teh = Tef + Teg; |
2417 | 0 | Tex = Tef - Teg; |
2418 | 0 | Tet = T2i - T2x; |
2419 | 0 | Teu = TZ - TK; |
2420 | 0 | Tev = Tet - Teu; |
2421 | 0 | TeB = Teu + Tet; |
2422 | 0 | } |
2423 | 0 | { |
2424 | 0 | E Tei, Tel, Ten, Teq; |
2425 | 0 | Tei = T1g - T1v; |
2426 | 0 | Tel = Tej - Tek; |
2427 | 0 | Tem = Tei + Tel; |
2428 | 0 | Tey = Tel - Tei; |
2429 | 0 | Ten = T1L - T20; |
2430 | 0 | Teq = Teo - Tep; |
2431 | 0 | Ter = Ten - Teq; |
2432 | 0 | Tez = Ten + Teq; |
2433 | 0 | } |
2434 | 0 | { |
2435 | 0 | E Tes, TeC, Tew, TeA; |
2436 | 0 | Tes = KP707106781 * (Tem + Ter); |
2437 | 0 | ro[WS(os, 40)] = Teh - Tes; |
2438 | 0 | ro[WS(os, 8)] = Teh + Tes; |
2439 | 0 | TeC = KP707106781 * (Tey + Tez); |
2440 | 0 | io[WS(os, 40)] = TeB - TeC; |
2441 | 0 | io[WS(os, 8)] = TeB + TeC; |
2442 | 0 | Tew = KP707106781 * (Ter - Tem); |
2443 | 0 | io[WS(os, 56)] = Tev - Tew; |
2444 | 0 | io[WS(os, 24)] = Tev + Tew; |
2445 | 0 | TeA = KP707106781 * (Tey - Tez); |
2446 | 0 | ro[WS(os, 56)] = Tex - TeA; |
2447 | 0 | ro[WS(os, 24)] = Tex + TeA; |
2448 | 0 | } |
2449 | 0 | } |
2450 | 0 | { |
2451 | 0 | E Tdb, TdV, Te5, TdJ, Tdi, Te6, Te3, Teb, TdM, TdW, Tdu, TdQ, Te0, Tea, TdF; |
2452 | 0 | E TdR; |
2453 | 0 | { |
2454 | 0 | E Tde, Tdh, Tdo, Tdt; |
2455 | 0 | Tdb = Td9 - Tda; |
2456 | 0 | TdV = Td9 + Tda; |
2457 | 0 | Te5 = TdI + TdH; |
2458 | 0 | TdJ = TdH - TdI; |
2459 | 0 | Tde = Tdc - Tdd; |
2460 | 0 | Tdh = Tdf + Tdg; |
2461 | 0 | Tdi = KP707106781 * (Tde - Tdh); |
2462 | 0 | Te6 = KP707106781 * (Tde + Tdh); |
2463 | 0 | { |
2464 | 0 | E Te1, Te2, TdK, TdL; |
2465 | 0 | Te1 = Tdv + Tdy; |
2466 | 0 | Te2 = TdD + TdC; |
2467 | 0 | Te3 = FNMS(KP382683432, Te2, KP923879532 * Te1); |
2468 | 0 | Teb = FMA(KP923879532, Te2, KP382683432 * Te1); |
2469 | 0 | TdK = Tdf - Tdg; |
2470 | 0 | TdL = Tdd + Tdc; |
2471 | 0 | TdM = KP707106781 * (TdK - TdL); |
2472 | 0 | TdW = KP707106781 * (TdL + TdK); |
2473 | 0 | } |
2474 | 0 | Tdo = Tdm - Tdn; |
2475 | 0 | Tdt = Tdp - Tds; |
2476 | 0 | Tdu = FMA(KP923879532, Tdo, KP382683432 * Tdt); |
2477 | 0 | TdQ = FNMS(KP923879532, Tdt, KP382683432 * Tdo); |
2478 | 0 | { |
2479 | 0 | E TdY, TdZ, Tdz, TdE; |
2480 | 0 | TdY = Tdn + Tdm; |
2481 | 0 | TdZ = Tdp + Tds; |
2482 | 0 | Te0 = FMA(KP382683432, TdY, KP923879532 * TdZ); |
2483 | 0 | Tea = FNMS(KP382683432, TdZ, KP923879532 * TdY); |
2484 | 0 | Tdz = Tdv - Tdy; |
2485 | 0 | TdE = TdC - TdD; |
2486 | 0 | TdF = FNMS(KP923879532, TdE, KP382683432 * Tdz); |
2487 | 0 | TdR = FMA(KP382683432, TdE, KP923879532 * Tdz); |
2488 | 0 | } |
2489 | 0 | } |
2490 | 0 | { |
2491 | 0 | E Tdj, TdG, TdT, TdU; |
2492 | 0 | Tdj = Tdb + Tdi; |
2493 | 0 | TdG = Tdu + TdF; |
2494 | 0 | ro[WS(os, 44)] = Tdj - TdG; |
2495 | 0 | ro[WS(os, 12)] = Tdj + TdG; |
2496 | 0 | TdT = TdJ + TdM; |
2497 | 0 | TdU = TdQ + TdR; |
2498 | 0 | io[WS(os, 44)] = TdT - TdU; |
