Coverage Report

Created: 2023-09-25 07:08

/src/fftw3/dft/scalar/codelets/n1_64.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Mon Sep 25 07:03:53 UTC 2023 */
23
24
#include "dft/codelet-dft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 64 -name n1_64 -include dft/scalar/n.h */
29
30
/*
31
 * This function contains 912 FP additions, 392 FP multiplications,
32
 * (or, 520 additions, 0 multiplications, 392 fused multiply/add),
33
 * 172 stack variables, 15 constants, and 256 memory accesses
34
 */
35
#include "dft/scalar/n.h"
36
37
static void n1_64(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
38
{
39
     DK(KP956940335, +0.956940335732208864935797886980269969482849206);
40
     DK(KP881921264, +0.881921264348355029712756863660388349508442621);
41
     DK(KP534511135, +0.534511135950791641089685961295362908582039528);
42
     DK(KP303346683, +0.303346683607342391675883946941299872384187453);
43
     DK(KP995184726, +0.995184726672196886244836953109479921575474869);
44
     DK(KP773010453, +0.773010453362736960810906609758469800971041293);
45
     DK(KP820678790, +0.820678790828660330972281985331011598767386482);
46
     DK(KP098491403, +0.098491403357164253077197521291327432293052451);
47
     DK(KP980785280, +0.980785280403230449126182236134239036973933731);
48
     DK(KP831469612, +0.831469612302545237078788377617905756738560812);
49
     DK(KP668178637, +0.668178637919298919997757686523080761552472251);
50
     DK(KP198912367, +0.198912367379658006911597622644676228597850501);
51
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
52
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
53
     DK(KP414213562, +0.414213562373095048801688724209698078569671875);
54
     {
55
    INT i;
56
    for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(256, is), MAKE_VOLATILE_STRIDE(256, os)) {
57
         E T37, T7B, T8F, T5Z, Tf, Td9, TbB, TcB, T62, T7C, T2i, TdH, Tah, Tcb, T3e;
58
         E T8G, Tu, TdI, Tak, TbC, Tan, TbD, T2x, Tda, T3m, T65, T7G, T8I, T7J, T8J;
59
         E T3t, T64, TK, Tdd, Tas, Tce, Tav, Tcf, T2N, Tdc, T3G, T6G, T7O, T9k, T7R;
60
         E T9l, T3N, T6H, T1L, TdA, Tbs, Tct, Tdx, Teo, T5j, T6Y, T5Q, T6V, T8y, T9z;
61
         E Tbb, Tcw, T8n, T9C, TZ, Tdf, Taz, Tch, TaC, Tci, T32, Tdg, T3Z, T6J, T7V;
62
         E T9n, T7Y, T9o, T46, T6K, T1g, Tdp, Tb1, Tcm, Tdm, Tej, T4q, T6R, T4X, T6O;
63
         E T8f, T9s, TaK, Tcp, T84, T9v, T1v, Tdn, Tb4, Tcq, Tds, Tek, T4N, T6P, T50;
64
         E T6S, T8i, T9w, TaV, Tcn, T8b, T9t, T20, Tdy, Tbv, Tcx, TdD, Tep, T5G, T6W;
65
         E T5T, T6Z, T8B, T9D, Tbm, Tcu, T8u, T9A;
66
         {
67
        E T3, T35, T26, T5Y, T6, T5X, T29, T36, Ta, T39, T2d, T38, Td, T3b, T2g;
68
        E T3c;
69
        {
70
       E T1, T2, T24, T25;
71
       T1 = ri[0];
72
       T2 = ri[WS(is, 32)];
73
       T3 = T1 + T2;
74
       T35 = T1 - T2;
75
       T24 = ii[0];
76
       T25 = ii[WS(is, 32)];
77
       T26 = T24 + T25;
78
       T5Y = T24 - T25;
79
        }
80
        {
81
       E T4, T5, T27, T28;
82
       T4 = ri[WS(is, 16)];
83
       T5 = ri[WS(is, 48)];
84
       T6 = T4 + T5;
85
       T5X = T4 - T5;
86
       T27 = ii[WS(is, 16)];
87
       T28 = ii[WS(is, 48)];
88
       T29 = T27 + T28;
89
       T36 = T27 - T28;
90
        }
91
        {
92
       E T8, T9, T2b, T2c;
93
       T8 = ri[WS(is, 8)];
94
       T9 = ri[WS(is, 40)];
95
       Ta = T8 + T9;
96
       T39 = T8 - T9;
97
       T2b = ii[WS(is, 8)];
98
       T2c = ii[WS(is, 40)];
99
       T2d = T2b + T2c;
100
       T38 = T2b - T2c;
101
        }
102
        {
103
       E Tb, Tc, T2e, T2f;
104
       Tb = ri[WS(is, 56)];
105
       Tc = ri[WS(is, 24)];
106
       Td = Tb + Tc;
107
       T3b = Tb - Tc;
108
       T2e = ii[WS(is, 56)];
109
       T2f = ii[WS(is, 24)];
110
       T2g = T2e + T2f;
111
       T3c = T2e - T2f;
112
        }
113
        {
114
       E T7, Te, T2a, T2h;
115
       T37 = T35 - T36;
116
       T7B = T35 + T36;
117
       T8F = T5Y - T5X;
118
       T5Z = T5X + T5Y;
119
       T7 = T3 + T6;
120
       Te = Ta + Td;
121
       Tf = T7 + Te;
122
       Td9 = T7 - Te;
123
       {
124
            E Tbz, TbA, T60, T61;
125
            Tbz = Td - Ta;
126
            TbA = T26 - T29;
127
            TbB = Tbz + TbA;
128
            TcB = TbA - Tbz;
129
            T60 = T3b - T3c;
130
            T61 = T39 + T38;
131
            T62 = T60 - T61;
132
            T7C = T61 + T60;
133
       }
134
       T2a = T26 + T29;
135
       T2h = T2d + T2g;
136
       T2i = T2a + T2h;
137
       TdH = T2a - T2h;
138
       {
139
            E Taf, Tag, T3a, T3d;
140
            Taf = T3 - T6;
141
            Tag = T2d - T2g;
142
            Tah = Taf + Tag;
143
            Tcb = Taf - Tag;
144
            T3a = T38 - T39;
145
            T3d = T3b + T3c;
146
            T3e = T3a - T3d;
147
            T8G = T3a + T3d;
148
       }
149
        }
150
         }
151
         {
152
        E Ti, T3j, T2l, T3h, Tl, T3g, T2o, T3k, Tp, T3q, T2s, T3o, Ts, T3n, T2v;
153
        E T3r;
154
        {
155
       E Tg, Th, T2j, T2k;
156
       Tg = ri[WS(is, 4)];
157
       Th = ri[WS(is, 36)];
158
       Ti = Tg + Th;
159
       T3j = Tg - Th;
160
       T2j = ii[WS(is, 4)];
161
       T2k = ii[WS(is, 36)];
162
       T2l = T2j + T2k;
163
       T3h = T2j - T2k;
164
        }
165
        {
166
       E Tj, Tk, T2m, T2n;
167
       Tj = ri[WS(is, 20)];
168
       Tk = ri[WS(is, 52)];
169
       Tl = Tj + Tk;
170
       T3g = Tj - Tk;
171
       T2m = ii[WS(is, 20)];
172
       T2n = ii[WS(is, 52)];
173
       T2o = T2m + T2n;
174
       T3k = T2m - T2n;
175
        }
176
        {
177
       E Tn, To, T2q, T2r;
178
       Tn = ri[WS(is, 60)];
179
       To = ri[WS(is, 28)];
180
       Tp = Tn + To;
181
       T3q = Tn - To;
182
       T2q = ii[WS(is, 60)];
183
       T2r = ii[WS(is, 28)];
184
       T2s = T2q + T2r;
185
       T3o = T2q - T2r;
186
        }
187
        {
188
       E Tq, Tr, T2t, T2u;
189
       Tq = ri[WS(is, 12)];
190
       Tr = ri[WS(is, 44)];
191
       Ts = Tq + Tr;
192
       T3n = Tq - Tr;
193
       T2t = ii[WS(is, 12)];
194
       T2u = ii[WS(is, 44)];
195
       T2v = T2t + T2u;
196
       T3r = T2t - T2u;
197
        }
198
        {
199
       E Tm, Tt, Tai, Taj;
200
       Tm = Ti + Tl;
201
       Tt = Tp + Ts;
202
       Tu = Tm + Tt;
203
       TdI = Tt - Tm;
204
       Tai = Ti - Tl;
205
       Taj = T2l - T2o;
206
       Tak = Tai + Taj;
207
       TbC = Taj - Tai;
208
        }
209
        {
210
       E Tal, Tam, T2p, T2w;
211
       Tal = Tp - Ts;
212
       Tam = T2s - T2v;
213
       Tan = Tal - Tam;
214
       TbD = Tal + Tam;
215
       T2p = T2l + T2o;
216
       T2w = T2s + T2v;
217
       T2x = T2p + T2w;
218
       Tda = T2p - T2w;
219
        }
220
        {
221
       E T3i, T3l, T7E, T7F;
222
       T3i = T3g + T3h;
223
       T3l = T3j - T3k;
224
       T3m = FMA(KP414213562, T3l, T3i);
225
       T65 = FNMS(KP414213562, T3i, T3l);
226
       T7E = T3j + T3k;
227
       T7F = T3h - T3g;
228
       T7G = FMA(KP414213562, T7F, T7E);
229
       T8I = FNMS(KP414213562, T7E, T7F);
230
        }
231
        {
232
       E T7H, T7I, T3p, T3s;
233
       T7H = T3q + T3r;
234
       T7I = T3o - T3n;
235
       T7J = FNMS(KP414213562, T7I, T7H);
236
       T8J = FMA(KP414213562, T7H, T7I);
237
       T3p = T3n + T3o;
238
       T3s = T3q - T3r;
239
       T3t = FNMS(KP414213562, T3s, T3p);
240
       T64 = FMA(KP414213562, T3p, T3s);
241
        }
242
         }
243
         {
244
        E Ty, T3H, T2B, T3x, TB, T3w, T2E, T3I, TI, T3K, T2L, T3E, TF, T3L, T2I;
245
        E T3B;
246
        {
247
       E Tw, Tx, T2C, T2D;
248
       Tw = ri[WS(is, 2)];
249
       Tx = ri[WS(is, 34)];
250
       Ty = Tw + Tx;
251
       T3H = Tw - Tx;
252
       {
253
            E T2z, T2A, Tz, TA;
254
            T2z = ii[WS(is, 2)];
255
            T2A = ii[WS(is, 34)];
256
            T2B = T2z + T2A;
257
            T3x = T2z - T2A;
258
            Tz = ri[WS(is, 18)];
259
            TA = ri[WS(is, 50)];
260
            TB = Tz + TA;
261
            T3w = Tz - TA;
262
       }
263
       T2C = ii[WS(is, 18)];
264
       T2D = ii[WS(is, 50)];
265
       T2E = T2C + T2D;
266
       T3I = T2C - T2D;
267
       {
268
            E TG, TH, T3C, T2J, T2K, T3D;
269
            TG = ri[WS(is, 58)];
270
            TH = ri[WS(is, 26)];
271
            T3C = TG - TH;
272
            T2J = ii[WS(is, 58)];
273
            T2K = ii[WS(is, 26)];
274
            T3D = T2J - T2K;
275
            TI = TG + TH;
276
            T3K = T3C + T3D;
277
            T2L = T2J + T2K;
278
            T3E = T3C - T3D;
279
       }
280
       {
281
            E TD, TE, T3z, T2G, T2H, T3A;
282
            TD = ri[WS(is, 10)];
283
            TE = ri[WS(is, 42)];
284
            T3z = TD - TE;
285
            T2G = ii[WS(is, 10)];
286
            T2H = ii[WS(is, 42)];
287
            T3A = T2G - T2H;
288
            TF = TD + TE;
289
            T3L = T3A - T3z;
290
            T2I = T2G + T2H;
291
            T3B = T3z + T3A;
292
       }
293
        }
294
        {
295
       E TC, TJ, Taq, Tar;
296
       TC = Ty + TB;
297
       TJ = TF + TI;
298
       TK = TC + TJ;
299
       Tdd = TC - TJ;
300
       Taq = TI - TF;
301
       Tar = T2B - T2E;
302
       Tas = Taq + Tar;
303
       Tce = Tar - Taq;
304
        }
305
        {
306
       E Tat, Tau, T2F, T2M;
307
       Tat = Ty - TB;
308
       Tau = T2I - T2L;
309
       Tav = Tat + Tau;
310
       Tcf = Tat - Tau;
311
       T2F = T2B + T2E;
312
       T2M = T2I + T2L;
313
       T2N = T2F + T2M;
314
       Tdc = T2F - T2M;
315
        }
316
        {
317
       E T3y, T3F, T7M, T7N;
318
       T3y = T3w + T3x;
319
       T3F = T3B - T3E;
320
       T3G = FNMS(KP707106781, T3F, T3y);
321
       T6G = FMA(KP707106781, T3F, T3y);
322
       T7M = T3x - T3w;
323
       T7N = T3L + T3K;
324
       T7O = FMA(KP707106781, T7N, T7M);
325
       T9k = FNMS(KP707106781, T7N, T7M);
326
        }
327
        {
328
       E T7P, T7Q, T3J, T3M;
329
       T7P = T3H + T3I;
330
       T7Q = T3B + T3E;
331
       T7R = FMA(KP707106781, T7Q, T7P);
332
       T9l = FNMS(KP707106781, T7Q, T7P);
333
       T3J = T3H - T3I;
334
       T3M = T3K - T3L;
335
       T3N = FNMS(KP707106781, T3M, T3J);
336
       T6H = FMA(KP707106781, T3M, T3J);
337
        }
338
         }
339
         {
340
        E T1z, T5I, T56, Tb8, T1C, T53, T5L, Tb9, T1J, Tbq, T5h, T5N, T1G, Tbp, T5c;
341
        E T5O;
342
        {
343
       E T1x, T1y, T5J, T5K;
344
       T1x = ri[WS(is, 63)];
345
       T1y = ri[WS(is, 31)];
346
       T1z = T1x + T1y;
347
       T5I = T1x - T1y;
348
       {
349
            E T54, T55, T1A, T1B;
350
            T54 = ii[WS(is, 63)];
351
            T55 = ii[WS(is, 31)];
352
            T56 = T54 - T55;
353
            Tb8 = T54 + T55;
354
            T1A = ri[WS(is, 15)];
355
            T1B = ri[WS(is, 47)];
356
            T1C = T1A + T1B;
357
            T53 = T1A - T1B;
358
       }
359
       T5J = ii[WS(is, 15)];
360
       T5K = ii[WS(is, 47)];
361
       T5L = T5J - T5K;
362
       Tb9 = T5J + T5K;
363
       {
364
            E T1H, T1I, T5d, T5e, T5f, T5g;
365
            T1H = ri[WS(is, 55)];
366
            T1I = ri[WS(is, 23)];
367
            T5d = T1H - T1I;
368
            T5e = ii[WS(is, 55)];
369
            T5f = ii[WS(is, 23)];
370
            T5g = T5e - T5f;
371
            T1J = T1H + T1I;
372
            Tbq = T5e + T5f;
373
            T5h = T5d - T5g;
374
            T5N = T5d + T5g;
375
       }
376
       {
377
            E T1E, T1F, T58, T59, T5a, T5b;
378
            T1E = ri[WS(is, 7)];
379
            T1F = ri[WS(is, 39)];
380
            T58 = T1E - T1F;
381
            T59 = ii[WS(is, 7)];
382
            T5a = ii[WS(is, 39)];
383
            T5b = T59 - T5a;
384
            T1G = T1E + T1F;
385
            Tbp = T59 + T5a;
386
            T5c = T58 + T5b;
387
            T5O = T5b - T58;
388
       }
389
        }
390
        {
391
       E T1D, T1K, Tbo, Tbr;
392
       T1D = T1z + T1C;
393
       T1K = T1G + T1J;
394
       T1L = T1D + T1K;
395
       TdA = T1D - T1K;
396
       Tbo = T1z - T1C;
397
       Tbr = Tbp - Tbq;
398
       Tbs = Tbo + Tbr;
399
       Tct = Tbo - Tbr;
400
        }
401
        {
402
       E Tdv, Tdw, T57, T5i;
403
       Tdv = Tb8 + Tb9;
404
       Tdw = Tbp + Tbq;
405
       Tdx = Tdv - Tdw;
406
       Teo = Tdv + Tdw;
407
       T57 = T53 + T56;
408
       T5i = T5c - T5h;
409
       T5j = FNMS(KP707106781, T5i, T57);
410
       T6Y = FMA(KP707106781, T5i, T57);
411
        }
412
        {
413
       E T5M, T5P, T8w, T8x;
414
       T5M = T5I - T5L;
415
       T5P = T5N - T5O;
416
       T5Q = FNMS(KP707106781, T5P, T5M);
417
       T6V = FMA(KP707106781, T5P, T5M);
418
       T8w = T5I + T5L;
419
       T8x = T5c + T5h;
420
       T8y = FMA(KP707106781, T8x, T8w);
421
       T9z = FNMS(KP707106781, T8x, T8w);
422
        }
423
        {
424
       E Tb7, Tba, T8l, T8m;
425
       Tb7 = T1J - T1G;
426
       Tba = Tb8 - Tb9;
427
       Tbb = Tb7 + Tba;
428
       Tcw = Tba - Tb7;
429
       T8l = T56 - T53;
430
       T8m = T5O + T5N;
431
       T8n = FMA(KP707106781, T8m, T8l);