2499 | 0 | io[WS(os, 12)] = TdT + TdU; |
2500 | 0 | } |
2501 | 0 | { |
2502 | 0 | E TdN, TdO, TdP, TdS; |
2503 | 0 | TdN = TdJ - TdM; |
2504 | 0 | TdO = TdF - Tdu; |
2505 | 0 | io[WS(os, 60)] = TdN - TdO; |
2506 | 0 | io[WS(os, 28)] = TdN + TdO; |
2507 | 0 | TdP = Tdb - Tdi; |
2508 | 0 | TdS = TdQ - TdR; |
2509 | 0 | ro[WS(os, 60)] = TdP - TdS; |
2510 | 0 | ro[WS(os, 28)] = TdP + TdS; |
2511 | 0 | } |
2512 | 0 | { |
2513 | 0 | E TdX, Te4, Ted, Tee; |
2514 | 0 | TdX = TdV + TdW; |
2515 | 0 | Te4 = Te0 + Te3; |
2516 | 0 | ro[WS(os, 36)] = TdX - Te4; |
2517 | 0 | ro[WS(os, 4)] = TdX + Te4; |
2518 | 0 | Ted = Te5 + Te6; |
2519 | 0 | Tee = Tea + Teb; |
2520 | 0 | io[WS(os, 36)] = Ted - Tee; |
2521 | 0 | io[WS(os, 4)] = Ted + Tee; |
2522 | 0 | } |
2523 | 0 | { |
2524 | 0 | E Te7, Te8, Te9, Tec; |
2525 | 0 | Te7 = Te5 - Te6; |
2526 | 0 | Te8 = Te3 - Te0; |
2527 | 0 | io[WS(os, 52)] = Te7 - Te8; |
2528 | 0 | io[WS(os, 20)] = Te7 + Te8; |
2529 | 0 | Te9 = TdV - TdW; |
2530 | 0 | Tec = Tea - Teb; |
2531 | 0 | ro[WS(os, 52)] = Te9 - Tec; |
2532 | 0 | ro[WS(os, 20)] = Te9 + Tec; |
2533 | 0 | } |
2534 | 0 | } |
2535 | 0 | { |
2536 | 0 | E Tcd, TcP, TcD, TcZ, Tck, Td0, TcX, Td5, Tcs, TcK, TcG, TcQ, TcU, Td4, Tcz; |
2537 | 0 | E TcL, Tcc, TcC; |
2538 | 0 | Tcc = KP707106781 * (TbD + TbC); |
2539 | 0 | Tcd = Tcb - Tcc; |
2540 | 0 | TcP = Tcb + Tcc; |
2541 | 0 | TcC = KP707106781 * (Tak + Tan); |
2542 | 0 | TcD = TcB - TcC; |
2543 | 0 | TcZ = TcB + TcC; |
2544 | 0 | { |
2545 | 0 | E Tcg, Tcj, TcV, TcW; |
2546 | 0 | Tcg = FNMS(KP382683432, Tcf, KP923879532 * Tce); |
2547 | 0 | Tcj = FMA(KP923879532, Tch, KP382683432 * Tci); |
2548 | 0 | Tck = Tcg - Tcj; |
2549 | 0 | Td0 = Tcg + Tcj; |
2550 | 0 | TcV = Tct + Tcu; |
2551 | 0 | TcW = Tcw + Tcx; |
2552 | 0 | TcX = FNMS(KP195090322, TcW, KP980785280 * TcV); |
2553 | 0 | Td5 = FMA(KP195090322, TcV, KP980785280 * TcW); |
2554 | 0 | } |
2555 | 0 | { |
2556 | 0 | E Tco, Tcr, TcE, TcF; |
2557 | 0 | Tco = Tcm - Tcn; |
2558 | 0 | Tcr = Tcp - Tcq; |
2559 | 0 | Tcs = FMA(KP555570233, Tco, KP831469612 * Tcr); |
2560 | 0 | TcK = FNMS(KP831469612, Tco, KP555570233 * Tcr); |
2561 | 0 | TcE = FNMS(KP382683432, Tch, KP923879532 * Tci); |
2562 | 0 | TcF = FMA(KP382683432, Tce, KP923879532 * Tcf); |
2563 | 0 | TcG = TcE - TcF; |
2564 | 0 | TcQ = TcF + TcE; |
2565 | 0 | } |
2566 | 0 | { |
2567 | 0 | E TcS, TcT, Tcv, Tcy; |
2568 | 0 | TcS = Tcm + Tcn; |
2569 | 0 | TcT = Tcp + Tcq; |
2570 | 0 | TcU = FMA(KP980785280, TcS, KP195090322 * TcT); |
2571 | 0 | Td4 = FNMS(KP195090322, TcS, KP980785280 * TcT); |
2572 | 0 | Tcv = Tct - Tcu; |
2573 | 0 | Tcy = Tcw - Tcx; |
2574 | 0 | Tcz = FNMS(KP831469612, Tcy, KP555570233 * Tcv); |
2575 | 0 | TcL = FMA(KP831469612, Tcv, KP555570233 * Tcy); |
2576 | 0 | } |
2577 | 0 | { |
2578 | 0 | E Tcl, TcA, TcN, TcO; |
2579 | 0 | Tcl = Tcd + Tck; |
2580 | 0 | TcA = Tcs + Tcz; |