432
       T9C = FNMS(KP707106781, T8m, T8l);
433
        }
434
         }
435
         {
436
        E TN, T40, T2Q, T3Q, TQ, T3P, T2T, T41, TX, T43, T30, T3X, TU, T44, T2X;
437
        E T3U;
438
        {
439
       E TL, TM, T2R, T2S;
440
       TL = ri[WS(is, 62)];
441
       TM = ri[WS(is, 30)];
442
       TN = TL + TM;
443
       T40 = TL - TM;
444
       {
445
            E T2O, T2P, TO, TP;
446
            T2O = ii[WS(is, 62)];
447
            T2P = ii[WS(is, 30)];
448
            T2Q = T2O + T2P;
449
            T3Q = T2O - T2P;
450
            TO = ri[WS(is, 14)];
451
            TP = ri[WS(is, 46)];
452
            TQ = TO + TP;
453
            T3P = TO - TP;
454
       }
455
       T2R = ii[WS(is, 14)];
456
       T2S = ii[WS(is, 46)];
457
       T2T = T2R + T2S;
458
       T41 = T2R - T2S;
459
       {
460
            E TV, TW, T3V, T2Y, T2Z, T3W;
461
            TV = ri[WS(is, 54)];
462
            TW = ri[WS(is, 22)];
463
            T3V = TV - TW;
464
            T2Y = ii[WS(is, 54)];
465
            T2Z = ii[WS(is, 22)];
466
            T3W = T2Y - T2Z;
467
            TX = TV + TW;
468
            T43 = T3V + T3W;
469
            T30 = T2Y + T2Z;
470
            T3X = T3V - T3W;
471
       }
472
       {
473
            E TS, TT, T3S, T2V, T2W, T3T;
474
            TS = ri[WS(is, 6)];
475
            TT = ri[WS(is, 38)];
476
            T3S = TS - TT;
477
            T2V = ii[WS(is, 6)];
478
            T2W = ii[WS(is, 38)];
479
            T3T = T2V - T2W;
480
            TU = TS + TT;
481
            T44 = T3T - T3S;
482
            T2X = T2V + T2W;
483
            T3U = T3S + T3T;
484
       }
485
        }
486
        {
487
       E TR, TY, Tax, Tay;
488
       TR = TN + TQ;
489
       TY = TU + TX;
490
       TZ = TR + TY;
491
       Tdf = TR - TY;
492
       Tax = TX - TU;
493
       Tay = T2Q - T2T;
494
       Taz = Tax + Tay;
495
       Tch = Tay - Tax;
496
        }
497
        {
498
       E TaA, TaB, T2U, T31;
499
       TaA = TN - TQ;
500
       TaB = T2X - T30;
501
       TaC = TaA + TaB;
502
       Tci = TaA - TaB;
503
       T2U = T2Q + T2T;
504
       T31 = T2X + T30;
505
       T32 = T2U + T31;
506
       Tdg = T2U - T31;
507
        }
508
        {
509
       E T3R, T3Y, T7T, T7U;
510
       T3R = T3P + T3Q;
511
       T3Y = T3U - T3X;
512
       T3Z = FNMS(KP707106781, T3Y, T3R);
513
       T6J = FMA(KP707106781, T3Y, T3R);
514
       T7T = T3Q - T3P;
515
       T7U = T44 + T43;
516
       T7V = FMA(KP707106781, T7U, T7T);
517
       T9n = FNMS(KP707106781, T7U, T7T);
518
        }
519
        {
520
       E T7W, T7X, T42, T45;
521
       T7W = T40 + T41;
522
       T7X = T3U + T3X;
523
       T7Y = FMA(KP707106781, T7X, T7W);
524
       T9o = FNMS(KP707106781, T7X, T7W);
525
       T42 = T40 - T41;
526
       T45 = T43 - T44;
527
       T46 = FNMS(KP707106781, T45, T42);
528
       T6K = FMA(KP707106781, T45, T42);
529
        }
530
         }
531
         {
532
        E T14, T4P, T4d, TaH, T17, T4a, T4S, TaI, T1e, TaZ, T4o, T4U, T1b, TaY, T4j;
533
        E T4V;
534
        {
535
       E T12, T13, T4Q, T4R;
536
       T12 = ri[WS(is, 1)];
537
       T13 = ri[WS(is, 33)];
538
       T14 = T12 + T13;
539
       T4P = T12 - T13;
540
       {
541
            E T4b, T4c, T15, T16;
542
            T4b = ii[WS(is, 1)];
543
            T4c = ii[WS(is, 33)];
544
            T4d = T4b - T4c;
545
            TaH = T4b + T4c;
546
            T15 = ri[WS(is, 17)];
547
            T16 = ri[WS(is, 49)];
548
            T17 = T15 + T16;
549
            T4a = T15 - T16;
550
       }
551
       T4Q = ii[WS(is, 17)];
552
       T4R = ii[WS(is, 49)];
553
       T4S = T4Q - T4R;
554
       TaI = T4Q + T4R;
555
       {
556
            E T1c, T1d, T4k, T4l, T4m, T4n;
557
            T1c = ri[WS(is, 57)];
558
            T1d = ri[WS(is, 25)];
559
            T4k = T1c - T1d;
560
            T4l = ii[WS(is, 57)];
561
            T4m = ii[WS(is, 25)];
562
            T4n = T4l - T4m;
563
            T1e = T1c + T1d;
564
            TaZ = T4l + T4m;
565
            T4o = T4k - T4n;
566
            T4U = T4k + T4n;
567
       }
568
       {
569
            E T19, T1a, T4f, T4g, T4h, T4i;
570
            T19 = ri[WS(is, 9)];
571
            T1a = ri[WS(is, 41)];
572
            T4f = T19 - T1a;
573
            T4g = ii[WS(is, 9)];
574
            T4h = ii[WS(is, 41)];
575
            T4i = T4g - T4h;
576
            T1b = T19 + T1a;
577
            TaY = T4g + T4h;
578
            T4j = T4f + T4i;
579
            T4V = T4i - T4f;
580
       }
581
        }
582
        {
583
       E T18, T1f, TaX, Tb0;
584
       T18 = T14 + T17;
585
       T1f = T1b + T1e;
586
       T1g = T18 + T1f;
587
       Tdp = T18 - T1f;
588
       TaX = T14 - T17;
589
       Tb0 = TaY - TaZ;
590
       Tb1 = TaX + Tb0;
591
       Tcm = TaX - Tb0;
592
        }
593
        {
594
       E Tdk, Tdl, T4e, T4p;
595
       Tdk = TaH + TaI;
596
       Tdl = TaY + TaZ;
597
       Tdm = Tdk - Tdl;
598
       Tej = Tdk + Tdl;
599
       T4e = T4a + T4d;
600
       T4p = T4j - T4o;
601
       T4q = FNMS(KP707106781, T4p, T4e);
602
       T6R = FMA(KP707106781, T4p, T4e);
603
        }
604
        {
605
       E T4T, T4W, T8d, T8e;
606
       T4T = T4P - T4S;
607
       T4W = T4U - T4V;
608
       T4X = FNMS(KP707106781, T4W, T4T);
609
       T6O = FMA(KP707106781, T4W, T4T);
610
       T8d = T4P + T4S;
611
       T8e = T4j + T4o;
612
       T8f = FMA(KP707106781, T8e, T8d);
613
       T9s = FNMS(KP707106781, T8e, T8d);
614
        }
615
        {
616
       E TaG, TaJ, T82, T83;
617
       TaG = T1e - T1b;
618
       TaJ = TaH - TaI;
619
       TaK = TaG + TaJ;
620
       Tcp = TaJ - TaG;
621
       T82 = T4d - T4a;
622
       T83 = T4V + T4U;
623
       T84 = FMA(KP707106781, T83, T82);
624
       T9v = FNMS(KP707106781, T83, T82);
625
        }
626
         }
627
         {
628
        E T1j, TaL, T1m, TaM, T4G, T4L, TaO, TaN, T86, T85, T1q, TaR, T1t, TaS, T4v;
629
        E T4A, TaT, TaQ, T89, T88;
630
        {
631
       E T4C, T4K, T4H, T4F;
632
       {
633
            E T1h, T1i, T4I, T4J;
634
            T1h = ri[WS(is, 5)];
635
            T1i = ri[WS(is, 37)];
636
            T1j = T1h + T1i;
637
            T4C = T1h - T1i;
638
            T4I = ii[WS(is, 5)];
639
            T4J = ii[WS(is, 37)];
640
            T4K = T4I - T4J;
641
            TaL = T4I + T4J;
642
       }
643
       {
644
            E T1k, T1l, T4D, T4E;
645
            T1k = ri[WS(is, 21)];
646
            T1l = ri[WS(is, 53)];
647
            T1m = T1k + T1l;
648
            T4H = T1k - T1l;
649
            T4D = ii[WS(is, 21)];
650
            T4E = ii[WS(is, 53)];
651
            T4F = T4D - T4E;
652
            TaM = T4D + T4E;
653
       }
654
       T4G = T4C - T4F;
655
       T4L = T4H + T4K;
656
       TaO = T1j - T1m;
657
       TaN = TaL - TaM;
658
       T86 = T4C + T4F;
659
       T85 = T4K - T4H;
660
        }
661
        {
662
       E T4r, T4z, T4w, T4u;
663
       {
664
            E T1o, T1p, T4x, T4y;
665
            T1o = ri[WS(is, 61)];
666
            T1p = ri[WS(is, 29)];
667
            T1q = T1o + T1p;
668
            T4r = T1o - T1p;
669
            T4x = ii[WS(is, 61)];
670
            T4y = ii[WS(is, 29)];
671
            T4z = T4x - T4y;
672
            TaR = T4x + T4y;
673
       }
674
       {
675
            E T1r, T1s, T4s, T4t;
676
            T1r = ri[WS(is, 13)];
677
            T1s = ri[WS(is, 45)];
678
            T1t = T1r + T1s;
679
            T4w = T1r - T1s;
680
            T4s = ii[WS(is, 13)];
681
            T4t = ii[WS(is, 45)];
682
            T4u = T4s - T4t;
683
            TaS = T4s + T4t;
684
       }
685
       T4v = T4r - T4u;
686
       T4A = T4w + T4z;
687
       TaT = TaR - TaS;
688
       TaQ = T1q - T1t;
689
       T89 = T4r + T4u;
690
       T88 = T4z - T4w;
691
        }
692
        {
693
       E T1n, T1u, Tb2, Tb3;
694
       T1n = T1j + T1m;
695
       T1u = T1q + T1t;
696
       T1v = T1n + T1u;
697
       Tdn = T1u - T1n;
698
       Tb2 = TaO + TaN;
699
       Tb3 = TaQ - TaT;
700
       Tb4 = Tb2 + Tb3;
701
       Tcq = Tb2 - Tb3;
702
        }
703
        {
704
       E Tdq, Tdr, T4B, T4M;
705
       Tdq = TaL + TaM;
706
       Tdr = TaR + TaS;
707
       Tds = Tdq - Tdr;
708
       Tek = Tdq + Tdr;
709
       T4B = FMA(KP414213562, T4A, T4v);
710
       T4M = FNMS(KP414213562, T4L, T4G);
711
       T4N = T4B - T4M;
712
       T6P = T4M + T4B;
713
        }
714
        {
715
       E T4Y, T4Z, T8g, T8h;
716
       T4Y = FMA(KP414213562, T4G, T4L);
717
       T4Z = FNMS(KP414213562, T4v, T4A);
718
       T50 = T4Y - T4Z;
719
       T6S = T4Y + T4Z;
720
       T8g = FMA(KP414213562, T85, T86);
721
       T8h = FNMS(KP414213562, T88, T89);
722
       T8i = T8g + T8h;
723
       T9w = T8g - T8h;
724
        }
725
        {
726
       E TaP, TaU, T87, T8a;
727
       TaP = TaN - TaO;
728
       TaU = TaQ + TaT;
729
       TaV = TaP + TaU;
730
       Tcn = TaU - TaP;
731
       T87 = FNMS(KP414213562, T86, T85);
732
       T8a = FMA(KP414213562, T89, T88);
733
       T8b = T87 + T8a;
734
       T9t = T8a - T87;
735
        }
736
         }
737
         {
738
        E T1O, Tbc, T1R, Tbd, T5z, T5E, Tbf, Tbe, T8p, T8o, T1V, Tbi, T1Y, Tbj, T5o;
739
        E T5t, Tbk, Tbh, T8s, T8r;
740
        {
741
       E T5v, T5D, T5A, T5y;
742
       {
743
            E T1M, T1N, T5B, T5C;
744
            T1M = ri[WS(is, 3)];
745
            T1N = ri[WS(is, 35)];
746
            T1O = T1M + T1N;
747
            T5v = T1M - T1N;
748
            T5B = ii[WS(is, 3)];
749
            T5C = ii[WS(is, 35)];
750
            T5D = T5B - T5C;
751
            Tbc = T5B + T5C;
752
       }
753
       {
754
            E T1P, T1Q, T5w, T5x;
755
            T1P = ri[WS(is, 19)];
756
            T1Q = ri[WS(is, 51)];
757
            T1R = T1P + T1Q;
758
            T5A = T1P - T1Q;
759
            T5w = ii[WS(is, 19)];
760
            T5x = ii[WS(is, 51)];
761
            T5y = T5w - T5x;
762
            Tbd = T5w + T5x;
763
       }
764
       T5z = T5v - T5y;
765
       T5E = T5A + T5D;
766
       Tbf = T1O - T1R;
767
       Tbe = Tbc - Tbd;
768
       T8p = T5v + T5y;
769
       T8o = T5D - T5A;
770
        }
771
        {
772
       E T5k, T5s, T5p, T5n;
773
       {
774
            E T1T, T1U, T5q, T5r;
775
            T1T = ri[WS(is, 59)];
776
            T1U = ri[WS(is, 27)];
777
            T1V = T1T + T1U;
778
            T5k = T1T - T1U;
779
            T5q = ii[WS(is, 59)];
780
            T5r = ii[WS(is, 27)];
781
            T5s = T5q - T5r;
782
            Tbi = T5q + T5r;
783
       }
784
       {
785
            E T1W, T1X, T5l, T5m;
786
            T1W = ri[WS(is, 11)];
787
            T1X = ri[WS(is, 43)];
788
            T1Y = T1W + T1X;
789
            T5p = T1W - T1X;
790
            T5l = ii[WS(is, 11)];
791
            T5m = ii[WS(is, 43)];
792
            T5n = T5l - T5m;
793
            Tbj = T5l + T5m;
794
       }
795
       T5o = T5k - T5n;
796
       T5t = T5p + T5s;
797
       Tbk = Tbi - Tbj;
798
       Tbh = T1V - T1Y;
799
       T8s = T5k + T5n;
800
       T8r = T5s - T5p;
801
        }
802
        {
803
       E T1S, T1Z, Tbt, Tbu;
804
       T1S = T1O + T1R;
805
       T1Z = T1V + T1Y;
806
       T20 = T1S + T1Z;
807
       Tdy = T1Z - T1S;
808
       Tbt = Tbf + Tbe;
809
       Tbu = Tbh - Tbk;
810
       Tbv = Tbt + Tbu;
811
       Tcx = Tbt - Tbu;
812
        }
813
        {
814
       E TdB, TdC, T5u, T5F;
815
       TdB = Tbc + Tbd;
816
       TdC = Tbi + Tbj;
817
       TdD = TdB - TdC;
818
       Tep = TdB + TdC;
819
       T5u = FMA(KP414213562, T5t, T5o);
820
       T5F = FNMS(KP414213562, T5E, T5z);
821
       T5G = T5u - T5F;
822
       T6W = T5F + T5u;
823
        }
824
        {
825
       E T5R, T5S, T8z, T8A;
826
       T5R = FMA(KP414213562, T5z, T5E);
827
       T5S = FNMS(KP414213562, T5o, T5t);
828
       T5T = T5R - T5S;
829
       T6Z = T5R + T5S;
830
       T8z = FMA(KP414213562, T8o, T8p);
831
       T8A = FNMS(KP414213562, T8r, T8s);
832
       T8B = T8z + T8A;
833
       T9D = T8z - T8A;
834
        }
835
        {
836
       E Tbg, Tbl, T8q, T8t;
837
       Tbg = Tbe - Tbf;
838
       Tbl = Tbh + Tbk;
839
       Tbm = Tbg + Tbl;
840
       Tcu = Tbl - Tbg;
841
       T8q = FNMS(KP414213562, T8p, T8o);
842
       T8t = FMA(KP414213562, T8s, T8r);
843
       T8u = T8q + T8t;
844
       T9A = T8t - T8q;
845
        }
846
         }
847
         {
848
        E T11, TeD, TeG, TeI, T22, T23, T34, TeH;
849
        {
850
       E Tv, T10, TeE, TeF;
851
       Tv = Tf + Tu;
852
       T10 = TK + TZ;
853
       T11 = Tv + T10;
854
       TeD = Tv - T10;
855
       TeE = Tej + Tek;
856
       TeF = Teo + Tep;
857
       TeG = TeE - TeF;
858
       TeI = TeE + TeF;
859
        }
860
        {
861
       E T1w, T21, T2y, T33;
862
       T1w = T1g + T1v;
863
       T21 = T1L + T20;
864
       T22 = T1w + T21;
865
       T23 = T21 - T1w;
866
       T2y = T2i + T2x;
867
       T33 = T2N + T32;
868
       T34 = T2y - T33;
869
       TeH = T2y + T33;
870
        }
871
        ro[WS(os, 32)] = T11 - T22;
872
        io[WS(os, 32)] = TeH - TeI;
873