2581 | 0 | ro[WS(os, 42)] = Tcl - TcA; |
2582 | 0 | ro[WS(os, 10)] = Tcl + TcA; |
2583 | 0 | TcN = TcD + TcG; |
2584 | 0 | TcO = TcK + TcL; |
2585 | 0 | io[WS(os, 42)] = TcN - TcO; |
2586 | 0 | io[WS(os, 10)] = TcN + TcO; |
2587 | 0 | } |
2588 | 0 | { |
2589 | 0 | E TcH, TcI, TcJ, TcM; |
2590 | 0 | TcH = TcD - TcG; |
2591 | 0 | TcI = Tcz - Tcs; |
2592 | 0 | io[WS(os, 58)] = TcH - TcI; |
2593 | 0 | io[WS(os, 26)] = TcH + TcI; |
2594 | 0 | TcJ = Tcd - Tck; |
2595 | 0 | TcM = TcK - TcL; |
2596 | 0 | ro[WS(os, 58)] = TcJ - TcM; |
2597 | 0 | ro[WS(os, 26)] = TcJ + TcM; |
2598 | 0 | } |
2599 | 0 | { |
2600 | 0 | E TcR, TcY, Td7, Td8; |
2601 | 0 | TcR = TcP + TcQ; |
2602 | 0 | TcY = TcU + TcX; |
2603 | 0 | ro[WS(os, 34)] = TcR - TcY; |
2604 | 0 | ro[WS(os, 2)] = TcR + TcY; |
2605 | 0 | Td7 = TcZ + Td0; |
2606 | 0 | Td8 = Td4 + Td5; |
2607 | 0 | io[WS(os, 34)] = Td7 - Td8; |
2608 | 0 | io[WS(os, 2)] = Td7 + Td8; |
2609 | 0 | } |
2610 | 0 | { |
2611 | 0 | E Td1, Td2, Td3, Td6; |
2612 | 0 | Td1 = TcZ - Td0; |
2613 | 0 | Td2 = TcX - TcU; |
2614 | 0 | io[WS(os, 50)] = Td1 - Td2; |
2615 | 0 | io[WS(os, 18)] = Td1 + Td2; |
2616 | 0 | Td3 = TcP - TcQ; |
2617 | 0 | Td6 = Td4 - Td5; |
2618 | 0 | ro[WS(os, 50)] = Td3 - Td6; |
2619 | 0 | ro[WS(os, 18)] = Td3 + Td6; |
2620 | 0 | } |
2621 | 0 | } |
2622 | 0 | { |
2623 | 0 | E Tap, TbR, TbF, Tc1, TaE, Tc2, TbZ, Tc7, Tb6, TbM, TbI, TbS, TbW, Tc6, Tbx; |
2624 | 0 | E TbN, Tao, TbE; |
2625 | 0 | Tao = KP707106781 * (Tak - Tan); |
2626 | 0 | Tap = Tah - Tao; |
2627 | 0 | TbR = Tah + Tao; |
2628 | 0 | TbE = KP707106781 * (TbC - TbD); |
2629 | 0 | TbF = TbB - TbE; |
2630 | 0 | Tc1 = TbB + TbE; |
2631 | 0 | { |
2632 | 0 | E Taw, TaD, TbX, TbY; |
2633 | 0 | Taw = FNMS(KP923879532, Tav, KP382683432 * Tas); |
2634 | 0 | TaD = FMA(KP382683432, Taz, KP923879532 * TaC); |
2635 | 0 | TaE = Taw - TaD; |
2636 | 0 | Tc2 = Taw + TaD; |
2637 | 0 | TbX = Tbb + Tbm; |
2638 | 0 | TbY = Tbs + Tbv; |
2639 | 0 | TbZ = FNMS(KP555570233, TbY, KP831469612 * TbX); |
2640 | 0 | Tc7 = FMA(KP831469612, TbY, KP555570233 * TbX); |
2641 | 0 | } |
2642 | 0 | { |
2643 | 0 | E TaW, Tb5, TbG, TbH; |
2644 | 0 | TaW = TaK - TaV; |
2645 | 0 | Tb5 = Tb1 - Tb4; |
2646 | 0 | Tb6 = FMA(KP980785280, TaW, KP195090322 * Tb5); |
2647 | 0 | TbM = FNMS(KP980785280, Tb5, KP195090322 * TaW); |
2648 | 0 | TbG = FNMS(KP923879532, Taz, KP382683432 * TaC); |
2649 | 0 | TbH = FMA(KP923879532, Tas, KP382683432 * Tav); |
2650 | 0 | TbI = TbG - TbH; |
2651 | 0 | TbS = TbH + TbG; |
2652 | 0 | } |
2653 | 0 | { |
2654 | 0 | E TbU, TbV, Tbn, Tbw; |
2655 | 0 | TbU = TaK + TaV; |
2656 | 0 | TbV = Tb1 + Tb4; |
2657 | 0 | TbW = FMA(KP555570233, TbU, KP831469612 * TbV); |
2658 | 0 | Tc6 = FNMS(KP555570233, TbV, KP831469612 * TbU); |
2659 | 0 | Tbn = Tbb - Tbm; |
2660 | 0 | Tbw = Tbs - Tbv; |
2661 | 0 | Tbx = FNMS(KP980785280, Tbw, KP195090322 * Tbn); |