        ro[0] = T11 + T22;
874
        io[0] = TeH + TeI;
875
        io[WS(os, 16)] = T23 + T34;
876
        ro[WS(os, 16)] = TeD + TeG;
877
        io[WS(os, 48)] = T34 - T23;
878
        ro[WS(os, 48)] = TeD - TeG;
879
         }
880
         {
881
        E Teh, Tex, Tev, TeB, Tem, Tey, Ter, Tez;
882
        {
883
       E Tef, Teg, Tet, Teu;
884
       Tef = Tf - Tu;
885
       Teg = T2N - T32;
886
       Teh = Tef + Teg;
887
       Tex = Tef - Teg;
888
       Tet = T2i - T2x;
889
       Teu = TZ - TK;
890
       Tev = Tet - Teu;
891
       TeB = Teu + Tet;
892
        }
893
        {
894
       E Tei, Tel, Ten, Teq;
895
       Tei = T1g - T1v;
896
       Tel = Tej - Tek;
897
       Tem = Tei + Tel;
898
       Tey = Tel - Tei;
899
       Ten = T1L - T20;
900
       Teq = Teo - Tep;
901
       Ter = Ten - Teq;
902
       Tez = Ten + Teq;
903
        }
904
        {
905
       E Tes, TeC, Tew, TeA;
906
       Tes = Tem + Ter;
907
       ro[WS(os, 40)] = FNMS(KP707106781, Tes, Teh);
908
       ro[WS(os, 8)] = FMA(KP707106781, Tes, Teh);
909
       TeC = Tey + Tez;
910
       io[WS(os, 40)] = FNMS(KP707106781, TeC, TeB);
911
       io[WS(os, 8)] = FMA(KP707106781, TeC, TeB);
912
       Tew = Ter - Tem;
913
       io[WS(os, 56)] = FNMS(KP707106781, Tew, Tev);
914
       io[WS(os, 24)] = FMA(KP707106781, Tew, Tev);
915
       TeA = Tey - Tez;
916
       ro[WS(os, 56)] = FNMS(KP707106781, TeA, Tex);
917
       ro[WS(os, 24)] = FMA(KP707106781, TeA, Tex);
918
        }
919
         }
920
         {
921
        E Tdb, TdV, Te5, TdJ, Tdi, Te6, Te3, Teb, TdM, TdW, Tdu, TdR, Te0, Tea, TdF;
922
        E TdQ;
923
        {
924
       E Tde, Tdh, Tdo, Tdt;
925
       Tdb = Td9 - Tda;
926
       TdV = Td9 + Tda;
927
       Te5 = TdI + TdH;
928
       TdJ = TdH - TdI;
929
       Tde = Tdc - Tdd;
930
       Tdh = Tdf + Tdg;
931
       Tdi = Tde - Tdh;
932
       Te6 = Tde + Tdh;
933
       {
934
            E Te1, Te2, TdK, TdL;
935
            Te1 = TdA + TdD;
936
            Te2 = Tdy + Tdx;
937
            Te3 = FNMS(KP414213562, Te2, Te1);
938
            Teb = FMA(KP414213562, Te1, Te2);
939
            TdK = Tdf - Tdg;
940
            TdL = Tdd + Tdc;
941
            TdM = TdK - TdL;
942
            TdW = TdL + TdK;
943
       }
944
       Tdo = Tdm - Tdn;
945
       Tdt = Tdp - Tds;
946
       Tdu = FMA(KP414213562, Tdt, Tdo);
947
       TdR = FNMS(KP414213562, Tdo, Tdt);
948
       {
949
            E TdY, TdZ, Tdz, TdE;
950
            TdY = Tdp + Tds;
951
            TdZ = Tdn + Tdm;
952
            Te0 = FMA(KP414213562, TdZ, TdY);
953
            Tea = FNMS(KP414213562, TdY, TdZ);
954
            Tdz = Tdx - Tdy;
955
            TdE = TdA - TdD;
956
            TdF = FNMS(KP414213562, TdE, Tdz);
957
            TdQ = FMA(KP414213562, Tdz, TdE);
958
       }
959
        }
960
        {
961
       E Tdj, TdG, TdP, TdS;
962
       Tdj = FMA(KP707106781, Tdi, Tdb);
963
       TdG = Tdu - TdF;
964
       ro[WS(os, 44)] = FNMS(KP923879532, TdG, Tdj);
965
       ro[WS(os, 12)] = FMA(KP923879532, TdG, Tdj);
966
       TdP = FMA(KP707106781, TdM, TdJ);
967
       TdS = TdQ - TdR;
968
       io[WS(os, 44)] = FNMS(KP923879532, TdS, TdP);
969
       io[WS(os, 12)] = FMA(KP923879532, TdS, TdP);
970
        }
971
        {
972
       E TdN, TdO, TdT, TdU;
973
       TdN = FNMS(KP707106781, TdM, TdJ);
974
       TdO = Tdu + TdF;
975
       io[WS(os, 28)] = FNMS(KP923879532, TdO, TdN);
976
       io[WS(os, 60)] = FMA(KP923879532, TdO, TdN);
977
       TdT = FNMS(KP707106781, Tdi, Tdb);
978
       TdU = TdR + TdQ;
979
       ro[WS(os, 28)] = FNMS(KP923879532, TdU, TdT);
980
       ro[WS(os, 60)] = FMA(KP923879532, TdU, TdT);
981
        }
982
        {
983
       E TdX, Te4, Ted, Tee;
984
       TdX = FMA(KP707106781, TdW, TdV);
985
       Te4 = Te0 + Te3;
986
       ro[WS(os, 36)] = FNMS(KP923879532, Te4, TdX);
987
       ro[WS(os, 4)] = FMA(KP923879532, Te4, TdX);
988
       Ted = FMA(KP707106781, Te6, Te5);
989
       Tee = Tea + Teb;
990
       io[WS(os, 36)] = FNMS(KP923879532, Tee, Ted);
991
       io[WS(os, 4)] = FMA(KP923879532, Tee, Ted);
992
        }
993
        {
994
       E Te7, Te8, Te9, Tec;
995
       Te7 = FNMS(KP707106781, Te6, Te5);
996
       Te8 = Te3 - Te0;
997
       io[WS(os, 52)] = FNMS(KP923879532, Te8, Te7);
998
       io[WS(os, 20)] = FMA(KP923879532, Te8, Te7);
999
       Te9 = FNMS(KP707106781, TdW, TdV);
1000
       Tec = Tea - Teb;
1001
       ro[WS(os, 52)] = FNMS(KP923879532, Tec, Te9);
1002
       ro[WS(os, 20)] = FMA(KP923879532, Tec, Te9);
1003
        }
1004
         }
1005
         {
1006
        E Tcd, TcP, TcD, TcZ, Tck, Td0, TcX, Td4, Tcs, TcK, TcG, TcQ, TcU, Td5, Tcz;
1007
        E TcL, Tcc, TcC;
1008
        Tcc = TbC - TbD;
1009
        Tcd = FMA(KP707106781, Tcc, Tcb);
1010
        TcP = FNMS(KP707106781, Tcc, Tcb);
1011
        TcC = Tan - Tak;
1012
        TcD = FMA(KP707106781, TcC, TcB);
1013
        TcZ = FNMS(KP707106781, TcC, TcB);
1014
        {
1015
       E Tcg, Tcj, TcV, TcW;
1016
       Tcg = FMA(KP414213562, Tcf, Tce);
1017
       Tcj = FNMS(KP414213562, Tci, Tch);
1018
       Tck = Tcg - Tcj;
1019
       Td0 = Tcg + Tcj;
1020
       TcV = FMA(KP707106781, Tcx, Tcw);
1021
       TcW = FMA(KP707106781, Tcu, Tct);
1022
       TcX = FNMS(KP198912367, TcW, TcV);
1023
       Td4 = FMA(KP198912367, TcV, TcW);
1024
        }
1025
        {
1026
       E Tco, Tcr, TcE, TcF;
1027
       Tco = FNMS(KP707106781, Tcn, Tcm);
1028
       Tcr = FNMS(KP707106781, Tcq, Tcp);
1029
       Tcs = FMA(KP668178637, Tcr, Tco);
1030
       TcK = FNMS(KP668178637, Tco, Tcr);
1031
       TcE = FMA(KP414213562, Tch, Tci);
1032
       TcF = FNMS(KP414213562, Tce, Tcf);
1033
       TcG = TcE - TcF;
1034
       TcQ = TcF + TcE;
1035
        }
1036
        {
1037
       E TcS, TcT, Tcv, Tcy;
1038
       TcS = FMA(KP707106781, Tcq, Tcp);
1039
       TcT = FMA(KP707106781, Tcn, Tcm);
1040
       TcU = FMA(KP198912367, TcT, TcS);
1041
       Td5 = FNMS(KP198912367, TcS, TcT);
1042
       Tcv = FNMS(KP707106781, Tcu, Tct);
1043
       Tcy = FNMS(KP707106781, Tcx, Tcw);
1044
       Tcz = FNMS(KP668178637, Tcy, Tcv);
1045
       TcL = FMA(KP668178637, Tcv, Tcy);
1046
        }
1047
        {
1048
       E Tcl, TcA, TcN, TcO;
1049
       Tcl = FMA(KP923879532, Tck, Tcd);
1050
       TcA = Tcs + Tcz;
1051
       ro[WS(os, 38)] = FNMS(KP831469612, TcA, Tcl);
1052
       ro[WS(os, 6)] = FMA(KP831469612, TcA, Tcl);
1053
       TcN = FMA(KP923879532, TcG, TcD);
1054
       TcO = TcK + TcL;
1055
       io[WS(os, 38)] = FNMS(KP831469612, TcO, TcN);
1056
       io[WS(os, 6)] = FMA(KP831469612, TcO, TcN);
1057
        }
1058
        {
1059
       E TcH, TcI, TcJ, TcM;
1060
       TcH = FNMS(KP923879532, TcG, TcD);
1061
       TcI = Tcz - Tcs;
1062
       io[WS(os, 54)] = FNMS(KP831469612, TcI, TcH);
1063
       io[WS(os, 22)] = FMA(KP831469612, TcI, TcH);
1064
       TcJ = FNMS(KP923879532, Tck, Tcd);
1065
       TcM = TcK - TcL;
1066
       ro[WS(os, 54)] = FNMS(KP831469612, TcM, TcJ);
1067
       ro[WS(os, 22)] = FMA(KP831469612, TcM, TcJ);
1068
        }
1069
        {
1070
       E TcR, TcY, Td3, Td6;
1071
       TcR = FNMS(KP923879532, TcQ, TcP);
1072
       TcY = TcU - TcX;
1073
       ro[WS(os, 46)] = FNMS(KP980785280, TcY, TcR);
1074
       ro[WS(os, 14)] = FMA(KP980785280, TcY, TcR);
1075
       Td3 = FNMS(KP923879532, Td0, TcZ);
1076
       Td6 = Td4 - Td5;
1077
       io[WS(os, 46)] = FNMS(KP980785280, Td6, Td3);
1078
       io[WS(os, 14)] = FMA(KP980785280, Td6, Td3);
1079
        }
1080
        {
1081
       E Td1, Td2, Td7, Td8;
1082
       Td1 = FMA(KP923879532, Td0, TcZ);
1083
       Td2 = TcU + TcX;
1084
       io[WS(os, 30)] = FNMS(KP980785280, Td2, Td1);
1085
       io[WS(os, 62)] = FMA(KP980785280, Td2, Td1);
1086
       Td7 = FMA(KP923879532, TcQ, TcP);
1087
       Td8 = Td5 + Td4;
1088
       ro[WS(os, 30)] = FNMS(KP980785280, Td8, Td7);
1089
       ro[WS(os, 62)] = FMA(KP980785280, Td8, Td7);
1090
        }
1091
         }
1092
         {
1093
        E Tap, TbR, TbF, Tc1, TaE, Tc2, TbZ, Tc7, Tb6, TbN, TbI, TbS, TbW, Tc6, Tbx;
1094
        E TbM, Tao, TbE;
1095
        Tao = Tak + Tan;
1096
        Tap = FNMS(KP707106781, Tao, Tah);
1097
        TbR = FMA(KP707106781, Tao, Tah);
1098
        TbE = TbC + TbD;
1099
        TbF = FNMS(KP707106781, TbE, TbB);
1100
        Tc1 = FMA(KP707106781, TbE, TbB);
1101
        {
1102
       E Taw, TaD, TbX, TbY;
1103
       Taw = FNMS(KP414213562, Tav, Tas);
1104
       TaD = FMA(KP414213562, TaC, Taz);
1105
       TaE = Taw - TaD;
1106
       Tc2 = Taw + TaD;
1107
       TbX = FMA(KP707106781, Tbv, Tbs);
1108
       TbY = FMA(KP707106781, Tbm, Tbb);
1109
       TbZ = FNMS(KP198912367, TbY, TbX);
1110
       Tc7 = FMA(KP198912367, TbX, TbY);
1111
        }
1112
        {
1113
       E TaW, Tb5, TbG, TbH;
1114
       TaW = FNMS(KP707106781, TaV, TaK);
1115
       Tb5 = FNMS(KP707106781, Tb4, Tb1);
1116
       Tb6 = FMA(KP668178637, Tb5, TaW);
1117
       TbN = FNMS(KP668178637, TaW, Tb5);
1118
       TbG = FNMS(KP414213562, Taz, TaC);
1119
       TbH = FMA(KP414213562, Tas, Tav);
1120
       TbI = TbG - TbH;
1121
       TbS = TbH + TbG;
1122
        }
1123
        {
1124
       E TbU, TbV, Tbn, Tbw;
1125
       TbU = FMA(KP707106781, Tb4, Tb1);
1126
       TbV = FMA(KP707106781, TaV, TaK);
1127
       TbW = FMA(KP198912367, TbV, TbU);
1128
       Tc6 = FNMS(KP198912367, TbU, TbV);
1129
       Tbn = FNMS(KP707106781, Tbm, Tbb);
1130
       Tbw = FNMS(KP707106781, Tbv, Tbs);
1131
       Tbx = FNMS(KP668178637, Tbw, Tbn);
1132
       TbM = FMA(KP668178637, Tbn, Tbw);
1133
        }
1134
        {
1135
       E TaF, Tby, TbL, TbO;
1136
       TaF = FMA(KP923879532, TaE, Tap);
1137
       Tby = Tb6 - Tbx;
1138
       ro[WS(os, 42)] = FNMS(KP831469612, Tby, TaF);
1139
       ro[WS(os, 10)] = FMA(KP831469612, Tby, TaF);
1140
       TbL = FMA(KP923879532, TbI, TbF);
1141
       TbO = TbM - TbN;
1142
       io[WS(os, 42)] = FNMS(KP831469612, TbO, TbL);
1143
       io[WS(os, 10)] = FMA(KP831469612, TbO, TbL);
1144
        }
1145
        {
1146
       E TbJ, TbK, TbP, TbQ;
1147
       TbJ = FNMS(KP923879532, TbI, TbF);
1148
       TbK = Tb6 + Tbx;
1149
       io[WS(os, 26)] = FNMS(KP831469612, TbK, TbJ);
1150
       io[WS(os, 58)] = FMA(KP831469612, TbK, TbJ);
1151
       TbP = FNMS(KP923879532, TaE, Tap);
1152
       TbQ = TbN + TbM;
1153
       ro[WS(os, 26)] = FNMS(KP831469612, TbQ, TbP);
1154
       ro[WS(os, 58)] = FMA(KP831469612, TbQ, TbP);
1155
        }
1156
        {
1157
       E TbT, Tc0, Tc9, Tca;
1158
       TbT = FMA(KP923879532, TbS, TbR);
1159
       Tc0 = TbW + TbZ;
1160
       ro[WS(os, 34)] = FNMS(KP980785280, Tc0, TbT);
1161
       ro[WS(os, 2)] = FMA(KP980785280, Tc0, TbT);
1162
       Tc9 = FMA(KP923879532, Tc2, Tc1);
1163
       Tca = Tc6 + Tc7;
1164
       io[WS(os, 34)] = FNMS(KP980785280, Tca, Tc9);
1165
       io[WS(os, 2)] = FMA(KP980785280, Tca, Tc9);
1166
        }
1167
        {
1168
       E Tc3, Tc4, Tc5, Tc8;
1169
       Tc3 = FNMS(KP923879532, Tc2, Tc1);
1170
       Tc4 = TbZ - TbW;
1171
       io[WS(os, 50)] = FNMS(KP980785280, Tc4, Tc3);
1172
       io[WS(os, 18)] = FMA(KP980785280, Tc4, Tc3);
1173
       Tc5 = FNMS(KP923879532, TbS, TbR);
1174
       Tc8 = Tc6 - Tc7;
1175
       ro[WS(os, 50)] = FNMS(KP980785280, Tc8, Tc5);
1176
       ro[WS(os, 18)] = FMA(KP980785280, Tc8, Tc5);
1177
        }
1178
         }
1179
         {
1180
        E T6F, T7h, T7m, T7x, T7p, T7w, T6M, T7s, T6U, T7c, T75, T7r, T78, T7i, T71;
1181
        E T7d;
1182
        {
1183
       E T6D, T6E, T7k, T7l;
1184
       T6D = FNMS(KP707106781, T3e, T37);
1185
       T6E = T65 + T64;
1186
       T6F = FNMS(KP923879532, T6E, T6D);
1187
       T7h = FMA(KP923879532, T6E, T6D);
1188
       T7k = FMA(KP923879532, T6S, T6R);
1189
       T7l = FMA(KP923879532, T6P, T6O);
1190
       T7m = FMA(KP098491403, T7l, T7k);
1191
       T7x = FNMS(KP098491403, T7k, T7l);
1192
        }
1193
        {
1194
       E T7n, T7o, T6I, T6L;
1195
       T7n = FMA(KP923879532, T6Z, T6Y);
1196
       T7o = FMA(KP923879532, T6W, T6V);
1197
       T7p = FNMS(KP098491403, T7o, T7n);
1198
       T7w = FMA(KP098491403, T7n, T7o);
1199
       T6I = FMA(KP198912367, T6H, T6G);
1200
       T6L = FNMS(KP198912367, T6K, T6J);
1201
       T6M = T6I - T6L;
1202
       T7s = T6I + T6L;
1203
        }
1204
        {
1205
       E T6Q, T6T, T73, T74;
1206
       T6Q = FNMS(KP923879532, T6P, T6O);
1207
       T6T = FNMS(KP923879532, T6S, T6R);
1208
       T6U = FMA(KP820678790, T6T, T6Q);
1209
       T7c = FNMS(KP820678790, T6Q, T6T);
1210
       T73 = FNMS(KP707106781, T62, T5Z);
1211
       T74 = T3m + T3t;
1212
       T75 = FNMS(KP923879532, T74, T73);
1213
       T7r = FMA(KP923879532, T74, T73);
1214
        }
1215
        {
1216
       E T76, T77, T6X, T70;
1217
       T76 = FMA(KP198912367, T6J, T6K);
1218
       T77 = FNMS(KP198912367, T6G, T6H);
1219
       T78 = T76 - T77;
1220
       T7i = T77 + T76;
1221
       T6X = FNMS(KP923879532, T6W, T6V);
1222
       T70 = FNMS(KP923879532, T6Z, T6Y);
1223
       T71 = FNMS(KP820678790, T70, T6X);
1224
       T7d = FMA(KP820678790, T6X, T70);
1225
        }
1226
        {
1227
       E T6N, T72, T7f, T7g;
1228
       T6N = FMA(KP980785280, T6M, T6F);
1229
       T72 = T6U + T71;
1230
       ro[WS(os, 39)] = FNMS(KP773010453, T72, T6N);
1231
       ro[WS(os, 7)] = FMA(KP773010453, T72, T6N);
1232
       T7f = FMA(KP980785280, T78, T75);
1233
       T7g = T7c + T7d;
1234
       io[WS(os, 39)] = FNMS(KP773010453, T7g, T7f);
1235
       io[WS(os, 7)] = FMA(KP773010453, T7g, T7f);
1236
        }
1237
        {
1238
       E T79, T7a, T7b, T7e;
1239
       T79 = FNMS(KP980785280, T78, T75);
1240
       T7a = T71 - T6U;
1241
       io[WS(os, 55)] = FNMS(KP773010453, T7a, T79);
1242
       io[WS(os, 23)] = FMA(KP773010453, T7a, T79);
1243
       T7b = FNMS(KP980785280, T6M, T6F);
1244
       T7e = T7c - T7d;
1245
       ro[WS(os, 55)] = FNMS(KP773010453, T7e, T7b);
1246
       ro[WS(os, 23)] = FMA(KP773010453, T7e, T7b);
1247
        }
1248
        {
1249
       E T7j, T7q, T7v, T7y;
1250
       T7j = FNMS(KP980785280, T7i, T7h);
1251
       T7q = T7m - T7p;
1252
       ro[WS(os, 47)] = FNMS(KP995184726, T7q, T7j);
1253
       ro[WS(os, 15)] = FMA(KP995184726, T7q, T7j);
1254
       T7v = FNMS(KP980785280, T7s, T7r);
1255
       T7y = T7w - T7x;
1256
       io[WS(os, 47)] = FNMS(KP995184726, T7y, T7v);
1257
       io[WS(os, 15)] = FMA(KP995184726, T7y, T7v);
1258
        }
1259
        {
1260
       E T7t, T7u, T7z, T7A;
1261
       T7t = FMA(KP980785280, T7s, T7r);
1262
       T7u = T7m + T7p;
1263
       io[WS(os, 31)] = FNMS(KP995184726, T7u, T7t);
1264
       io[WS(os, 63)] = FMA(KP995184726, T7u, T7t);
1265
       T7z = FMA(KP980785280, T7i, T7h);
1266
       T7A = T7x + T7w;
1267
       ro[WS(os, 31)] = FNMS(KP995184726, T7A, T7z);
1268
       ro[WS(os, 63)] = FMA(KP995184726, T7A, T7z);
1269
        }
1270
         }
1271
         {
1272
        E T9j, T9V, Ta0, Tab, Ta3, Taa, T9q, Ta6, T9y, T9Q, T9J, Ta5, T9M, T9W, T9F;
1273
        E T9R;
1274
        {
1275
       E T9h, T9i, T9Y, T9Z;
1276
       T9h = FNMS(KP707106781, T7C, T7B);
1277
       T9i = T8I - T8J;
1278
       T9j = FMA(KP923879532, T9i, T9h);
1279
       T9V = FNMS(KP923879532, T9i, T9h);
1280
       T9Y = FMA(KP923879532, T9w, T9v);
1281
       T9Z = FMA(KP923879532, T9t, T9s);
1282
       Ta0 = FMA(KP303346683, T9Z, T9Y);
1283
       Tab = FNMS(KP303346683, T9Y, T9Z);
1284
        }
1285
        {
1286
       E Ta1, Ta2, T9m, T9p;
1287
       Ta1 = FMA(KP923879532, T9D, T9C);
1288
       Ta2 = FMA(KP923879532, T9A, T9z);
1289
       Ta3 = FNMS(KP303346683, Ta2, Ta1);
1290
       Taa = FMA(KP303346683, Ta1, Ta2);
1291
       T9m = FMA(KP668178637, T9l, T9k);
1292
       T9p = FNMS(KP668178637, T9o, T9n);
1293
       T9q = T9m - T9p;
1294
       Ta6 = T9m + T9p;
1295
        }
1296
        {
1297
       E T9u, T9x, T9H, T9I;
1298
       T9u = FNMS(KP923879532, T9t, T9s);
1299
       T9x = FNMS(KP923879532, T9w, T9v);
1300
       T9y = FMA(KP534511135, T9x, T9u);
1301
       T9Q = FNMS(KP534511135, T9u, T9x);
1302
       T9H = FNMS(KP707106781, T8G, T8F);
1303
       T9I = T7J - T7G;
1304
       T9J = FMA(KP923879532, T9I, T9H);
1305
       Ta5 = FNMS(KP923879532, T9I, T9H);
1306
        }
1307
        {
1308
       E T9K, T9L, T9B, T9E;
1309
       T9K = FMA(KP668178637, T9n, T9o);
1310
       T9L = FNMS(KP668178637, T9k, T9l);
1311
       T9M = T9K - T9L;
1312
       T9W = T9L + T9K;
1313
       T9B = FNMS(KP923879532, T9A, T9z);
1314
       T9E = FNMS(KP923879532, T9D, T9C);
1315
       T9F = FNMS(KP534511135, T9E, T9B);
1316
       T9R = FMA(KP534511135, T9B, T9E);
1317
        }
1318
        {
1319
       E T9r, T9G, T9T, T9U;
1320
       T9r = FMA(KP831469612, T9q, T9j);
1321
       T9G = T9y + T9F;
1322
       ro[WS(os, 37)] = FNMS(KP881921264, T9G, T9r);
1323
       ro[WS(os, 5)] = FMA(KP881921264, T9G, T9r);
1324
       T9T = FMA(KP831469612, T9M, T9J);
1325
       T9U = T9Q + T9R;
1326
       io[WS(os, 37)] = FNMS(KP881921264, T9U, T9T);
1327
       io[WS(os, 5)] = FMA(KP881921264, T9U, T9T);
1328
        }
1329
        {
1330
       E T9N, T9O, T9P, T9S;
1331
       T9N = FNMS(KP831469612, T9M, T9J);
1332
       T9O = T9F - T9y;
1333
       io[WS(os, 53)] = FNMS(KP881921264, T9O, T9N);
1334
       io[WS(os, 21)] = FMA(KP881921264, T9O, T9N);
1335
       T9P = FNMS(KP831469612, T9q, T9j);
1336
       T9S = T9Q - T9R;
1337
       ro[WS(os, 53)] = FNMS(KP881921264, T9S, T9P);
1338
       ro[WS(os, 21)] = FMA(KP881921264, T9S, T9P);
1339
        }
1340
        {
1341
       E T9X, Ta4, Ta9, Tac;
1342
       T9X = FNMS(KP831469612, T9W, T9V);
1343
       Ta4 = Ta0 - Ta3;
1344
       ro[WS(os, 45)] = FNMS(KP956940335, Ta4, T9X);
1345
       ro[WS(os, 13)] = FMA(KP956940335, Ta4, T9X);
1346
       Ta9 = FNMS(KP831469612, Ta6, Ta5);
1347
       Tac = Taa - Tab;
1348
       io[WS(os, 45)] = FNMS(KP956940335, Tac, Ta9);
1349
       io[WS(os, 13)] = FMA(KP956940335, Tac, Ta9);
1350
        }
1351
        {
1352
       E Ta7, Ta8, Tad, Tae;
1353
       Ta7 = FMA(KP831469612, Ta6, Ta5);
1354
       Ta8 = Ta0 + Ta3;
1355
       io[WS(os, 29)] = FNMS(KP956940335, Ta8, Ta7);
1356
       io[WS(os, 61)] = FMA(KP956940335, Ta8, Ta7);
1357
       Tad = FMA(KP831469612, T9W, T9V);
1358
       Tae = Tab + Taa;
1359
       ro[WS(os, 29)] = FNMS(KP956940335, Tae, Tad);
1360
       ro[WS(os, 61)] = FMA(KP956940335, Tae, Tad);
1361
        }
1362
         }
1363
         {
1364
        E T3v, T6j, T6o, T6y, T6r, T6z, T48, T6u, T52, T6f, T67, T6t, T6a, T6k, T5V;
1365
        E T6e;
1366
        {
1367
       E T3f, T3u, T6m, T6n;
1368
       T3f = FMA(KP707106781, T3e, T37);
1369
       T3u = T3m - T3t;
1370
       T3v = FNMS(KP923879532, T3u, T3f);
1371
       T6j = FMA(KP923879532, T3u, T3f);
1372
       T6m = FMA(KP923879532, T50, T4X);
1373
       T6n = FMA(KP923879532, T4N, T4q);
1374
       T6o = FMA(KP303346683, T6n, T6m);
1375
       T6y = FNMS(KP303346683, T6m, T6n);
1376
        }
1377
        {
1378
       E T6p, T6q, T3O, T47;
1379
       T6p = FMA(KP923879532, T5T, T5Q);
1380
       T6q = FMA(KP923879532, T5G, T5j);
1381
       T6r = FNMS(KP303346683, T6q, T6p);
1382
       T6z = FMA(KP303346683, T6p, T6q);
1383
       T3O = FNMS(KP668178637, T3N, T3G);
1384
       T47 = FMA(KP668178637, T46, T3Z);
1385
       T48 = T3O - T47;
1386
       T6u = T3O + T47;
1387
        }
1388
        {
1389
       E T4O, T51, T63, T66;
1390
       T4O = FNMS(KP923879532, T4N, T4q);
1391
       T51 = FNMS(KP923879532, T50, T4X);
1392
       T52 = FMA(KP534511135, T51, T4O);
1393
       T6f = FNMS(KP534511135, T4O, T51);
1394
       T63 = FMA(KP707106781, T62, T5Z);
1395
       T66 = T64 - T65;
1396
       T67 = FNMS(KP923879532, T66, T63);
1397
       T6t = FMA(KP923879532, T66, T63);
1398
        }
1399
        {
1400
       E T68, T69, T5H, T5U;
1401
       T68 = FNMS(KP668178637, T3Z, T46);
1402
       T69 = FMA(KP668178637, T3G, T3N);
1403
       T6a = T68 - T69;
1404
       T6k = T69 + T68;
1405
       T5H = FNMS(KP923879532, T5G, T5j);
1406
       T5U = FNMS(KP923879532, T5T, T5Q);
1407
       T5V = FNMS(KP534511135, T5U, T5H);
1408
       T6e = FMA(KP534511135, T5H, T5U);
1409
        }
1410
        {
1411
       E T49, T5W, T6d, T6g;
1412
       T49 = FMA(KP831469612, T48, T3v);
1413
       T5W = T52 - T5V;
1414
       ro[WS(os, 43)] = FNMS(KP881921264, T5W, T49);
1415
       ro[WS(os, 11)] = FMA(KP881921264, T5W, T49);
1416
       T6d = FMA(KP831469612, T6a, T67);
1417
       T6g = T6e - T6f;
1418
       io[WS(os, 43)] = FNMS(KP881921264, T6g, T6d);
1419
       io[WS(os, 11)] = FMA(KP881921264, T6g, T6d);
1420
        }
1421
        {
1422
       E T6b, T6c, T6h, T6i;
1423
       T6b = FNMS(KP831469612, T6a, T67);
1424
       T6c = T52 + T5V;
1425
       io[WS(os, 27)] = FNMS(KP881921264, T6c, T6b);
1426
       io[WS(os, 59)] = FMA(KP881921264, T6c, T6b);
1427
       T6h = FNMS(KP831469612, T48, T3v);
1428
       T6i = T6f + T6e;
1429
       ro[WS(os, 27)] = FNMS(KP881921264, T6i, T6h);
1430
       ro[WS(os, 59)] = FMA(KP881921264, T6i, T6h);
1431
        }
1432
        {
1433
       E T6l, T6s, T6B, T6C;
1434
       T6l = FMA(KP831469612, T6k, T6j);
1435
       T6s = T6o + T6r;
1436
       ro[WS(os, 35)] = FNMS(KP956940335, T6s, T6l);
1437
       ro[WS(os, 3)] = FMA(KP956940335, T6s, T6l);
1438
       T6B = FMA(KP831469612, T6u, T6t);
1439
       T6C = T6y + T6z;
1440
       io[WS(os, 35)] = FNMS(KP956940335, T6C, T6B);
1441
       io[WS(os, 3)] = FMA(KP956940335, T6C, T6B);
1442
        }
1443
        {
1444
       E T6v, T6w, T6x, T6A;
1445
       T6v = FNMS(KP831469612, T6u, T6t);
1446
       T6w = T6r - T6o;
1447
       io[WS(os, 51)] = FNMS(KP956940335, T6w, T6v);
1448
       io[WS(os, 19)] = FMA(KP956940335, T6w, T6v);
1449
       T6x = FNMS(KP831469612, T6k, T6j);
1450
       T6A = T6y - T6z;
1451
       ro[WS(os, 51)] = FNMS(KP956940335, T6A, T6x);
1452
       ro[WS(os, 19)] = FMA(KP956940335, T6A, T6x);
1453
        }
1454
         }
1455
         {
1456
        E T7L, T8X, T92, T9c, T95, T9d, T80, T98, T8k, T8T, T8L, T97, T8O, T8Y, T8D;
1457
        E T8S;
1458
        {
1459
       E T7D, T7K, T90, T91;
1460
       T7D = FMA(KP707106781, T7C, T7B);
1461
       T7K = T7G + T7J;
1462
       T7L = FNMS(KP923879532, T7K, T7D);
1463
       T8X = FMA(KP923879532, T7K, T7D);
1464
       T90 = FMA(KP923879532, T8i, T8f);
1465
       T91 = FMA(KP923879532, T8b, T84);
1466
       T92 = FMA(KP098491403, T91, T90);
1467
       T9c = FNMS(KP098491403, T90, T91);
1468
        }
1469
        {
1470
       E T93, T94, T7S, T7Z;
1471
       T93 = FMA(KP923879532, T8B, T8y);
1472
       T94 = FMA(KP923879532, T8u, T8n);
1473
       T95 = FNMS(KP098491403, T94, T93);
1474
       T9d = FMA(KP098491403, T93, T94);
1475
       T7S = FNMS(KP198912367, T7R, T7O);
1476
       T7Z = FMA(KP198912367, T7Y, T7V);
1477
       T80 = T7S - T7Z;
1478
       T98 = T7S + T7Z;
1479
        }
1480
        {
1481
       E T8c, T8j, T8H, T8K;
1482
       T8c = FNMS(KP923879532, T8b, T84);
1483
       T8j = FNMS(KP923879532, T8i, T8f);
1484
       T8k = FMA(KP820678790, T8j, T8c);
1485
       T8T = FNMS(KP820678790, T8c, T8j);
1486
       T8H = FMA(KP707106781, T8G, T8F);
1487
       T8K = T8I + T8J;
1488
       T8L = FNMS(KP923879532, T8K, T8H);
1489
       T97 = FMA(KP923879532, T8K, T8H);
1490
        }
1491
        {
1492
       E T8M, T8N, T8v, T8C;
1493
       T8M = FNMS(KP198912367, T7V, T7Y);
1494
       T8N = FMA(KP198912367, T7O, T7R);
1495
       T8O = T8M - T8N;
1496
       T8Y = T8N + T8M;
1497
       T8v = FNMS(KP923879532, T8u, T8n);
1498
       T8C = FNMS(KP923879532, T8B, T8y);
1499
       T8D = FNMS(KP820678790, T8C, T8v);
1500
       T8S = FMA(KP820678790, T8v, T8C);
1501
        }
1502
        {
1503
       E T81, T8E, T8R, T8U;
1504
       T81 = FMA(KP980785280, T80, T7L);
1505
       T8E = T8k - T8D;
1506
       ro[WS(os, 41)] = FNMS(KP773010453, T8E, T81);
1507
       ro[WS(os, 9)] = FMA(KP773010453, T8E, T81);
1508
       T8R = FMA(KP980785280, T8O, T8L);
1509
       T8U = T8S - T8T;
1510
       io[WS(os, 41)] = FNMS(KP773010453, T8U, T8R);
1511
       io[WS(os, 9)] = FMA(KP773010453, T8U, T8R);
1512
        }
1513
        {
1514
       E T8P, T8Q, T8V, T8W;
1515
       T8P = FNMS(KP980785280, T8O, T8L);
1516
       T8Q = T8k + T8D;
1517
       io[WS(os, 25)] = FNMS(KP773010453, T8Q, T8P);
1518
       io[WS(os, 57)] = FMA(KP773010453, T8Q, T8P);
1519
       T8V = FNMS(KP980785280, T80, T7L);
1520
       T8W = T8T + T8S;
1521
       ro[WS(os, 25)] = FNMS(KP773010453, T8W, T8V);
1522
       ro[WS(os, 57)] = FMA(KP773010453, T8W, T8V);
1523
        }
1524
        {
1525
       E T8Z, T96, T9f, T9g;
1526
       T8Z = FMA(KP980785280, T8Y, T8X);
1527
       T96 = T92 + T95;
1528
       ro[WS(os, 33)] = FNMS(KP995184726, T96, T8Z);
1529
       ro[WS(os, 1)] = FMA(KP995184726, T96, T8Z);
1530
       T9f = FMA(KP980785280, T98, T97);
1531
       T9g = T9c + T9d;
1532
       io[WS(os, 33)] = FNMS(KP995184726, T9g, T9f);
1533
       io[WS(os, 1)] = FMA(KP995184726, T9g, T9f);
1534
        }
1535
        {
1536
       E T99, T9a, T9b, T9e;
1537
       T99 = FNMS(KP980785280, T98, T97);
1538
       T9a = T95 - T92;
1539
       io[WS(os, 49)] = FNMS(KP995184726, T9a, T99);
1540
       io[WS(os, 17)] = FMA(KP995184726, T9a, T99);
1541
       T9b = FNMS(KP980785280, T8Y, T8X);
1542
       T9e = T9c - T9d;
1543
       ro[WS(os, 49)] = FNMS(KP995184726, T9e, T9b);
1544
       ro[WS(os, 17)] = FMA(KP995184726, T9e, T9b);
1545
        }
1546
         }
1547
    }
1548
     }
1549
}
1550
1551
static const kdft_desc desc = { 64, "n1_64", { 520, 0, 392, 0 }, &GENUS, 0, 0, 0, 0 };
1552
1553
void X(codelet_n1_64) (planner *p) { X(kdft_register) (p, n1_64, &desc);
1554
}
1555
1556
#else
1557
1558
/* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 64 -name n1_64 -include dft/scalar/n.h */
1559
1560
/*
1561
 * This function contains 912 FP additions, 248 FP multiplications,
1562
 * (or, 808 additions, 144 multiplications, 104 fused multiply/add),
1563
 * 172 stack variables, 15 constants, and 256 memory accesses
1564
 */
1565
#include "dft/scalar/n.h"
1566
1567
static void n1_64(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
1568
0
{
1569
0