2662 | 0 | TbN = FMA(KP195090322, Tbw, KP980785280 * Tbn); |
2663 | 0 | } |
2664 | 0 | { |
2665 | 0 | E TaF, Tby, TbP, TbQ; |
2666 | 0 | TaF = Tap + TaE; |
2667 | 0 | Tby = Tb6 + Tbx; |
2668 | 0 | ro[WS(os, 46)] = TaF - Tby; |
2669 | 0 | ro[WS(os, 14)] = TaF + Tby; |
2670 | 0 | TbP = TbF + TbI; |
2671 | 0 | TbQ = TbM + TbN; |
2672 | 0 | io[WS(os, 46)] = TbP - TbQ; |
2673 | 0 | io[WS(os, 14)] = TbP + TbQ; |
2674 | 0 | } |
2675 | 0 | { |
2676 | 0 | E TbJ, TbK, TbL, TbO; |
2677 | 0 | TbJ = TbF - TbI; |
2678 | 0 | TbK = Tbx - Tb6; |
2679 | 0 | io[WS(os, 62)] = TbJ - TbK; |
2680 | 0 | io[WS(os, 30)] = TbJ + TbK; |
2681 | 0 | TbL = Tap - TaE; |
2682 | 0 | TbO = TbM - TbN; |
2683 | 0 | ro[WS(os, 62)] = TbL - TbO; |
2684 | 0 | ro[WS(os, 30)] = TbL + TbO; |
2685 | 0 | } |
2686 | 0 | { |
2687 | 0 | E TbT, Tc0, Tc9, Tca; |
2688 | 0 | TbT = TbR + TbS; |
2689 | 0 | Tc0 = TbW + TbZ; |
2690 | 0 | ro[WS(os, 38)] = TbT - Tc0; |
2691 | 0 | ro[WS(os, 6)] = TbT + Tc0; |
2692 | 0 | Tc9 = Tc1 + Tc2; |
2693 | 0 | Tca = Tc6 + Tc7; |
2694 | 0 | io[WS(os, 38)] = Tc9 - Tca; |
2695 | 0 | io[WS(os, 6)] = Tc9 + Tca; |
2696 | 0 | } |
2697 | 0 | { |
2698 | 0 | E Tc3, Tc4, Tc5, Tc8; |
2699 | 0 | Tc3 = Tc1 - Tc2; |
2700 | 0 | Tc4 = TbZ - TbW; |
2701 | 0 | io[WS(os, 54)] = Tc3 - Tc4; |
2702 | 0 | io[WS(os, 22)] = Tc3 + Tc4; |
2703 | 0 | Tc5 = TbR - TbS; |
2704 | 0 | Tc8 = Tc6 - Tc7; |
2705 | 0 | ro[WS(os, 54)] = Tc5 - Tc8; |
2706 | 0 | ro[WS(os, 22)] = Tc5 + Tc8; |
2707 | 0 | } |
2708 | 0 | } |
2709 | 0 | { |
2710 | 0 | E T6F, T7h, T7m, T7w, T7p, T7x, T6M, T7s, T6U, T7c, T75, T7r, T78, T7i, T71; |
2711 | 0 | E T7d; |
2712 | 0 | { |
2713 | 0 | E T6D, T6E, T7k, T7l; |
2714 | 0 | T6D = T37 + T3e; |
2715 | 0 | T6E = T65 + T64; |
2716 | 0 | T6F = T6D - T6E; |
2717 | 0 | T7h = T6D + T6E; |
2718 | 0 | T7k = T6O + T6P; |
2719 | 0 | T7l = T6R + T6S; |
2720 | 0 | T7m = FMA(KP956940335, T7k, KP290284677 * T7l); |
2721 | 0 | T7w = FNMS(KP290284677, T7k, KP956940335 * T7l); |
2722 | 0 | } |
2723 | 0 | { |
2724 | 0 | E T7n, T7o, T6I, T6L; |
2725 | 0 | T7n = T6V + T6W; |
2726 | 0 | T7o = T6Y + T6Z; |
2727 | 0 | T7p = FNMS(KP290284677, T7o, KP956940335 * T7n); |
2728 | 0 | T7x = FMA(KP290284677, T7n, KP956940335 * T7o); |
2729 | 0 | T6I = FNMS(KP555570233, T6H, KP831469612 * T6G); |
2730 | 0 | T6L = FMA(KP831469612, T6J, KP555570233 * T6K); |
2731 | 0 | T6M = T6I - T6L; |
2732 | 0 | T7s = T6I + T6L; |
2733 | 0 | } |
2734 | 0 | { |
2735 | 0 | E T6Q, T6T, T73, T74; |
2736 | 0 | T6Q = T6O - T6P; |
2737 | 0 | T6T = T6R - T6S; |
2738 | 0 | T6U = FMA(KP471396736, T6Q, KP881921264 * T6T); |
2739 | 0 | T7c = FNMS(KP881921264, T6Q, KP471396736 * T6T); |
2740 | 0 | T73 = T5Z + T62; |
2741 | 0 | T74 = T3m + T3t; |
2742 | 0 | T75 = T73 - T74; |
2743 | 0 | T7r = T73 + T74; |
2744 | 0 | } |
2745 | 0 | { |
2746 | 0 | E T76, T77, T6X, T70; |
2747 | 0 | T76 = FNMS(KP555570233, T6J, KP831469612 * T6K); |