     DK(KP773010453, +0.773010453362736960810906609758469800971041293);
1570
0
     DK(KP634393284, +0.634393284163645498215171613225493370675687095);
1571
0
     DK(KP098017140, +0.098017140329560601994195563888641845861136673);
1572
0
     DK(KP995184726, +0.995184726672196886244836953109479921575474869);
1573
0
     DK(KP881921264, +0.881921264348355029712756863660388349508442621);
1574
0
     DK(KP471396736, +0.471396736825997648556387625905254377657460319);
1575
0
     DK(KP290284677, +0.290284677254462367636192375817395274691476278);
1576
0
     DK(KP956940335, +0.956940335732208864935797886980269969482849206);
1577
0
     DK(KP831469612, +0.831469612302545237078788377617905756738560812);
1578
0
     DK(KP555570233, +0.555570233019602224742830813948532874374937191);
1579
0
     DK(KP195090322, +0.195090322016128267848284868477022240927691618);
1580
0
     DK(KP980785280, +0.980785280403230449126182236134239036973933731);
1581
0
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
1582
0
     DK(KP382683432, +0.382683432365089771728459984030398866761344562);
1583
0
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
1584
0
     {
1585
0
    INT i;
1586
0
    for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(256, is), MAKE_VOLATILE_STRIDE(256, os)) {
1587
0
         E T37, T7B, T8F, T5Z, Tf, Td9, TbB, TcB, T62, T7C, T2i, TdH, Tah, Tcb, T3e;
1588
0
         E T8G, Tu, TdI, Tak, TbD, Tan, TbC, T2x, Tda, T3m, T65, T7G, T8J, T7J, T8I;
1589
0
         E T3t, T64, TK, Tdd, Tas, Tce, Tav, Tcf, T2N, Tdc, T3G, T6G, T7O, T9k, T7R;
1590
0
         E T9l, T3N, T6H, T1L, Tdv, Tbs, Tcw, TdC, Teo, T5j, T6V, T5Q, T6Y, T8y, T9C;
1591
0
         E Tbb, Tct, T8n, T9z, TZ, Tdf, Taz, Tch, TaC, Tci, T32, Tdg, T3Z, T6J, T7V;
1592
0
         E T9n, T7Y, T9o, T46, T6K, T1g, Tdp, Tb1, Tcm, Tdm, Tej, T4q, T6R, T4X, T6O;
1593
0
         E T8f, T9s, TaK, Tcp, T84, T9v, T1v, Tdn, Tb4, Tcq, Tds, Tek, T4N, T6P, T50;
1594
0
         E T6S, T8i, T9w, TaV, Tcn, T8b, T9t, T20, TdD, Tbv, Tcu, Tdy, Tep, T5G, T6Z;
1595
0
         E T5T, T6W, T8B, T9A, Tbm, Tcx, T8u, T9D;
1596
0
         {
1597
0
        E T3, T35, T26, T5Y, T6, T5X, T29, T36, Ta, T39, T2d, T38, Td, T3b, T2g;
1598
0
        E T3c;
1599
0
        {
1600
0
       E T1, T2, T24, T25;
1601
0
       T1 = ri[0];
1602
0
       T2 = ri[WS(is, 32)];
1603
0
       T3 = T1 + T2;
1604
0
       T35 = T1 - T2;
1605
0
       T24 = ii[0];
1606
0
       T25 = ii[WS(is, 32)];
1607
0
       T26 = T24 + T25;
1608
0
       T5Y = T24 - T25;
1609
0
        }
1610
0
        {
1611
0
       E T4, T5, T27, T28;
1612
0
       T4 = ri[WS(is, 16)];
1613
0
       T5 = ri[WS(is, 48)];
1614
0
       T6 = T4 + T5;
1615
0
       T5X = T4 - T5;
1616
0
       T27 = ii[WS(is, 16)];
1617
0
       T28 = ii[WS(is, 48)];
1618
0
       T29 = T27 + T28;
1619
0
       T36 = T27 - T28;
1620
0
        }
1621
0
        {
1622
0
       E T8, T9, T2b, T2c;
1623
0
       T8 = ri[WS(is, 8)];
1624
0
       T9 = ri[WS(is, 40)];
1625
0
       Ta = T8 + T9;
1626
0
       T39 = T8 - T9;
1627
0
       T2b = ii[WS(is, 8)];
1628
0
       T2c = ii[WS(is, 40)];
1629
0
       T2d = T2b + T2c;
1630
0
       T38 = T2b - T2c;
1631
0
        }
1632
0
        {
1633
0
       E Tb, Tc, T2e, T2f;
1634
0
       Tb = ri[WS(is, 56)];
1635
0
       Tc = ri[WS(is, 24)];
1636
0
       Td = Tb + Tc;
1637
0
       T3b = Tb - Tc;
1638
0
       T2e = ii[WS(is, 56)];
1639
0
       T2f = ii[WS(is, 24)];
1640
0
       T2g = T2e + T2f;
1641
0
       T3c = T2e - T2f;
1642
0
        }
1643
0
        {
1644
0
       E T7, Te, T2a, T2h;
1645
0
       T37 = T35 - T36;
1646
0
       T7B = T35 + T36;
1647
0
       T8F = T5Y - T5X;
1648
0
       T5Z = T5X + T5Y;
1649
0
       T7 = T3 + T6;
1650
0
       Te = Ta + Td;
1651
0
       Tf = T7 + Te;
1652
0
       Td9 = T7 - Te;
1653
0
       {
1654
0
            E Tbz, TbA, T60, T61;
1655
0
            Tbz = T26 - T29;
1656
0
            TbA = Td - Ta;
1657
0
            TbB = Tbz - TbA;
1658
0
            TcB = TbA + Tbz;
1659
0
            T60 = T3b - T3c;
1660
0
            T61 = T39 + T38;
1661
0
            T62 = KP707106781 * (T60 - T61);
1662
0
            T7C = KP707106781 * (T61 + T60);
1663
0
       }
1664
0
       T2a = T26 + T29;
1665
0
       T2h = T2d + T2g;
1666
0
       T2i = T2a + T2h;
1667
0
       TdH = T2a - T2h;
1668
0
       {
1669
0
            E Taf, Tag, T3a, T3d;
1670
0
            Taf = T3 - T6;
1671
0
            Tag = T2d - T2g;
1672
0
            Tah = Taf - Tag;
1673
0
            Tcb = Taf + Tag;
1674
0
            T3a = T38 - T39;
1675
0
            T3d = T3b + T3c;
1676
0
            T3e = KP707106781 * (T3a - T3d);
1677
0
            T8G = KP707106781 * (T3a + T3d);
1678
0
       }
1679
0
        }
1680
0
         }
1681
0
         {
1682
0
        E Ti, T3j, T2l, T3h, Tl, T3g, T2o, T3k, Tp, T3q, T2s, T3o, Ts, T3n, T2v;
1683
0
        E T3r;
1684
0
        {
1685
0
       E Tg, Th, T2j, T2k;
1686
0
       Tg = ri[WS(is, 4)];
1687
0
       Th = ri[WS(is, 36)];
1688
0
       Ti = Tg + Th;
1689
0
       T3j = Tg - Th;
1690
0
       T2j = ii[WS(is, 4)];
1691
0
       T2k = ii[WS(is, 36)];
1692
0
       T2l = T2j + T2k;
1693
0
       T3h = T2j - T2k;
1694
0
        }
1695
0
        {
1696
0
       E Tj, Tk, T2m, T2n;
1697
0
       Tj = ri[WS(is, 20)];
1698
0
       Tk = ri[WS(is, 52)];
1699
0
       Tl = Tj + Tk;
1700
0
       T3g = Tj - Tk;
1701
0
       T2m = ii[WS(is, 20)];
1702
0
       T2n = ii[WS(is, 52)];
1703
0
       T2o = T2m + T2n;
1704
0
       T3k = T2m - T2n;
1705
0
        }
1706
0
        {
1707
0
       E Tn, To, T2q, T2r;
1708
0
       Tn = ri[WS(is, 60)];
1709
0
       To = ri[WS(is, 28)];
1710
0
       Tp = Tn + To;
1711
0
       T3q = Tn - To;
1712
0
       T2q = ii[WS(is, 60)];
1713
0
       T2r = ii[WS(is, 28)];
1714
0
       T2s = T2q + T2r;
1715
0
       T3o = T2q - T2r;
1716
0
        }
1717
0
        {
1718
0
       E Tq, Tr, T2t, T2u;
1719
0
       Tq = ri[WS(is, 12)];
1720
0
       Tr = ri[WS(is, 44)];
1721
0
       Ts = Tq + Tr;
1722
0
       T3n = Tq - Tr;
1723
0
       T2t = ii[WS(is, 12)];
1724
0
       T2u = ii[WS(is, 44)];
1725
0
       T2v = T2t + T2u;
1726
0
       T3r = T2t - T2u;
1727
0
        }
1728
0
        {
1729
0
       E Tm, Tt, Tai, Taj;
1730
0
       Tm = Ti + Tl;
1731
0
       Tt = Tp + Ts;
1732
0
       Tu = Tm + Tt;
1733
0
       TdI = Tt - Tm;
1734
0
       Tai = T2l - T2o;
1735
0
       Taj = Ti - Tl;
1736
0
       Tak = Tai - Taj;
1737
0
       TbD = Taj + Tai;
1738
0
        }
1739
0
        {
1740
0
       E Tal, Tam, T2p, T2w;
1741
0
       Tal = Tp - Ts;
1742
0
       Tam = T2s - T2v;
1743
0
       Tan = Tal + Tam;
1744
0
       TbC = Tal - Tam;
1745
0
       T2p = T2l + T2o;
1746
0
       T2w = T2s + T2v;
1747
0
       T2x = T2p + T2w;
1748
0
       Tda = T2p - T2w;
1749
0
        }
1750
0
        {
1751
0
       E T3i, T3l, T7E, T7F;
1752
0
       T3i = T3g + T3h;
1753
0
       T3l = T3j - T3k;
1754
0
       T3m = FNMS(KP923879532, T3l, KP382683432 * T3i);
1755
0
       T65 = FMA(KP923879532, T3i, KP382683432 * T3l);
1756
0
       T7E = T3h - T3g;
1757
0
       T7F = T3j + T3k;
1758
0
       T7G = FNMS(KP382683432, T7F, KP923879532 * T7E);
1759
0
       T8J = FMA(KP382683432, T7E, KP923879532 * T7F);
1760
0
        }
1761
0
        {
1762
0
       E T7H, T7I, T3p, T3s;
1763
0
       T7H = T3o - T3n;
1764
0
       T7I = T3q + T3r;
1765
0
       T7J = FMA(KP923879532, T7H, KP382683432 * T7I);
1766
0
       T8I = FNMS(KP382683432, T7H, KP923879532 * T7I);
1767
0
       T3p = T3n + T3o;
1768
0
       T3s = T3q - T3r;
1769
0
       T3t = FMA(KP382683432, T3p, KP923879532 * T3s);
1770
0
       T64 = FNMS(KP923879532, T3p, KP382683432 * T3s);
1771
0
        }
1772
0
         }
1773
0
         {
1774
0
        E Ty, T3H, T2B, T3x, TB, T3w, T2E, T3I, TI, T3L, T2L, T3B, TF, T3K, T2I;
1775
0
        E T3E;
1776
0
        {
1777
0
       E Tw, Tx, T2C, T2D;
1778
0
       Tw = ri[WS(is, 2)];
1779
0
       Tx = ri[WS(is, 34)];
1780
0
       Ty = Tw + Tx;
1781
0
       T3H = Tw - Tx;
1782
0
       {
1783
0
            E T2z, T2A, Tz, TA;
1784
0
            T2z = ii[WS(is, 2)];
1785
0
            T2A = ii[WS(is, 34)];
1786
0
            T2B = T2z + T2A;
1787
0
            T3x = T2z - T2A;
1788
0
            Tz = ri[WS(is, 18)];
1789
0
            TA = ri[WS(is, 50)];
1790
0
            TB = Tz + TA;
1791
0
            T3w = Tz - TA;
1792
0
       }
1793
0
       T2C = ii[WS(is, 18)];
1794
0
       T2D = ii[WS(is, 50)];
1795
0
       T2E = T2C + T2D;
1796
0
       T3I = T2C - T2D;
1797
0
       {
1798
0
            E TG, TH, T3z, T2J, T2K, T3A;
1799
0
            TG = ri[WS(is, 58)];
1800
0
            TH = ri[WS(is, 26)];
1801
0
            T3z = TG - TH;
1802
0
            T2J = ii[WS(is, 58)];
1803
0
            T2K = ii[WS(is, 26)];
1804
0
            T3A = T2J - T2K;
1805
0
            TI = TG + TH;
1806
0
            T3L = T3z + T3A;
1807
0
            T2L = T2J + T2K;
1808
0
            T3B = T3z - T3A;
1809
0
       }
1810
0
       {
1811
0
            E TD, TE, T3C, T2G, T2H, T3D;
1812
0
            TD = ri[WS(is, 10)];
1813
0
            TE = ri[WS(is, 42)];
1814
0
            T3C = TD - TE;
1815
0
            T2G = ii[WS(is, 10)];
1816
0
            T2H = ii[WS(is, 42)];
1817
0
            T3D = T2G - T2H;
1818
0
            TF = TD + TE;
1819
0
            T3K = T3D - T3C;
1820
0
            T2I = T2G + T2H;
1821
0
            T3E = T3C + T3D;
1822
0
       }
1823
0
        }
1824
0
        {
1825
0
       E TC, TJ, Taq, Tar;
1826
0
       TC = Ty + TB;
1827
0
       TJ = TF + TI;
1828
0
       TK = TC + TJ;
1829
0
       Tdd = TC - TJ;
1830
0
       Taq = T2B - T2E;
1831
0
       Tar = TI - TF;
1832
0
       Tas = Taq - Tar;
1833
0
       Tce = Tar + Taq;
1834
0
        }
1835
0
        {
1836
0
       E Tat, Tau, T2F, T2M;
1837
0
       Tat = Ty - TB;
1838
0
       Tau = T2I - T2L;
1839
0
       Tav = Tat - Tau;
1840
0
       Tcf = Tat + Tau;
1841
0
       T2F = T2B + T2E;
1842
0
       T2M = T2I + T2L;
1843
0
       T2N = T2F + T2M;
1844
0
       Tdc = T2F - T2M;
1845
0
        }
1846
0
        {
1847
0
       E T3y, T3F, T7M, T7N;
1848
0
       T3y = T3w + T3x;
1849
0
       T3F = KP707106781 * (T3B - T3E);
1850
0
       T3G = T3y - T3F;
1851
0
       T6G = T3y + T3F;
1852
0
       T7M = T3x - T3w;
1853
0
       T7N = KP707106781 * (T3K + T3L);
1854
0
       T7O = T7M - T7N;
1855
0
       T9k = T7M + T7N;
1856
0
        }
1857
0
        {
1858
0
       E T7P, T7Q, T3J, T3M;
1859
0
       T7P = T3H + T3I;
1860
0
       T7Q = KP707106781 * (T3E + T3B);
1861
0
       T7R = T7P - T7Q;
1862
0
       T9l = T7P + T7Q;
1863
0
       T3J = T3H - T3I;
1864
0
       T3M = KP707106781 * (T3K - T3L);
1865
0
       T3N = T3J - T3M;
1866
0
       T6H = T3J + T3M;
1867
0
        }
1868
0
         }
1869
0
         {
1870
0
        E T1z, T53, T5L, Tbo, T1C, T5I, T56, Tbp, T1J, Tb9, T5h, T5N, T1G, Tb8, T5c;
1871
0
        E T5O;
1872
0
        {
1873
0
       E T1x, T1y, T54, T55;
1874
0
       T1x = ri[WS(is, 63)];
1875
0
       T1y = ri[WS(is, 31)];
1876
0
       T1z = T1x + T1y;
1877
0
       T53 = T1x - T1y;
1878
0
       {
1879
0
            E T5J, T5K, T1A, T1B;
1880
0
            T5J = ii[WS(is, 63)];
1881
0
            T5K = ii[WS(is, 31)];
1882
0
            T5L = T5J - T5K;
1883
0
            Tbo = T5J + T5K;
1884
0
            T1A = ri[WS(is, 15)];
1885
0
            T1B = ri[WS(is, 47)];
1886
0
            T1C = T1A + T1B;
1887
0
            T5I = T1A - T1B;
1888
0
       }
1889
0
       T54 = ii[WS(is, 15)];
1890
0
       T55 = ii[WS(is, 47)];
1891
0
       T56 = T54 - T55;
1892
0
       Tbp = T54 + T55;
1893
0
       {
1894
0
            E T1H, T1I, T5d, T5e, T5f, T5g;
1895
0
            T1H = ri[WS(is, 55)];
1896
0
            T1I = ri[WS(is, 23)];
1897
0
            T5d = T1H - T1I;
1898
0
            T5e = ii[WS(is, 55)];
1899
0
            T5f = ii[WS(is, 23)];
1900
0
            T5g = T5e - T5f;
1901
0
            T1J = T1H + T1I;
1902
0
            Tb9 = T5e + T5f;
1903
0
            T5h = T5d + T5g;
1904
0
            T5N = T5d - T5g;
1905
0
       }
1906
0
       {
1907
0
            E T1E, T1F, T5b, T58, T59, T5a;
1908
0
            T1E = ri[WS(is, 7)];
1909
0
            T1F = ri[WS(is, 39)];
1910
0
            T5b = T1E - T1F;
1911
0
            T58 = ii[WS(is, 7)];
1912
0
            T59 = ii[WS(is, 39)];
1913
0
            T5a = T58 - T59;
1914
0
            T1G = T1E + T1F;
1915
0
            Tb8 = T58 + T59;
1916
0
            T5c = T5a - T5b;
1917
0
            T5O = T5b + T5a;
1918
0
       }
1919
0
        }
1920
0
        {
1921
0
       E T1D, T1K, Tbq, Tbr;
1922
0
       T1D = T1z + T1C;
1923
0
       T1K = T1G + T1J;
1924
0
       T1L = T1D + T1K;
1925
0
       Tdv = T1D - T1K;
1926
0
       Tbq = Tbo - Tbp;
1927
0
       Tbr = T1J - T1G;
1928
0
       Tbs = Tbq - Tbr;
1929
0
       Tcw = Tbr + Tbq;
1930
0
        }
1931
0
        {
1932
0
       E TdA, TdB, T57, T5i;
1933
0
       TdA = Tbo + Tbp;
1934
0
       TdB = Tb8 + Tb9;
1935
0
       TdC = TdA - TdB;
1936
0
       Teo = TdA + TdB;
1937
0
       T57 = T53 - T56;
1938
0
       T5i = KP707106781 * (T5c - T5h);
1939
0
       T5j = T57 - T5i;
1940
0
       T6V = T57 + T5i;
1941
0
        }
1942
0
        {
1943
0
       E T5M, T5P, T8w, T8x;
1944
0
       T5M = T5I + T5L;
1945
0
       T5P = KP707106781 * (T5N - T5O);
1946
0
       T5Q = T5M - T5P;
1947
0
       T6Y = T5M + T5P;
1948
0
       T8w = T5L - T5I;
1949
0
       T8x = KP707106781 * (T5c + T5h);
1950
0
       T8y = T8w - T8x;
1951
0
       T9C = T8w + T8x;
1952
0
        }
1953
0
        {
1954
0
       E Tb7, Tba, T8l, T8m;
1955
0
       Tb7 = T1z - T1C;
1956
0
       Tba = Tb8 - Tb9;
1957
0
       Tbb = Tb7 - Tba;
1958
0
       Tct = Tb7 + Tba;
1959
0
       T8l = T53 + T56;
1960
0
       T8m = KP707106781 * (T5O + T5N);
1961
0
       T8n = T8l - T8m;
1962
0
       T9z = T8l + T8m;
1963
0
        }
1964
0
         }
1965
0
         {
1966
0
        E TN, T40, T2Q, T3Q, TQ, T3P, T2T, T41, TX, T44, T30, T3U, TU, T43, T2X;
1967
0
        E T3X;
1968
0
        {
1969
0
       E TL, TM, T2R, T2S;
1970
0
       TL = ri[WS(is, 62)];
1971
0
       TM = ri[WS(is, 30)];
1972
0
       TN = TL + TM;
1973
0
       T40 = TL - TM;
1974
0
       {
1975
0
            E T2O, T2P, TO, TP;
1976
0
            T2O = ii[WS(is, 62)];
1977
0
            T2P = ii[WS(is, 30)];
1978
0
            T2Q = T2O + T2P;
1979
0
            T3Q = T2O - T2P;
1980
0
            TO = ri[WS(is, 14)];
1981
0
            TP = ri[WS(is, 46)];
1982
0
            TQ = TO + TP;
1983
0
            T3P = TO - TP;
1984
0
       }
1985
0
       T2R = ii[WS(is, 14)];
1986
0
       T2S = ii[WS(is, 46)];
1987
0
       T2T = T2R + T2S;
1988
0
       T41 = T2R - T2S;
1989
0
       {
1990
0
            E TV, TW, T3S, T2Y, T2Z, T3T;
1991
0
            TV = ri[WS(is, 54)];
1992
0
            TW = ri[WS(is, 22)];
1993
0
            T3S = TV - TW;
1994
0
            T2Y = ii[WS(is, 54)];
1995
0
            T2Z = ii[WS(is, 22)];
1996
0
            T3T = T2Y - T2Z;
1997
0
            TX = TV + TW;
1998
0
            T44 = T3S + T3T;
1999
0
            T30 = T2Y + T2Z;
2000
0
            T3U = T3S - T3T;
2001
0
       }
2002
0
       {
2003
0
            E TS, TT, T3V, T2V, T2W, T3W;
2004
0
            TS = ri[WS(is, 6)];
2005
0
            TT = ri[WS(is, 38)];
2006
0
            T3V = TS - TT;
2007
0
            T2V = ii[WS(is, 6)];
2008
0
            T2W = ii[WS(is, 38)];
2009
0
            T3W = T2V - T2W;
2010
0
            TU = TS + TT;
2011
0
            T43 = T3W - T3V;
2012
0
            T2X = T2V + T2W;
2013
0
            T3X = T3V + T3W;
2014
0
       }
2015
0
        }
2016
0
        {
2017
0
       E TR, TY, Tax, Tay;
2018
0
       TR = TN + TQ;
2019
0
       TY = TU + TX;
2020
0
       TZ = TR + TY;
2021
0
       Tdf = TR - TY;
2022
0
       Tax = T2Q - T2T;
2023
0
       Tay = TX - TU;
2024
0
       Taz = Tax - Tay;
2025
0
       Tch = Tay + Tax;
2026
0
        }
2027
0
        {
2028
0
       E TaA, TaB, T2U, T31;
2029
0
       TaA = TN - TQ;
2030
0
       TaB = T2X - T30;
2031
0
       TaC = TaA - TaB;
2032
0
       Tci = TaA + TaB;
2033
0
       T2U = T2Q + T2T;
2034
0
       T31 = T2X + T30;
2035
0
       T32 = T2U + T31;
2036
0
       Tdg = T2U - T31;
2037
0
        }
2038
0
        {
2039
0
       E T3R, T3Y, T7T, T7U;
2040
0
       T3R = T3P + T3Q;
2041
0
       T3Y = KP707106781 * (T3U - T3X);
2042
0
       T3Z = T3R - T3Y;
2043
0
       T6J = T3R + T3Y;
2044
0
       T7T = T40 + T41;
2045
0
       T7U = KP707106781 * (T3X + T3U);
2046
0
       T7V = T7T - T7U;
2047
0
       T9n = T7T + T7U;
2048
0
        }
2049
0
        {
2050
0
       E T7W, T7X, T42, T45;
2051
0
       T7W = T3Q - T3P;
2052
0
       T7X = KP707106781 * (T43 + T44);
2053
0
       T7Y = T7W - T7X;
2054
0
       T9o = T7W + T7X;
2055
0
       T42 = T40 - T41;
2056
0
       T45 = KP707106781 * (T43 - T44);
2057
0
       T46 = T42 - T45;
2058
0
       T6K = T42 + T45;
2059
0
        }
2060
0
         }
2061
0
         {
2062
0
        E T14, T4P, T4d, TaG, T17, T4a, T4S, TaH, T1e, TaZ, T4j, T4V, T1b, TaY, T4o;
2063
0
        E T4U;
2064
0
        {
2065
0
       E T12, T13, T4Q, T4R;
2066
0
       T12 = ri[WS(is, 1)];
2067
0
       T13 = ri[WS(is, 33)];
2068
0
       T14 = T12 + T13;
2069
0
       T4P = T12 - T13;
2070
0
       {
2071
0
            E T4b, T4c, T15, T16;
2072
0
            T4b = ii[WS(is, 1)];
2073
0
            T4c = ii[WS(is, 33)];
2074
0
            T4d = T4b - T4c;
2075
0
            TaG = T4b + T4c;
2076
0
            T15 = ri[WS(is, 17)];
2077
0
            T16 = ri[WS(is, 49)];
2078
0
            T17 = T15 + T16;
2079
0
            T4a = T15 - T16;
2080
0
       }
2081
0
       T4Q = ii[WS(is, 17)];
2082
0
       T4R = ii[WS(is, 49)];
2083
0
       T4S = T4Q - T4R;
2084
0
       TaH = T4Q + T4R;
2085
0
       {
2086
0
            E T1c, T1d, T4f, T4g, T4h, T4i;
2087
0
            T1c = ri[WS(is, 57)];
2088
0
            T1d = ri[WS(is, 25)];
2089
0
            T4f = T1c - T1d;
2090
0
            T4g = ii[WS(is, 57)];
2091
0
            T4h = ii[WS(is, 25)];
2092
0
            T4i = T4g - T4h;
2093
0
            T1e = T1c + T1d;
2094
0
            TaZ = T4g + T4h;
2095
0
            T4j = T4f - T4i;
2096
0
            T4V = T4f + T4i;
2097
0
       }
2098
0
       {
2099
0
            E T19, T1a, T4k, T4l, T4m, T4n;
2100
0
            T19 = ri[WS(is, 9)];
2101
0
            T1a = ri[WS(is, 41)];
2102
0
            T4k = T19 - T1a;
2103
0
            T4l = ii[WS(is, 9)];
2104
0
            T4m = ii[WS(is, 41)];
2105
0
            T4n = T4l - T4m;
2106
0
            T1b = T19 + T1a;
2107
0
            TaY = T4l + T4m;
2108
0
            T4o = T4k + T4n;
2109
0
            T4U = T4n - T4k;
2110
0
       }
2111
0
        }
2112
0
        {
2113
0
       E T18, T1f, TaX, Tb0;
2114
0
       T18 = T14 + T17;
2115
0
       T1f = T1b + T1e;
2116
0
       T1g = T18 + T1f;
2117
0
       Tdp = T18 - T1f;
2118
0
       TaX = T14 - T17;
2119
0
       Tb0 = TaY - TaZ;
2120
0
       Tb1 = TaX - Tb0;
2121
0
       Tcm = TaX + Tb0;
2122
0
        }
2123
0
        {
2124
0
       E Tdk, Tdl, T4e, T4p;
2125
0
       Tdk = TaG + TaH;
2126
0
       Tdl = TaY + TaZ;
2127
0
       Tdm = Tdk - Tdl;
2128
0
       Tej = Tdk + Tdl;
2129
0
       T4e = T4a + T4d;
2130
0
       T4p = KP707106781 * (T4j - T4o);
2131
0
       T4q = T4e - T4p;
2132
0
       T6R = T4e + T4p;
2133
0
        }
2134
0
        {
2135
0
       E T4T, T4W, T8d, T8e;
2136
0
       T4T = T4P - T4S;
2137
0
       T4W = KP707106781 * (T4U - T4V);
2138
0
       T4X = T4T - T4W;
2139
0
       T6O = T4T + T4W;
2140
0
       T8d = T4P + T4S;
2141
0
       T8e = KP707106781 * (T4o + T4j);
2142
0
       T8f = T8d - T8e;
2143
0
       T9s = T8d + T8e;
2144
0
        }
2145
0
        {
2146
0
       E TaI, TaJ, T82, T83;
2147
0
       TaI = TaG - TaH;
2148
0
       TaJ = T1e - T1b;
2149
0
       TaK = TaI - TaJ;
2150
0
       Tcp = TaJ + TaI;
2151
0
       T82 = T4d - T4a;
2152
0
       T83 = KP707106781 * (T4U + T4V);
2153
0
       T84 = T82 - T83;
2154
0
       T9v = T82 + T83;
2155
0
        }
2156
0
         }
2157
0
         {
2158
0
        E T1j, TaR, T1m, TaS, T4G, T4L, TaT, TaQ, T89, T88, T1q, TaM, T1t, TaN, T4v;
2159
0
        E T4A, TaO, TaL, T86, T85;
2160
0
        {
2161
0
       E T4H, T4F, T4C, T4K;
2162
0
       {
2163
0
            E T1h, T1i, T4D, T4E;
2164
0
            T1h = ri[WS(is, 5)];
2165
0
            T1i = ri[WS(is, 37)];
2166
0
            T1j = T1h + T1i;
2167
0
            T4H = T1h - T1i;
2168
0
            T4D = ii[WS(is, 5)];
2169
0
            T4E = ii[WS(is, 37)];
2170
0
            T4F = T4D - T4E;
2171
0
            TaR = T4D + T4E;
2172
0
       }
2173
0
       {
2174
0
            E T1k, T1l, T4I, T4J;
2175
0
            T1k = ri[WS(is, 21)];
2176
0
            T1l = ri[WS(is, 53)];
2177
0
            T1m = T1k + T1l;
2178
0
            T4C = T1k - T1l;
2179
0
            T4I = ii[WS(is, 21)];
2180
0
            T4J = ii[WS(is, 53)];
2181
0
            T4K = T4I - T4J;
2182
0
            TaS = T4I + T4J;
2183
0
       }
2184
0
       T4G = T4C + T4F;
2185
0
       T4L = T4H - T4K;
2186
0
       TaT = TaR - TaS;
2187
0
       TaQ = T1j - T1m;
2188
0
       T89 = T4H + T4K;
2189
0
       T88 = T4F - T4C;
2190
0
        }
2191
0
        {
2192
0
       E T4r, T4z, T4w, T4u;
2193
0
       {
2194
0
            E T1o, T1p, T4x, T4y;
2195
0
            T1o = ri[WS(is, 61)];
2196
0
            T1p = ri[WS(is, 29)];
2197
0
            T1q = T1o + T1p;
2198
0
            T4r = T1o - T1p;
2199
0
            T4x = ii[WS(is, 61)];
2200
0
            T4y = ii[WS(is, 29)];
2201
0
            T4z = T4x - T4y;
2202
0
            TaM = T4x + T4y;
2203
0
       }
2204
0
       {
2205
0
            E T1r, T1s, T4s, T4t;
2206
0
            T1r = ri[WS(is, 13)];
2207
0
            T1s = ri[WS(is, 45)];
2208
0
            T1t = T1r + T1s;
2209
0
            T4w = T1r - T1s;
2210
0
            T4s = ii[WS(is, 13)];
2211
0
            T4t = ii[WS(is, 45)];
2212
0
            T4u = T4s - T4t;
2213
0
            TaN = T4s + T4t;
2214
0
       }
2215
0
       T4v = T4r - T4u;
2216
0
       T4A = T4w + T4z;
2217
0
       TaO = TaM - TaN;
2218
0
       TaL = T1q - T1t;
2219
0
       T86 = T4z - T4w;
2220
0
       T85 = T4r + T4u;
2221
0
        }
2222
0
        {
2223
0
       E T1n, T1u, Tb2, Tb3;
2224
0
       T1n = T1j + T1m;
2225
0
       T1u = T1q + T1t;
2226
0
       T1v = T1n + T1u;
2227
0
       Tdn = T1u - T1n;
2228
0
       Tb2 = TaT - TaQ;
2229
0
       Tb3 = TaL + TaO;
2230
0
       Tb4 = KP707106781 * (Tb2 - Tb3);
2231
0
       Tcq = KP707106781 * (Tb2 + Tb3);
2232
0
        }
2233
0
        {
2234
0
       E Tdq, Tdr, T4B, T4M;
2235
0
       Tdq = TaR + TaS;
2236
0
       Tdr = TaM + TaN;
2237
0
       Tds = Tdq - Tdr;
2238
0
       Tek = Tdq + Tdr;
2239
0
       T4B = FNMS(KP923879532, T4A, KP382683432 * T4v);
2240
0
       T4M = FMA(KP923879532, T4G, KP382683432 * T4L);
2241
0
       T4N = T4B - T4M;
2242
0
       T6P = T4M + T4B;
2243
0
        }
2244
0
        {
2245
0
       E T4Y, T4Z, T8g, T8h;
2246
0
       T4Y = FNMS(KP923879532, T4L, KP382683432 * T4G);
2247
0
       T4Z = FMA(KP382683432, T4A, KP923879532 * T4v);
2248
0
       T50 = T4Y - T4Z;
2249
0
       T6S = T4Y + T4Z;
2250
0
       T8g = FNMS(KP382683432, T89, KP923879532 * T88);
2251
0
       T8h = FMA(KP923879532, T86, KP382683432 * T85);
2252
0
       T8i = T8g - T8h;
2253
0
       T9w = T8g + T8h;
2254
0
        }
2255
0
        {
2256
0
       E TaP, TaU, T87, T8a;
2257
0
       TaP = TaL - TaO;
2258
0
       TaU = TaQ + TaT;
2259
0
       TaV = KP707106781 * (TaP - TaU);
2260
0
       Tcn = KP707106781 * (TaU + TaP);
2261
0
       T87 = FNMS(KP382683432, T86, KP923879532 * T85);
2262
0
       T8a = FMA(KP382683432, T88, KP923879532 * T89);
2263
0
       T8b = T87 - T8a;
2264
0
       T9t = T8a + T87;
2265
0
        }
2266
0
         }
2267
0
         {
2268
0
        E T1O, Tbc, T1R, Tbd, T5o, T5t, Tbf, Tbe, T8p, T8o, T1V, Tbi, T1Y, Tbj, T5z;
2269
0
        E T5E, Tbk, Tbh, T8s, T8r;
2270
0
        {
2271
0
       E T5p, T5n, T5k, T5s;
2272
0
       {
2273
0
            E T1M, T1N, T5l, T5m;
2274
0
            T1M = ri[WS(is, 3)];
2275
0
            T1N = ri[WS(is, 35)];
2276
0
            T1O = T1M + T1N;
2277
0
            T5p = T1M - T1N;
2278
0
            T5l = ii[WS(is, 3)];
2279
0
            T5m = ii[WS(is, 35)];
2280
0
            T5n = T5l - T5m;
2281
0
            Tbc = T5l + T5m;
2282
0
       }
2283
0
       {
2284
0
            E T1P, T1Q, T5q, T5r;
2285
0
            T1P = ri[WS(is, 19)];
2286
0
            T1Q = ri[WS(is, 51)];
2287
0
            T1R = T1P + T1Q;
2288
0
            T5k = T1P - T1Q;
2289
0
            T5q = ii[WS(is, 19)];
2290
0
            T5r = ii[WS(is, 51)];
2291
0
            T5s = T5q - T5r;
2292
0
            Tbd = T5q + T5r;
2293
0
       }
2294
0
       T5o = T5k + T5n;
2295
0
       T5t = T5p - T5s;
2296
0
       Tbf = T1O - T1R;
2297
0
       Tbe = Tbc - Tbd;
2298
0
       T8p = T5p + T5s;
2299
0
       T8o = T5n - T5k;
2300
0
        }
2301
0
        {
2302
0
       E T5A, T5y, T5v, T5D;
2303
0
       {
2304
0
            E T1T, T1U, T5w, T5x;
2305
0
            T1T = ri[WS(is, 59)];
2306
0
            T1U = ri[WS(is, 27)];
2307
0
            T1V = T1T + T1U;
2308
0
            T5A = T1T - T1U;
2309
0
            T5w = ii[WS(is, 59)];
2310
0
            T5x = ii[WS(is, 27)];
2311
0
            T5y = T5w - T5x;
2312
0
            Tbi = T5w + T5x;
2313
0
       }
2314
0
       {
2315
0
            E T1W, T1X, T5B, T5C;
2316
0
            T1W = ri[WS(is, 11)];
2317
0
            T1X = ri[WS(is, 43)];
2318
0
            T1Y = T1W + T1X;
2319
0
            T5v = T1W - T1X;
2320
0
            T5B = ii[WS(is, 11)];
2321
0
            T5C = ii[WS(is, 43)];
2322
0
            T5D = T5B - T5C;
2323
0
            Tbj = T5B + T5C;
2324
0
       }
2325
0
       T5z = T5v + T5y;
2326
0
       T5E = T5A - T5D;
2327
0
       Tbk = Tbi - Tbj;
2328
0
       Tbh = T1V - T1Y;
2329
0
       T8s = T5A + T5D;
2330
0
       T8r = T5y - T5v;
2331
0
        }
2332
0
        {
2333
0
       E T1S, T1Z, Tbt, Tbu;
2334
0
       T1S = T1O + T1R;
2335
0
       T1Z = T1V + T1Y;
2336
0
       T20 = T1S + T1Z;
2337
0
       TdD = T1Z - T1S;
2338
0
       Tbt = Tbh - Tbk;
2339
0
       Tbu = Tbf + Tbe;
2340
0