2748 | 0 | T77 = FMA(KP555570233, T6G, KP831469612 * T6H); |
2749 | 0 | T78 = T76 - T77; |
2750 | 0 | T7i = T77 + T76; |
2751 | 0 | T6X = T6V - T6W; |
2752 | 0 | T70 = T6Y - T6Z; |
2753 | 0 | T71 = FNMS(KP881921264, T70, KP471396736 * T6X); |
2754 | 0 | T7d = FMA(KP881921264, T6X, KP471396736 * T70); |
2755 | 0 | } |
2756 | 0 | { |
2757 | 0 | E T6N, T72, T7f, T7g; |
2758 | 0 | T6N = T6F + T6M; |
2759 | 0 | T72 = T6U + T71; |
2760 | 0 | ro[WS(os, 43)] = T6N - T72; |
2761 | 0 | ro[WS(os, 11)] = T6N + T72; |
2762 | 0 | T7f = T75 + T78; |
2763 | 0 | T7g = T7c + T7d; |
2764 | 0 | io[WS(os, 43)] = T7f - T7g; |
2765 | 0 | io[WS(os, 11)] = T7f + T7g; |
2766 | 0 | } |
2767 | 0 | { |
2768 | 0 | E T79, T7a, T7b, T7e; |
2769 | 0 | T79 = T75 - T78; |
2770 | 0 | T7a = T71 - T6U; |
2771 | 0 | io[WS(os, 59)] = T79 - T7a; |
2772 | 0 | io[WS(os, 27)] = T79 + T7a; |
2773 | 0 | T7b = T6F - T6M; |
2774 | 0 | T7e = T7c - T7d; |
2775 | 0 | ro[WS(os, 59)] = T7b - T7e; |
2776 | 0 | ro[WS(os, 27)] = T7b + T7e; |
2777 | 0 | } |
2778 | 0 | { |
2779 | 0 | E T7j, T7q, T7z, T7A; |
2780 | 0 | T7j = T7h + T7i; |
2781 | 0 | T7q = T7m + T7p; |
2782 | 0 | ro[WS(os, 35)] = T7j - T7q; |
2783 | 0 | ro[WS(os, 3)] = T7j + T7q; |
2784 | 0 | T7z = T7r + T7s; |
2785 | 0 | T7A = T7w + T7x; |
2786 | 0 | io[WS(os, 35)] = T7z - T7A; |
2787 | 0 | io[WS(os, 3)] = T7z + T7A; |
2788 | 0 | } |
2789 | 0 | { |
2790 | 0 | E T7t, T7u, T7v, T7y; |
2791 | 0 | T7t = T7r - T7s; |
2792 | 0 | T7u = T7p - T7m; |
2793 | 0 | io[WS(os, 51)] = T7t - T7u; |
2794 | 0 | io[WS(os, 19)] = T7t + T7u; |
2795 | 0 | T7v = T7h - T7i; |
2796 | 0 | T7y = T7w - T7x; |
2797 | 0 | ro[WS(os, 51)] = T7v - T7y; |
2798 | 0 | ro[WS(os, 19)] = T7v + T7y; |
2799 | 0 | } |
2800 | 0 | } |
2801 | 0 | { |
2802 | 0 | E T9j, T9V, Ta0, Taa, Ta3, Tab, T9q, Ta6, T9y, T9Q, T9J, Ta5, T9M, T9W, T9F; |
2803 | 0 | E T9R; |
2804 | 0 | { |
2805 | 0 | E T9h, T9i, T9Y, T9Z; |
2806 | 0 | T9h = T7B + T7C; |
2807 | 0 | T9i = T8J + T8I; |
2808 | 0 | T9j = T9h - T9i; |
2809 | 0 | T9V = T9h + T9i; |
2810 | 0 | T9Y = T9s + T9t; |
2811 | 0 | T9Z = T9v + T9w; |
2812 | 0 | Ta0 = FMA(KP995184726, T9Y, KP098017140 * T9Z); |
2813 | 0 | Taa = FNMS(KP098017140, T9Y, KP995184726 * T9Z); |
2814 | 0 | } |
2815 | 0 | { |
2816 | 0 | E Ta1, Ta2, T9m, T9p; |
2817 | 0 | Ta1 = T9z + T9A; |
2818 | 0 | Ta2 = T9C + T9D; |
2819 | 0 | Ta3 = FNMS(KP098017140, Ta2, KP995184726 * Ta1); |
2820 | 0 | Tab = FMA(KP098017140, Ta1, KP995184726 * Ta2); |
2821 | 0 | T9m = FNMS(KP195090322, T9l, KP980785280 * T9k); |
2822 | 0 | T9p = FMA(KP195090322, T9n, KP980785280 * T9o); |
2823 | 0 | T9q = T9m - T9p; |
2824 | 0 | Ta6 = T9m + T9p; |
2825 | 0 | } |
2826 | 0 | { |
2827 | 0 | E T9u, T9x, T9H, T9I; |
2828 | 0 | T9u = T9s - T9t; |
2829 | 0 | T9x = T9v - T9w; |
2830 | 0 | T9y = FMA(KP634393284, T9u, KP773010453 * T9x); |
2831 | 0 | T9Q = FNMS(KP773010453, T9u, KP634393284 * T9x); |
2832 | 0 | T9H = T8F + T8G; |
2833 | 0 | T9I = T7G + T7J; |
2834 | 0 | T9J = T9H - T9I; |
2835 | 0 | Ta5 = T9H + T9I; |
2836 | 0 | } |
2837 | 0 | { |
2838 | 0 | E T9K, T9L, T9B, T9E; |
2839 | 0 | T9K = FNMS(KP195090322, T9o, KP980785280 * T9n); |
2840 | 0 | T9L = FMA(KP980785280, T9l, KP195090322 * T9k); |
2841 | 0 | T9M = T9K - T9L; |
2842 | 0 | T9W = T9L + T9K; |
2843 | 0 | T9B = T9z - T9A; |
2844 | 0 | T9E = T9C - T9D; |
2845 | 0 | T9F = FNMS(KP773010453, T9E, KP634393284 * T9B); |
2846 | 0 | T9R = FMA(KP773010453, T9B, KP634393284 * T9E); |
2847 | 0 | } |
2848 | 0 | { |
2849 | 0 | E T9r, T9G, T9T, T9U; |
2850 | 0 | T9r = T9j + T9q; |
2851 | 0 | T9G = T9y + T9F; |
2852 | 0 | ro[WS(os, 41)] = T9r - T9G; |
2853 | 0 | ro[WS(os, 9)] = T9r + T9G; |
2854 | 0 | T9T = T9J + T9M; |
2855 | 0 | T9U = T9Q + T9R; |
2856 | 0 | io[WS(os, 41)] = T9T - T9U; |
2857 | 0 | io[WS(os, 9)] = T9T + T9U; |
2858 | 0 | } |
2859 | 0 | { |
2860 | 0 | E T9N, T9O, T9P, T9S; |
2861 | 0 | T9N = T9J - T9M; |
2862 | 0 | T9O = T9F - T9y; |
2863 | 0 | io[WS(os, 57)] = T9N - T9O; |
2864 | 0 | io[WS(os, 25)] = T9N + T9O; |
2865 | 0 | T9P = T9j - T9q; |
2866 | 0 | T9S = T9Q - T9R; |
2867 | 0 | ro[WS(os, 57)] = T9P - T9S; |
2868 | 0 | ro[WS(os, 25)] = T9P + T9S; |
2869 | 0 | } |
2870 | 0 | { |
2871 | 0 | E T9X, Ta4, Tad, Tae; |
2872 | 0 | T9X = T9V + T9W; |
2873 | 0 | Ta4 = Ta0 + Ta3; |
2874 | 0 | ro[WS(os, 33)] = T9X - Ta4; |
2875 | 0 | ro[WS(os, 1)] = T9X + Ta4; |
2876 | 0 | Tad = Ta5 + Ta6; |
2877 | 0 | Tae = Taa + Tab; |
2878 | 0 | io[WS(os, 33)] = Tad - Tae; |
2879 | 0 | io[WS(os, 1)] = Tad + Tae; |
2880 | 0 | } |
2881 | 0 | { |
2882 | 0 | E Ta7, Ta8, Ta9, Tac; |
2883 | 0 | Ta7 = Ta5 - Ta6; |
2884 | 0 | Ta8 = Ta3 - Ta0; |
2885 | 0 | io[WS(os, 49)] = Ta7 - Ta8; |
2886 | 0 | io[WS(os, 17)] = Ta7 + Ta8; |
2887 | 0 | Ta9 = T9V - T9W; |
2888 | 0 | Tac = Taa - Tab; |
2889 | 0 | ro[WS(os, 49)] = Ta9 - Tac; |
2890 | 0 | ro[WS(os, 17)] = Ta9 + Tac; |
2891 | 0 | } |
2892 | 0 | } |
2893 | 0 | { |
2894 | 0 | E T3v, T6j, T6o, T6y, T6r, T6z, T48, T6u, T52, T6e, T67, T6t, T6a, T6k, T5V; |
2895 | 0 | E T6f; |
2896 | 0 | { |
2897 | 0 | E T3f, T3u, T6m, T6n; |
2898 | 0 | T3f = T37 - T3e; |
2899 | 0 | T3u = T3m - T3t; |
2900 | 0 | T3v = T3f - T3u; |
2901 | 0 | T6j = T3f + T3u; |
2902 | 0 | T6m = T4q + T4N; |
2903 | 0 | T6n = T4X + T50; |
2904 | 0 | T6o = FMA(KP634393284, T6m, KP773010453 * T6n); |
2905 | 0 | T6y = FNMS(KP634393284, T6n, KP773010453 * T6m); |
2906 | 0 | } |
2907 | 0 | { |
2908 | 0 | E T6p, T6q, T3O, T47; |
2909 | 0 | T6p = T5j + T5G; |
2910 | 0 | T6q = T5Q + T5T; |
2911 | 0 | T6r = FNMS(KP634393284, T6q, KP773010453 * T6p); |
2912 | 0 | T6z = FMA(KP773010453, T6q, KP634393284 * T6p); |
2913 | 0 | T3O = FNMS(KP980785280, T3N, KP195090322 * T3G); |
2914 | 0 | T47 = FMA(KP195090322, T3Z, KP980785280 * T46); |