       Tbv = KP707106781 * (Tbt - Tbu);
2341
0
       Tcu = KP707106781 * (Tbu + Tbt);
2342
0
        }
2343
0
        {
2344
0
       E Tdw, Tdx, T5u, T5F;
2345
0
       Tdw = Tbc + Tbd;
2346
0
       Tdx = Tbi + Tbj;
2347
0
       Tdy = Tdw - Tdx;
2348
0
       Tep = Tdw + Tdx;
2349
0
       T5u = FNMS(KP923879532, T5t, KP382683432 * T5o);
2350
0
       T5F = FMA(KP382683432, T5z, KP923879532 * T5E);
2351
0
       T5G = T5u - T5F;
2352
0
       T6Z = T5u + T5F;
2353
0
        }
2354
0
        {
2355
0
       E T5R, T5S, T8z, T8A;
2356
0
       T5R = FNMS(KP923879532, T5z, KP382683432 * T5E);
2357
0
       T5S = FMA(KP923879532, T5o, KP382683432 * T5t);
2358
0
       T5T = T5R - T5S;
2359
0
       T6W = T5S + T5R;
2360
0
       T8z = FNMS(KP382683432, T8r, KP923879532 * T8s);
2361
0
       T8A = FMA(KP382683432, T8o, KP923879532 * T8p);
2362
0
       T8B = T8z - T8A;
2363
0
       T9A = T8A + T8z;
2364
0
        }
2365
0
        {
2366
0
       E Tbg, Tbl, T8q, T8t;
2367
0
       Tbg = Tbe - Tbf;
2368
0
       Tbl = Tbh + Tbk;
2369
0
       Tbm = KP707106781 * (Tbg - Tbl);
2370
0
       Tcx = KP707106781 * (Tbg + Tbl);
2371
0
       T8q = FNMS(KP382683432, T8p, KP923879532 * T8o);
2372
0
       T8t = FMA(KP923879532, T8r, KP382683432 * T8s);
2373
0
       T8u = T8q - T8t;
2374
0
       T9D = T8q + T8t;
2375
0
        }
2376
0
         }
2377
0
         {
2378
0
        E T11, TeD, TeG, TeI, T22, T23, T34, TeH;
2379
0
        {
2380
0
       E Tv, T10, TeE, TeF;
2381
0
       Tv = Tf + Tu;
2382
0
       T10 = TK + TZ;
2383
0
       T11 = Tv + T10;
2384
0
       TeD = Tv - T10;
2385
0
       TeE = Tej + Tek;
2386
0
       TeF = Teo + Tep;
2387
0
       TeG = TeE - TeF;
2388
0
       TeI = TeE + TeF;
2389
0
        }
2390
0
        {
2391
0
       E T1w, T21, T2y, T33;
2392
0
       T1w = T1g + T1v;
2393
0
       T21 = T1L + T20;
2394
0
       T22 = T1w + T21;
2395
0
       T23 = T21 - T1w;
2396
0
       T2y = T2i + T2x;
2397
0
       T33 = T2N + T32;
2398
0
       T34 = T2y - T33;
2399
0
       TeH = T2y + T33;
2400
0
        }
2401
0
        ro[WS(os, 32)] = T11 - T22;
2402
0
        io[WS(os, 32)] = TeH - TeI;
2403
0
        ro[0] = T11 + T22;
2404
0
        io[0] = TeH + TeI;
2405
0
        io[WS(os, 16)] = T23 + T34;
2406
0
        ro[WS(os, 16)] = TeD + TeG;
2407
0
        io[WS(os, 48)] = T34 - T23;
2408
0
        ro[WS(os, 48)] = TeD - TeG;
2409
0
         }
2410
0
         {
2411
0
        E Teh, Tex, Tev, TeB, Tem, Tey, Ter, Tez;
2412
0
        {
2413
0
       E Tef, Teg, Tet, Teu;
2414
0
       Tef = Tf - Tu;
2415
0
       Teg = T2N - T32;
2416
0
       Teh = Tef + Teg;
2417
0
       Tex = Tef - Teg;
2418
0
       Tet = T2i - T2x;
2419
0
       Teu = TZ - TK;
2420
0
       Tev = Tet - Teu;
2421
0
       TeB = Teu + Tet;
2422
0
        }
2423
0
        {
2424
0
       E Tei, Tel, Ten, Teq;
2425
0
       Tei = T1g - T1v;
2426
0
       Tel = Tej - Tek;
2427
0
       Tem = Tei + Tel;
2428
0
       Tey = Tel - Tei;
2429
0
       Ten = T1L - T20;
2430
0
       Teq = Teo - Tep;
2431
0
       Ter = Ten - Teq;
2432
0
       Tez = Ten + Teq;
2433
0
        }
2434
0
        {
2435
0
       E Tes, TeC, Tew, TeA;
2436
0
       Tes = KP707106781 * (Tem + Ter);
2437
0
       ro[WS(os, 40)] = Teh - Tes;
2438
0
       ro[WS(os, 8)] = Teh + Tes;
2439
0
       TeC = KP707106781 * (Tey + Tez);
2440
0
       io[WS(os, 40)] = TeB - TeC;
2441
0
       io[WS(os, 8)] = TeB + TeC;
2442
0
       Tew = KP707106781 * (Ter - Tem);
2443
0
       io[WS(os, 56)] = Tev - Tew;
2444
0
       io[WS(os, 24)] = Tev + Tew;
2445
0
       TeA = KP707106781 * (Tey - Tez);
2446
0
       ro[WS(os, 56)] = Tex - TeA;
2447
0
       ro[WS(os, 24)] = Tex + TeA;
2448
0
        }
2449
0
         }
2450
0
         {
2451
0
        E Tdb, TdV, Te5, TdJ, Tdi, Te6, Te3, Teb, TdM, TdW, Tdu, TdQ, Te0, Tea, TdF;
2452
0
        E TdR;
2453
0
        {
2454
0
       E Tde, Tdh, Tdo, Tdt;
2455
0
       Tdb = Td9 - Tda;
2456
0
       TdV = Td9 + Tda;
2457
0
       Te5 = TdI + TdH;
2458
0
       TdJ = TdH - TdI;
2459
0
       Tde = Tdc - Tdd;
2460
0
       Tdh = Tdf + Tdg;
2461
0
       Tdi = KP707106781 * (Tde - Tdh);
2462
0
       Te6 = KP707106781 * (Tde + Tdh);
2463
0
       {
2464
0
            E Te1, Te2, TdK, TdL;
2465
0
            Te1 = Tdv + Tdy;
2466
0
            Te2 = TdD + TdC;
2467
0
            Te3 = FNMS(KP382683432, Te2, KP923879532 * Te1);
2468
0
            Teb = FMA(KP923879532, Te2, KP382683432 * Te1);
2469
0
            TdK = Tdf - Tdg;
2470
0
            TdL = Tdd + Tdc;
2471
0
            TdM = KP707106781 * (TdK - TdL);
2472
0
            TdW = KP707106781 * (TdL + TdK);
2473
0
       }
2474
0
       Tdo = Tdm - Tdn;
2475
0
       Tdt = Tdp - Tds;
2476
0
       Tdu = FMA(KP923879532, Tdo, KP382683432 * Tdt);
2477
0
       TdQ = FNMS(KP923879532, Tdt, KP382683432 * Tdo);
2478
0
       {
2479
0
            E TdY, TdZ, Tdz, TdE;
2480
0
            TdY = Tdn + Tdm;
2481
0
            TdZ = Tdp + Tds;
2482
0
            Te0 = FMA(KP382683432, TdY, KP923879532 * TdZ);
2483
0
            Tea = FNMS(KP382683432, TdZ, KP923879532 * TdY);
2484
0
            Tdz = Tdv - Tdy;
2485
0
            TdE = TdC - TdD;
2486
0
            TdF = FNMS(KP923879532, TdE, KP382683432 * Tdz);
2487
0
            TdR = FMA(KP382683432, TdE, KP923879532 * Tdz);
2488
0
       }
2489
0
        }
2490
0
        {
2491
0
       E Tdj, TdG, TdT, TdU;
2492
0
       Tdj = Tdb + Tdi;
2493
0
       TdG = Tdu + TdF;
2494
0
       ro[WS(os, 44)] = Tdj - TdG;
2495
0
       ro[WS(os, 12)] = Tdj + TdG;
2496
0
       TdT = TdJ + TdM;
2497
0
       TdU = TdQ + TdR;
2498
0
       io[WS(os, 44)] = TdT - TdU;
2499
0
       io[WS(os, 12)] = TdT + TdU;
2500
0
        }
2501
0
        {
2502
0
       E TdN, TdO, TdP, TdS;
2503
0
       TdN = TdJ - TdM;
2504
0
       TdO = TdF - Tdu;
2505
0
       io[WS(os, 60)] = TdN - TdO;
2506
0
       io[WS(os, 28)] = TdN + TdO;
2507
0
       TdP = Tdb - Tdi;
2508
0
       TdS = TdQ - TdR;
2509
0
       ro[WS(os, 60)] = TdP - TdS;
2510
0
       ro[WS(os, 28)] = TdP + TdS;
2511
0
        }
2512
0
        {
2513
0
       E TdX, Te4, Ted, Tee;
2514
0
       TdX = TdV + TdW;
2515
0
       Te4 = Te0 + Te3;
2516
0
       ro[WS(os, 36)] = TdX - Te4;
2517
0
       ro[WS(os, 4)] = TdX + Te4;
2518
0
       Ted = Te5 + Te6;
2519
0
       Tee = Tea + Teb;
2520
0
       io[WS(os, 36)] = Ted - Tee;
2521
0
       io[WS(os, 4)] = Ted + Tee;
2522
0
        }
2523
0
        {
2524
0
       E Te7, Te8, Te9, Tec;
2525
0
       Te7 = Te5 - Te6;
2526
0
       Te8 = Te3 - Te0;
2527
0
       io[WS(os, 52)] = Te7 - Te8;
2528
0
       io[WS(os, 20)] = Te7 + Te8;
2529
0
       Te9 = TdV - TdW;
2530
0
       Tec = Tea - Teb;
2531
0
       ro[WS(os, 52)] = Te9 - Tec;
2532
0
       ro[WS(os, 20)] = Te9 + Tec;
2533
0
        }
2534
0
         }
2535
0
         {
2536
0
        E Tcd, TcP, TcD, TcZ, Tck, Td0, TcX, Td5, Tcs, TcK, TcG, TcQ, TcU, Td4, Tcz;
2537
0
        E TcL, Tcc, TcC;
2538
0
        Tcc = KP707106781 * (TbD + TbC);
2539
0
        Tcd = Tcb - Tcc;
2540
0
        TcP = Tcb + Tcc;
2541
0
        TcC = KP707106781 * (Tak + Tan);
2542
0
        TcD = TcB - TcC;
2543
0
        TcZ = TcB + TcC;
2544
0
        {
2545
0
       E Tcg, Tcj, TcV, TcW;
2546
0
       Tcg = FNMS(KP382683432, Tcf, KP923879532 * Tce);
2547
0
       Tcj = FMA(KP923879532, Tch, KP382683432 * Tci);
2548
0
       Tck = Tcg - Tcj;
2549
0
       Td0 = Tcg + Tcj;
2550
0
       TcV = Tct + Tcu;
2551
0
       TcW = Tcw + Tcx;
2552
0
       TcX = FNMS(KP195090322, TcW, KP980785280 * TcV);
2553
0
       Td5 = FMA(KP195090322, TcV, KP980785280 * TcW);
2554
0
        }
2555
0
        {
2556
0
       E Tco, Tcr, TcE, TcF;
2557
0
       Tco = Tcm - Tcn;
2558
0
       Tcr = Tcp - Tcq;
2559
0
       Tcs = FMA(KP555570233, Tco, KP831469612 * Tcr);
2560
0
       TcK = FNMS(KP831469612, Tco, KP555570233 * Tcr);
2561
0
       TcE = FNMS(KP382683432, Tch, KP923879532 * Tci);
2562
0
       TcF = FMA(KP382683432, Tce, KP923879532 * Tcf);
2563
0
       TcG = TcE - TcF;
2564
0
       TcQ = TcF + TcE;
2565
0
        }
2566
0
        {
2567
0
       E TcS, TcT, Tcv, Tcy;
2568
0
       TcS = Tcm + Tcn;
2569
0
       TcT = Tcp + Tcq;
2570
0
       TcU = FMA(KP980785280, TcS, KP195090322 * TcT);
2571
0
       Td4 = FNMS(KP195090322, TcS, KP980785280 * TcT);
2572
0
       Tcv = Tct - Tcu;
2573
0
       Tcy = Tcw - Tcx;
2574
0
       Tcz = FNMS(KP831469612, Tcy, KP555570233 * Tcv);
2575
0
       TcL = FMA(KP831469612, Tcv, KP555570233 * Tcy);
2576
0
        }
2577
0
        {
2578
0
       E Tcl, TcA, TcN, TcO;
2579
0
       Tcl = Tcd + Tck;
2580
0
       TcA = Tcs + Tcz;
2581
0
       ro[WS(os, 42)] = Tcl - TcA;
2582
0
       ro[WS(os, 10)] = Tcl + TcA;
2583
0
       TcN = TcD + TcG;
2584
0
       TcO = TcK + TcL;
2585
0
       io[WS(os, 42)] = TcN - TcO;
2586
0
       io[WS(os, 10)] = TcN + TcO;
2587
0
        }
2588
0
        {
2589
0
       E TcH, TcI, TcJ, TcM;
2590
0
       TcH = TcD - TcG;
2591
0
       TcI = Tcz - Tcs;
2592
0
       io[WS(os, 58)] = TcH - TcI;
2593
0
       io[WS(os, 26)] = TcH + TcI;
2594
0
       TcJ = Tcd - Tck;
2595
0
       TcM = TcK - TcL;
2596
0
       ro[WS(os, 58)] = TcJ - TcM;
2597
0
       ro[WS(os, 26)] = TcJ + TcM;
2598
0
        }
2599
0
        {
2600
0
       E TcR, TcY, Td7, Td8;
2601
0
       TcR = TcP + TcQ;
2602
0
       TcY = TcU + TcX;
2603
0
       ro[WS(os, 34)] = TcR - TcY;
2604
0
       ro[WS(os, 2)] = TcR + TcY;
2605
0
       Td7 = TcZ + Td0;
2606
0
       Td8 = Td4 + Td5;
2607
0
       io[WS(os, 34)] = Td7 - Td8;
2608
0
       io[WS(os, 2)] = Td7 + Td8;
2609
0
        }
2610
0
        {
2611
0
       E Td1, Td2, Td3, Td6;
2612
0
       Td1 = TcZ - Td0;
2613
0
       Td2 = TcX - TcU;
2614
0
       io[WS(os, 50)] = Td1 - Td2;
2615
0
       io[WS(os, 18)] = Td1 + Td2;
2616
0
       Td3 = TcP - TcQ;
2617
0
       Td6 = Td4 - Td5;
2618
0
       ro[WS(os, 50)] = Td3 - Td6;
2619
0
       ro[WS(os, 18)] = Td3 + Td6;
2620
0
        }
2621
0
         }
2622
0
         {
2623
0
        E Tap, TbR, TbF, Tc1, TaE, Tc2, TbZ, Tc7, Tb6, TbM, TbI, TbS, TbW, Tc6, Tbx;
2624
0
        E TbN, Tao, TbE;
2625
0
        Tao = KP707106781 * (Tak - Tan);
2626
0
        Tap = Tah - Tao;
2627
0
        TbR = Tah + Tao;
2628
0
        TbE = KP707106781 * (TbC - TbD);
2629
0
        TbF = TbB - TbE;
2630
0
        Tc1 = TbB + TbE;
2631
0
        {
2632
0
       E Taw, TaD, TbX, TbY;
2633
0
       Taw = FNMS(KP923879532, Tav, KP382683432 * Tas);
2634
0
       TaD = FMA(KP382683432, Taz, KP923879532 * TaC);
2635
0
       TaE = Taw - TaD;
2636
0
       Tc2 = Taw + TaD;
2637
0
       TbX = Tbb + Tbm;
2638
0
       TbY = Tbs + Tbv;
2639
0
       TbZ = FNMS(KP555570233, TbY, KP831469612 * TbX);
2640
0
       Tc7 = FMA(KP831469612, TbY, KP555570233 * TbX);
2641
0
        }
2642
0
        {
2643
0
       E TaW, Tb5, TbG, TbH;
2644
0
       TaW = TaK - TaV;
2645
0
       Tb5 = Tb1 - Tb4;
2646
0
       Tb6 = FMA(KP980785280, TaW, KP195090322 * Tb5);
2647
0
       TbM = FNMS(KP980785280, Tb5, KP195090322 * TaW);
2648
0
       TbG = FNMS(KP923879532, Taz, KP382683432 * TaC);
2649
0
       TbH = FMA(KP923879532, Tas, KP382683432 * Tav);
2650
0
       TbI = TbG - TbH;
2651
0
       TbS = TbH + TbG;
2652
0
        }
2653
0
        {
2654
0
       E TbU, TbV, Tbn, Tbw;
2655
0
       TbU = TaK + TaV;
2656
0
       TbV = Tb1 + Tb4;
2657
0
       TbW = FMA(KP555570233, TbU, KP831469612 * TbV);
2658
0
       Tc6 = FNMS(KP555570233, TbV, KP831469612 * TbU);
2659
0
       Tbn = Tbb - Tbm;
2660
0
       Tbw = Tbs - Tbv;
2661
0
       Tbx = FNMS(KP980785280, Tbw, KP195090322 * Tbn);
2662
0
       TbN = FMA(KP195090322, Tbw, KP980785280 * Tbn);
2663
0
        }
2664
0
        {
2665
0
       E TaF, Tby, TbP, TbQ;
2666
0
       TaF = Tap + TaE;
2667
0
       Tby = Tb6 + Tbx;
2668
0
       ro[WS(os, 46)] = TaF - Tby;
2669
0
       ro[WS(os, 14)] = TaF + Tby;
2670
0
       TbP = TbF + TbI;
2671
0
       TbQ = TbM + TbN;
2672
0
       io[WS(os, 46)] = TbP - TbQ;
2673
0
       io[WS(os, 14)] = TbP + TbQ;
2674
0
        }
2675
0
        {
2676
0
       E TbJ, TbK, TbL, TbO;
2677
0
       TbJ = TbF - TbI;
2678
0
       TbK = Tbx - Tb6;
2679
0
       io[WS(os, 62)] = TbJ - TbK;
2680
0
       io[WS(os, 30)] = TbJ + TbK;
2681
0
       TbL = Tap - TaE;
2682
0
       TbO = TbM - TbN;
2683
0
       ro[WS(os, 62)] = TbL - TbO;
2684
0
       ro[WS(os, 30)] = TbL + TbO;
2685
0
        }
2686
0
        {
2687
0
       E TbT, Tc0, Tc9, Tca;
2688
0
       TbT = TbR + TbS;
2689
0
       Tc0 = TbW + TbZ;
2690
0
       ro[WS(os, 38)] = TbT - Tc0;
2691
0
       ro[WS(os, 6)] = TbT + Tc0;
2692
0
       Tc9 = Tc1 + Tc2;
2693
0
       Tca = Tc6 + Tc7;
2694
0
       io[WS(os, 38)] = Tc9 - Tca;
2695
0
       io[WS(os, 6)] = Tc9 + Tca;
2696
0
        }
2697
0
        {
2698
0
       E Tc3, Tc4, Tc5, Tc8;
2699
0
       Tc3 = Tc1 - Tc2;
2700
0
       Tc4 = TbZ - TbW;
2701
0
       io[WS(os, 54)] = Tc3 - Tc4;
2702
0
       io[WS(os, 22)] = Tc3 + Tc4;
2703
0
       Tc5 = TbR - TbS;
2704
0
       Tc8 = Tc6 - Tc7;
2705
0
       ro[WS(os, 54)] = Tc5 - Tc8;
2706
0
       ro[WS(os, 22)] = Tc5 + Tc8;
2707
0
        }
2708
0
         }
2709
0
         {
2710
0
        E T6F, T7h, T7m, T7w, T7p, T7x, T6M, T7s, T6U, T7c, T75, T7r, T78, T7i, T71;
2711
0
        E T7d;
2712
0
        {
2713
0
       E T6D, T6E, T7k, T7l;
2714
0
       T6D = T37 + T3e;
2715
0
       T6E = T65 + T64;
2716
0
       T6F = T6D - T6E;
2717
0
       T7h = T6D + T6E;
2718
0
       T7k = T6O + T6P;
2719
0
       T7l = T6R + T6S;
2720
0
       T7m = FMA(KP956940335, T7k, KP290284677 * T7l);
2721
0
       T7w = FNMS(KP290284677, T7k, KP956940335 * T7l);
2722
0
        }
2723
0
        {
2724
0
       E T7n, T7o, T6I, T6L;
2725
0
       T7n = T6V + T6W;
2726
0
       T7o = T6Y + T6Z;
2727
0
       T7p = FNMS(KP290284677, T7o, KP956940335 * T7n);
2728
0
       T7x = FMA(KP290284677, T7n, KP956940335 * T7o);
2729
0
       T6I = FNMS(KP555570233, T6H, KP831469612 * T6G);
2730
0
       T6L = FMA(KP831469612, T6J, KP555570233 * T6K);
2731
0
       T6M = T6I - T6L;
2732
0
       T7s = T6I + T6L;
2733
0
        }
2734
0
        {
2735
0
       E T6Q, T6T, T73, T74;
2736
0
       T6Q = T6O - T6P;
2737
0
       T6T = T6R - T6S;
2738
0
       T6U = FMA(KP471396736, T6Q, KP881921264 * T6T);
2739
0
       T7c = FNMS(KP881921264, T6Q, KP471396736 * T6T);
2740
0
       T73 = T5Z + T62;
2741
0
       T74 = T3m + T3t;
2742
0
       T75 = T73 - T74;
2743
0
       T7r = T73 + T74;
2744
0
        }
2745
0
        {
2746
0
       E T76, T77, T6X, T70;
2747
0
       T76 = FNMS(KP555570233, T6J, KP831469612 * T6K);
2748
0
       T77 = FMA(KP555570233, T6G, KP831469612 * T6H);
2749
0
       T78 = T76 - T77;
2750
0
       T7i = T77 + T76;
2751
0
       T6X = T6V - T6W;
2752
0
       T70 = T6Y - T6Z;
2753
0
       T71 = FNMS(KP881921264, T70, KP471396736 * T6X);
2754
0
       T7d = FMA(KP881921264, T6X, KP471396736 * T70);
2755
0
        }
2756
0
        {
2757
0
       E T6N, T72, T7f, T7g;
2758
0
       T6N = T6F + T6M;
2759
0
       T72 = T6U + T71;
2760
0
       ro[WS(os, 43)] = T6N - T72;
2761
0
       ro[WS(os, 11)] = T6N + T72;
2762
0
       T7f = T75 + T78;
2763
0
       T7g = T7c + T7d;
2764
0
       io[WS(os, 43)] = T7f - T7g;
2765
0
       io[WS(os, 11)] = T7f + T7g;
2766
0
        }
2767
0
        {
2768
0
       E T79, T7a, T7b, T7e;
2769
0
       T79 = T75 - T78;
2770
0
       T7a = T71 - T6U;
2771
0
       io[WS(os, 59)] = T79 - T7a;
2772
0
       io[WS(os, 27)] = T79 + T7a;
2773
0
       T7b = T6F - T6M;
2774
0
       T7e = T7c - T7d;
2775
0
       ro[WS(os, 59)] = T7b - T7e;
2776
0
       ro[WS(os, 27)] = T7b + T7e;
2777
0
        }
2778
0
        {
2779
0
       E T7j, T7q, T7z, T7A;
2780
0
       T7j = T7h + T7i;
2781
0
       T7q = T7m + T7p;
2782
0
       ro[WS(os, 35)] = T7j - T7q;
2783
0
       ro[WS(os, 3)] = T7j + T7q;
2784
0
       T7z = T7r + T7s;
2785
0
       T7A = T7w + T7x;
2786
0
       io[WS(os, 35)] = T7z - T7A;
2787
0
       io[WS(os, 3)] = T7z + T7A;
2788
0
        }
2789
0
        {
2790
0
       E T7t, T7u, T7v, T7y;
2791
0
       T7t = T7r - T7s;
2792
0
       T7u = T7p - T7m;
2793
0
       io[WS(os, 51)] = T7t - T7u;
2794
0
       io[WS(os, 19)] = T7t + T7u;
2795
0
       T7v = T7h - T7i;
2796
0
       T7y = T7w - T7x;
2797
0
       ro[WS(os, 51)] = T7v - T7y;
2798
0
       ro[WS(os, 19)] = T7v + T7y;
2799
0
        }
2800
0
         }
2801
0
         {
2802
0
        E T9j, T9V, Ta0, Taa, Ta3, Tab, T9q, Ta6, T9y, T9Q, T9J, Ta5, T9M, T9W, T9F;
2803
0
        E T9R;
2804
0
        {
2805
0
       E T9h, T9i, T9Y, T9Z;
2806
0
       T9h = T7B + T7C;
2807
0
       T9i = T8J + T8I;
2808
0
       T9j = T9h - T9i;
2809
0
       T9V = T9h + T9i;
2810
0
       T9Y = T9s + T9t;
2811
0
       T9Z = T9v + T9w;
2812
0
       Ta0 = FMA(KP995184726, T9Y, KP098017140 * T9Z);
2813
0
       Taa = FNMS(KP098017140, T9Y, KP995184726 * T9Z);
2814
0
        }
2815
0
        {
2816
0
       E Ta1, Ta2, T9m, T9p;
2817
0
       Ta1 = T9z + T9A;
2818
0
       Ta2 = T9C + T9D;
2819
0
       Ta3 = FNMS(KP098017140, Ta2, KP995184726 * Ta1);
2820
0
       Tab = FMA(KP098017140, Ta1, KP995184726 * Ta2);
2821
0
       T9m = FNMS(KP195090322, T9l, KP980785280 * T9k);
2822
0
       T9p = FMA(KP195090322, T9n, KP980785280 * T9o);
2823
0
       T9q = T9m - T9p;
2824
0
       Ta6 = T9m + T9p;
2825
0
        }
2826
0
        {
2827
0
       E T9u, T9x, T9H, T9I;
2828
0
       T9u = T9s - T9t;
2829
0
       T9x = T9v - T9w;
2830
0
       T9y = FMA(KP634393284, T9u, KP773010453 * T9x);
2831
0
       T9Q = FNMS(KP773010453, T9u, KP634393284 * T9x);
2832
0
       T9H = T8F + T8G;
2833
0
       T9I = T7G + T7J;
2834
0
       T9J = T9H - T9I;
2835
0
       Ta5 = T9H + T9I;
2836
0
        }
2837
0
        {
2838
0
       E T9K, T9L, T9B, T9E;
2839
0
       T9K = FNMS(KP195090322, T9o, KP980785280 * T9n);
2840
0
       T9L = FMA(KP980785280, T9l, KP195090322 * T9k);
2841
0
       T9M = T9K - T9L;
2842
0
       T9W = T9L + T9K;
2843
0
       T9B = T9z - T9A;
2844
0
       T9E = T9C - T9D;
2845
0
       T9F = FNMS(KP773010453, T9E, KP634393284 * T9B);
2846
0
       T9R = FMA(KP773010453, T9B, KP634393284 * T9E);
2847
0
        }
2848
0
        {
2849
0
       E T9r, T9G, T9T, T9U;
2850
0
       T9r = T9j + T9q;
2851
0
       T9G = T9y + T9F;
2852
0
       ro[WS(os, 41)] = T9r - T9G;
2853
0
       ro[WS(os, 9)] = T9r + T9G;
2854
0
       T9T = T9J + T9M;
2855
0
       T9U = T9Q + T9R;
2856
0
       io[WS(os, 41)] = T9T - T9U;
2857
0
       io[WS(os, 9)] = T9T + T9U;
2858
0
        }
2859
0
        {
2860
0
       E T9N, T9O, T9P, T9S;
2861
0
       T9N = T9J - T9M;
2862
0
       T9O = T9F - T9y;
2863
0
       io[WS(os, 57)] = T9N - T9O;
2864
0
       io[WS(os, 25)] = T9N + T9O;
2865
0
       T9P = T9j - T9q;
2866
0
       T9S = T9Q - T9R;
2867
0
       ro[WS(os, 57)] = T9P - T9S;
2868
0
       ro[WS(os, 25)] = T9P + T9S;
2869
0
        }
2870
0
        {
2871
0
       E T9X, Ta4, Tad, Tae;
2872
0
       T9X = T9V + T9W;
2873
0
       Ta4 = Ta0 + Ta3;
2874
0
       ro[WS(os, 33)] = T9X - Ta4;
2875
0
       ro[WS(os, 1)] = T9X + Ta4;
2876
0
       Tad = Ta5 + Ta6;
2877
0
       Tae = Taa + Tab;
2878
0
       io[WS(os, 33)] = Tad - Tae;
2879
0
       io[WS(os, 1)] = Tad + Tae;
2880
0
        }
2881
0
        {
2882
0
       E Ta7, Ta8, Ta9, Tac;
2883
0
       Ta7 = Ta5 - Ta6;
2884
0
       Ta8 = Ta3 - Ta0;
2885
0
       io[WS(os, 49)] = Ta7 - Ta8;
2886
0
       io[WS(os, 17)] = Ta7 + Ta8;
2887
0
       Ta9 = T9V - T9W;
2888
0
       Tac = Taa - Tab;
2889
0
       ro[WS(os, 49)] = Ta9 - Tac;
2890
0
       ro[WS(os, 17)] = Ta9 + Tac;
2891
0
        }
2892
0
         }
2893
0
         {
2894
0
        E T3v, T6j, T6o, T6y, T6r, T6z, T48, T6u, T52, T6e, T67, T6t, T6a, T6k, T5V;
2895
0
        E T6f;
2896
0
        {
2897
0
       E T3f, T3u, T6m, T6n;
2898
0
       T3f = T37 - T3e;
2899
0
       T3u = T3m - T3t;
2900
0
       T3v = T3f - T3u;
2901
0
       T6j = T3f + T3u;
2902
0
       T6m = T4q + T4N;
2903
0
       T6n = T4X + T50;
2904
0
       T6o = FMA(KP634393284, T6m, KP773010453 * T6n);
2905
0
       T6y = FNMS(KP634393284, T6n, KP773010453 * T6m);
2906
0
        }
2907
0
        {
2908
0
       E T6p, T6q, T3O, T47;
2909
0
       T6p = T5j + T5G;
2910
0
       T6q = T5Q + T5T;
2911
0
       T6r = FNMS(KP634393284, T6q, KP773010453 * T6p);
2912
0
       T6z = FMA(KP773010453, T6q, KP634393284 * T6p);
2913
0
       T3O = FNMS(KP980785280, T3N, KP195090322 * T3G);
2914
0
       T47 = FMA(KP195090322, T3Z, KP980785280 * T46);
2915
0
       T48 = T3O - T47;
2916
0
       T6u = T3O + T47;
2917
0
        }
2918
0
        {
2919
0
       E T4O, T51, T63, T66;
2920
0
       T4O = T4q - T4N;
2921
0
       T51 = T4X - T50;
2922
0
       T52 = FMA(KP995184726, T4O, KP098017140 * T51);
2923
0
       T6e = FNMS(KP995184726, T51, KP098017140 * T4O);
2924
0
       T63 = T5Z - T62;
2925
0
       T66 = T64 - T65;
2926
0
       T67 = T63 - T66;
2927
0
       T6t = T63 + T66;
2928
0
        }
2929
0
        {
2930
0
       E T68, T69, T5H, T5U;
2931
0
       T68 = FNMS(KP980785280, T3Z, KP195090322 * T46);
2932
0
       T69 = FMA(KP980785280, T3G, KP195090322 * T3N);
2933
0
       T6a = T68 - T69;
2934
0
       T6k = T69 + T68;
2935
0
       T5H = T5j - T5G;
2936
0
       T5U = T5Q - T5T;
2937
0
       T5V = FNMS(KP995184726, T5U, KP098017140 * T5H);
2938
0
       T6f = FMA(KP098017140, T5U, KP995184726 * T5H);
2939
0
        }
2940
0
        {
2941
0
       E T49, T5W, T6h, T6i;
2942
0
       T49 = T3v + T48;
2943
0
       T5W = T52 + T5V;
2944
0
       ro[WS(os, 47)] = T49 - T5W;
2945
0
       ro[WS(os, 15)] = T49 + T5W;
2946
0
       T6h = T67 + T6a;
2947
0
       T6i = T6e + T6f;
2948
0
       io[WS(os, 47)] = T6h - T6i;
2949
0
       io[WS(os, 15)] = T6h + T6i;
2950
0
        }
2951
0
        {
2952
0
       E T6b, T6c, T6d, T6g;
2953
0
       T6b = T67 - T6a;
2954
0
       T6c = T5V - T52;
2955
0
       io[WS(os, 63)] = T6b - T6c;
2956
0
       io[WS(os, 31)] = T6b + T6c;
2957
0
       T6d = T3v - T48;
2958
0
       T6g = T6e - T6f;
2959
0
       ro[WS(os, 63)] = T6d - T6g;
2960
0
       ro[WS(os, 31)] = T6d + T6g;
2961
0
        }
2962
0
        {
2963
0
       E T6l, T6s, T6B, T6C;
2964
0
       T6l = T6j + T6k;
2965
0
       T6s = T6o + T6r;
2966
0
       ro[WS(os, 39)] = T6l - T6s;
2967
0
       ro[WS(os, 7)] = T6l + T6s;
2968
0
       T6B = T6t + T6u;
2969
0
       T6C = T6y + T6z;
2970
0
       io[WS(os, 39)] = T6B - T6C;
2971
0
       io[WS(os, 7)] = T6B + T6C;
2972
0
        }
2973
0
        {
2974
0
       E T6v, T6w, T6x, T6A;
2975
0
       T6v = T6t - T6u;
2976
0
       T6w = T6r - T6o;
2977
0
       io[WS(os, 55)] = T6v - T6w;
2978
0
       io[WS(os, 23)] = T6v + T6w;
2979
0
       T6x = T6j - T6k;
2980
0
       T6A = T6y - T6z;
2981
0
       ro[WS(os, 55)] = T6x - T6A;
2982
0
       ro[WS(os, 23)] = T6x + T6A;
2983
0
        }
2984
0
         }
2985
0
         {
2986
0
        E T7L, T8X, T92, T9c, T95, T9d, T80, T98, T8k, T8S, T8L, T97, T8O, T8Y, T8D;
2987
0
        E T8T;
2988
0
        {
2989
0
       E T7D, T7K, T90, T91;
2990
0
       T7D = T7B - T7C;
2991
0
       T7K = T7G - T7J;
2992
0
       T7L = T7D - T7K;
2993
0
       T8X = T7D + T7K;
2994
0
       T90 = T84 + T8b;
2995
0
       T91 = T8f + T8i;
2996
0
       T92 = FMA(KP471396736, T90, KP881921264 * T91);
2997
0
       T9c = FNMS(KP471396736, T91, KP881921264 * T90);
2998
0
        }
2999
0
        {
3000
0
       E T93, T94, T7S, T7Z;
3001
0
       T93 = T8n + T8u;
3002
0
       T94 = T8y + T8B;
3003
0
       T95 = FNMS(KP471396736, T94, KP881921264 * T93);
3004
0
       T9d = FMA(KP881921264, T94, KP471396736 * T93);
3005
0
       T7S = FNMS(KP831469612, T7R, KP555570233 * T7O);
3006
0
       T7Z = FMA(KP831469612, T7V, KP555570233 * T7Y);
3007
0
       T80 = T7S - T7Z;
3008
0
       T98 = T7S + T7Z;
3009
0
        }
3010
0
        {
3011
0
       E T8c, T8j, T8H, T8K;
3012
0
       T8c = T84 - T8b;
3013
0
       T8j = T8f - T8i;
3014
0
       T8k = FMA(KP956940335, T8c, KP290284677 * T8j);
3015
0
       T8S = FNMS(KP956940335, T8j, KP290284677 * T8c);
3016
0
       T8H = T8F - T8G;
3017
0
       T8K = T8I - T8J;
3018
0
       T8L = T8H - T8K;
3019
0
       T97 = T8H + T8K;
3020
0
        }
3021
0
        {
3022
0
       E T8M, T8N, T8v, T8C;
3023
0
       T8M = FNMS(KP831469612, T7Y, KP555570233 * T7V);
3024
0
       T8N = FMA(KP555570233, T7R, KP831469612 * T7O);
3025
0
       T8O = T8M - T8N;
3026
0
       T8Y = T8N + T8M;
3027
0
       T8v = T8n - T8u;
3028
0
       T8C = T8y - T8B;
3029
0
       T8D = FNMS(KP956940335, T8C, KP290284677 * T8v);
3030
0
       T8T = FMA(KP290284677, T8C, KP956940335 * T8v);
3031
0
        }
3032
0
        {
3033
0
       E T81, T8E, T8V, T8W;
3034
0
       T81 = T7L + T80;
3035
0
       T8E = T8k + T8D;
3036
0
       ro[WS(os, 45)] = T81 - T8E;
3037
0
       ro[WS(os, 13)] = T81 + T8E;
3038
0
       T8V = T8L + T8O;
3039
0
       T8W = T8S + T8T;
3040
0
       io[WS(os, 45)] = T8V - T8W;
3041
0
       io[WS(os, 13)] = T8V + T8W;
3042
0
        }
3043
0
        {
3044
0
       E T8P, T8Q, T8R, T8U;
3045
0
       T8P = T8L - T8O;
3046
0
       T8Q = T8D - T8k;
3047
0
       io[WS(os, 61)] = T8P - T8Q;
3048
0
       io[WS(os, 29)] = T8P + T8Q;
3049
0
       T8R = T7L - T80;
3050
0
       T8U = T8S - T8T;
3051
0
       ro[WS(os, 61)] = T8R - T8U;
3052
0
       ro[WS(os, 29)] = T8R + T8U;
3053
0
        }
3054
0
        {
3055
0
       E T8Z, T96, T9f, T9g;
3056
0
       T8Z = T8X + T8Y;
3057
0
       T96 = T92 + T95;
3058
0
       ro[WS(os, 37)] = T8Z - T96;
3059
0
       ro[WS(os, 5)] = T8Z + T96;
3060
0
       T9f = T97 + T98;
3061
0
       T9g = T9c + T9d;
3062
0
       io[WS(os, 37)] = T9f - T9g;
3063
0
       io[WS(os, 5)] = T9f + T9g;
3064
0
        }
3065
0
        {
3066
0
       E T99, T9a, T9b, T9e;
3067
0
       T99 = T97 - T98;
3068
0
       T9a = T95 - T92;
3069
0
       io[WS(os, 53)] = T99 - T9a;
3070
0
       io[WS(os, 21)] = T99 + T9a;
3071
0
       T9b = T8X - T8Y;
3072
0
       T9e = T9c - T9d;
3073
0
       ro[WS(os, 53)] = T9b - T9e;
3074
0
       ro[WS(os, 21)] = T9b + T9e;
3075
0
        }
3076
0
         }
3077
0
    }
3078
0
     }
3079
0
}
3080
3081
static const kdft_desc desc = { 64, "n1_64", { 808, 144, 104, 0 }, &GENUS, 0, 0, 0, 0 };
3082
3083
1
void X(codelet_n1_64) (planner *p) { X(kdft_register) (p, n1_64, &desc);
3084
1
}
3085
3086
#endif