2915 | 0 | T48 = T3O - T47; |
2916 | 0 | T6u = T3O + T47; |
2917 | 0 | } |
2918 | 0 | { |
2919 | 0 | E T4O, T51, T63, T66; |
2920 | 0 | T4O = T4q - T4N; |
2921 | 0 | T51 = T4X - T50; |
2922 | 0 | T52 = FMA(KP995184726, T4O, KP098017140 * T51); |
2923 | 0 | T6e = FNMS(KP995184726, T51, KP098017140 * T4O); |
2924 | 0 | T63 = T5Z - T62; |
2925 | 0 | T66 = T64 - T65; |
2926 | 0 | T67 = T63 - T66; |
2927 | 0 | T6t = T63 + T66; |
2928 | 0 | } |
2929 | 0 | { |
2930 | 0 | E T68, T69, T5H, T5U; |
2931 | 0 | T68 = FNMS(KP980785280, T3Z, KP195090322 * T46); |
2932 | 0 | T69 = FMA(KP980785280, T3G, KP195090322 * T3N); |
2933 | 0 | T6a = T68 - T69; |
2934 | 0 | T6k = T69 + T68; |
2935 | 0 | T5H = T5j - T5G; |
2936 | 0 | T5U = T5Q - T5T; |
2937 | 0 | T5V = FNMS(KP995184726, T5U, KP098017140 * T5H); |
2938 | 0 | T6f = FMA(KP098017140, T5U, KP995184726 * T5H); |
2939 | 0 | } |
2940 | 0 | { |
2941 | 0 | E T49, T5W, T6h, T6i; |
2942 | 0 | T49 = T3v + T48; |
2943 | 0 | T5W = T52 + T5V; |
2944 | 0 | ro[WS(os, 47)] = T49 - T5W; |
2945 | 0 | ro[WS(os, 15)] = T49 + T5W; |
2946 | 0 | T6h = T67 + T6a; |
2947 | 0 | T6i = T6e + T6f; |
2948 | 0 | io[WS(os, 47)] = T6h - T6i; |
2949 | 0 | io[WS(os, 15)] = T6h + T6i; |
2950 | 0 | } |
2951 | 0 | { |
2952 | 0 | E T6b, T6c, T6d, T6g; |
2953 | 0 | T6b = T67 - T6a; |
2954 | 0 | T6c = T5V - T52; |
2955 | 0 | io[WS(os, 63)] = T6b - T6c; |
2956 | 0 | io[WS(os, 31)] = T6b + T6c; |
2957 | 0 | T6d = T3v - T48; |
2958 | 0 | T6g = T6e - T6f; |
2959 | 0 | ro[WS(os, 63)] = T6d - T6g; |
2960 | 0 | ro[WS(os, 31)] = T6d + T6g; |
2961 | 0 | } |
2962 | 0 | { |
2963 | 0 | E T6l, T6s, T6B, T6C; |
2964 | 0 | T6l = T6j + T6k; |
2965 | 0 | T6s = T6o + T6r; |
2966 | 0 | ro[WS(os, 39)] = T6l - T6s; |
2967 | 0 | ro[WS(os, 7)] = T6l + T6s; |
2968 | 0 | T6B = T6t + T6u; |
2969 | 0 | T6C = T6y + T6z; |
2970 | 0 | io[WS(os, 39)] = T6B - T6C; |
2971 | 0 | io[WS(os, 7)] = T6B + T6C; |
2972 | 0 | } |
2973 | 0 | { |
2974 | 0 | E T6v, T6w, T6x, T6A; |
2975 | 0 | T6v = T6t - T6u; |
2976 | 0 | T6w = T6r - T6o; |
2977 | 0 | io[WS(os, 55)] = T6v - T6w; |
2978 | 0 | io[WS(os, 23)] = T6v + T6w; |
2979 | 0 | T6x = T6j - T6k; |
2980 | 0 | T6A = T6y - T6z; |
2981 | 0 | ro[WS(os, 55)] = T6x - T6A; |
2982 | 0 | ro[WS(os, 23)] = T6x + T6A; |
2983 | 0 | } |
2984 | 0 | } |
2985 | 0 | { |
2986 | 0 | E T7L, T8X, T92, T9c, T95, T9d, T80, T98, T8k, T8S, T8L, T97, T8O, T8Y, T8D; |
2987 | 0 | E T8T; |
2988 | 0 | { |
2989 | 0 | E T7D, T7K, T90, T91; |
2990 | 0 | T7D = T7B - T7C; |
2991 | 0 | T7K = T7G - T7J; |
2992 | 0 | T7L = T7D - T7K; |
2993 | 0 | T8X = T7D + T7K; |
2994 | 0 | T90 = T84 + T8b; |
2995 | 0 | T91 = T8f + T8i; |
2996 | 0 | T92 = FMA(KP471396736, T90, KP881921264 * T91); |
2997 | 0 | T9c = FNMS(KP471396736, T91, KP881921264 * T90); |
2998 | 0 | } |
2999 | 0 | { |
3000 | 0 | E T93, T94, T7S, T7Z; |
3001 | 0 | T93 = T8n + T8u; |
3002 | 0 | T94 = T8y + T8B; |
3003 | 0 | T95 = FNMS(KP471396736, T94, KP881921264 * T93); |
3004 | 0 | T9d = FMA(KP881921264, T94, KP471396736 * T93); |
3005 | 0 | T7S = FNMS(KP831469612, T7R, KP555570233 * T7O); |
3006 | 0 | T7Z = FMA(KP831469612, T7V, KP555570233 * T7Y); |
3007 | 0 | T80 = T7S - T7Z; |
3008 | 0 | T98 = T7S + T7Z; |
3009 | 0 | } |
3010 | 0 | { |
3011 | 0 | E T8c, T8j, T8H, T8K; |
3012 | 0 | T8c = T84 - T8b; |
3013 | 0 | T8j = T8f - T8i; |
3014 | 0 | T8k = FMA(KP956940335, T8c, KP290284677 * T8j); |
3015 | 0 | T8S = FNMS(KP956940335, T8j, KP290284677 * T8c); |
3016 | 0 | T8H = T8F - T8G; |
3017 | 0 | T8K = T8I - T8J; |
3018 | 0 | T8L = T8H - T8K; |
3019 | 0 | T97 = T8H + T8K; |
3020 | 0 | } |
3021 | 0 | { |
3022 | 0 | E T8M, T8N, T8v, T8C; |
3023 | 0 | T8M = FNMS(KP831469612, T7Y, KP555570233 * T7V); |
3024 | 0 | T8N = FMA(KP555570233, T7R, KP831469612 * T7O); |
3025 | 0 | T8O = T8M - T8N; |
3026 | 0 | T8Y = T8N + T8M; |
3027 | 0 | T8v = T8n - T8u; |
3028 | 0 | T8C = T8y - T8B; |
3029 | 0 | T8D = FNMS(KP956940335, T8C, KP290284677 * T8v); |
3030 | 0 | T8T = FMA(KP290284677, T8C, KP956940335 * T8v); |
3031 | 0 | } |
3032 | 0 | { |
3033 | 0 | E T81, T8E, T8V, T8W; |
3034 | 0 | T81 = T7L + T80; |
3035 | 0 | T8E = T8k + T8D; |
3036 | 0 | ro[WS(os, 45)] = T81 - T8E; |
3037 | 0 | ro[WS(os, 13)] = T81 + T8E; |
3038 | 0 | T8V = T8L + T8O; |
3039 | 0 | T8W = T8S + T8T; |
3040 | 0 | io[WS(os, 45)] = T8V - T8W; |
3041 | 0 | io[WS(os, 13)] = T8V + T8W; |
3042 | 0 | } |
3043 | 0 | { |
3044 | 0 | E T8P, T8Q, T8R, T8U; |
3045 | 0 | T8P = T8L - T8O; |
3046 | 0 | T8Q = T8D - T8k; |
3047 | 0 | io[WS(os, 61)] = T8P - T8Q; |
3048 | 0 | io[WS(os, 29)] = T8P + T8Q; |
3049 | 0 | T8R = T7L - T80; |
3050 | 0 | T8U = T8S - T8T; |
3051 | 0 | ro[WS(os, 61)] = T8R - T8U; |
3052 | 0 | ro[WS(os, 29)] = T8R + T8U; |
3053 | 0 | } |
3054 | 0 | { |
3055 | 0 | E T8Z, T96, T9f, T9g; |
3056 | 0 | T8Z = T8X + T8Y; |
3057 | 0 | T96 = T92 + T95; |
3058 | 0 | ro[WS(os, 37)] = T8Z - T96; |
3059 | 0 | ro[WS(os, 5)] = T8Z + T96; |
3060 | 0 | T9f = T97 + T98; |
3061 | 0 | T9g = T9c + T9d; |
3062 | 0 | io[WS(os, 37)] = T9f - T9g; |
3063 | 0 | io[WS(os, 5)] = T9f + T9g; |
3064 | 0 | } |
3065 | 0 | { |
3066 | 0 | E T99, T9a, T9b, T9e; |
3067 | 0 | T99 = T97 - T98; |
3068 | 0 | T9a = T95 - T92; |
3069 | 0 | io[WS(os, 53)] = T99 - T9a; |
3070 | 0 | io[WS(os, 21)] = T99 + T9a; |
3071 | 0 | T9b = T8X - T8Y; |
3072 | 0 | T9e = T9c - T9d; |
3073 | 0 | ro[WS(os, 53)] = T9b - T9e; |
3074 | 0 | ro[WS(os, 21)] = T9b + T9e; |
3075 | 0 | } |
3076 | 0 | } |
3077 | 0 | } |
3078 | 0 | } |
3079 | 0 | } |
3080 | | |
3081 | | static const kdft_desc desc = { 64, "n1_64", { 808, 144, 104, 0 }, &GENUS, 0, 0, 0, 0 }; |
3082 | | |
3083 | 1 | void X(codelet_n1_64) (planner *p) { X(kdft_register) (p, n1_64, &desc); |
3084 | 1 | } |
3085 | | |
3086 | | #endif |