/src/fftw3/rdft/problem.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | |
22 | | #include "rdft/rdft.h" |
23 | | #include <stddef.h> |
24 | | |
25 | | static void destroy(problem *ego_) |
26 | | { |
27 | | problem_rdft *ego = (problem_rdft *) ego_; |
28 | | #if !defined(STRUCT_HACK_C99) && !defined(STRUCT_HACK_KR) |
29 | | X(ifree0)(ego->kind); |
30 | | #endif |
31 | | X(tensor_destroy2)(ego->vecsz, ego->sz); |
32 | | X(ifree)(ego_); |
33 | | } |
34 | | |
35 | | static void kind_hash(md5 *m, const rdft_kind *kind, int rnk) |
36 | 420 | { |
37 | 420 | int i; |
38 | 420 | for (i = 0; i < rnk; ++i) |
39 | 0 | X(md5int)(m, kind[i]); |
40 | 420 | } |
41 | | |
42 | | static void hash(const problem *p_, md5 *m) |
43 | | { |
44 | | const problem_rdft *p = (const problem_rdft *) p_; |
45 | | X(md5puts)(m, "rdft"); |
46 | | X(md5int)(m, p->I == p->O); |
47 | | kind_hash(m, p->kind, p->sz->rnk); |
48 | | X(md5int)(m, X(ialignment_of)(p->I)); |
49 | | X(md5int)(m, X(ialignment_of)(p->O)); |
50 | | X(tensor_md5)(m, p->sz); |
51 | | X(tensor_md5)(m, p->vecsz); |
52 | | } |
53 | | |
54 | | static void recur(const iodim *dims, int rnk, R *I) |
55 | 0 | { |
56 | 0 | if (rnk == RNK_MINFTY) |
57 | 0 | return; |
58 | 0 | else if (rnk == 0) |
59 | 0 | I[0] = K(0.0); |
60 | 0 | else if (rnk > 0) { |
61 | 0 | INT i, n = dims[0].n, is = dims[0].is; |
62 | |
|
63 | 0 | if (rnk == 1) { |
64 | | /* this case is redundant but faster */ |
65 | 0 | for (i = 0; i < n; ++i) |
66 | 0 | I[i * is] = K(0.0); |
67 | 0 | } else { |
68 | 0 | for (i = 0; i < n; ++i) |
69 | 0 | recur(dims + 1, rnk - 1, I + i * is); |
70 | 0 | } |
71 | 0 | } |
72 | 0 | } |
73 | | |
74 | | void X(rdft_zerotens)(tensor *sz, R *I) |
75 | 0 | { |
76 | 0 | recur(sz->dims, sz->rnk, I); |
77 | 0 | } |
78 | | |
79 | | #define KSTR_LEN 8 |
80 | | |
81 | | const char *X(rdft_kind_str)(rdft_kind kind) |
82 | 0 | { |
83 | 0 | static const char kstr[][KSTR_LEN] = { |
84 | 0 | "r2hc", "r2hc01", "r2hc10", "r2hc11", |
85 | 0 | "hc2r", "hc2r01", "hc2r10", "hc2r11", |
86 | 0 | "dht", |
87 | 0 | "redft00", "redft01", "redft10", "redft11", |
88 | 0 | "rodft00", "rodft01", "rodft10", "rodft11" |
89 | 0 | }; |
90 | 0 | A(kind >= 0 && kind < sizeof(kstr) / KSTR_LEN); |
91 | 0 | return kstr[kind]; |
92 | 0 | } |
93 | | |
94 | | static void print(const problem *ego_, printer *p) |
95 | | { |
96 | | const problem_rdft *ego = (const problem_rdft *) ego_; |
97 | | int i; |
98 | | p->print(p, "(rdft %d %D %T %T", |
99 | | X(ialignment_of)(ego->I), |
100 | | (INT)(ego->O - ego->I), |
101 | | ego->sz, |
102 | | ego->vecsz); |
103 | | for (i = 0; i < ego->sz->rnk; ++i) |
104 | | p->print(p, " %d", (int)ego->kind[i]); |
105 | | p->print(p, ")"); |
106 | | } |
107 | | |
108 | | static void zero(const problem *ego_) |
109 | | { |
110 | | const problem_rdft *ego = (const problem_rdft *) ego_; |
111 | | tensor *sz = X(tensor_append)(ego->vecsz, ego->sz); |
112 | | X(rdft_zerotens)(sz, UNTAINT(ego->I)); |
113 | | X(tensor_destroy)(sz); |
114 | | } |
115 | | |
116 | | static const problem_adt padt = |
117 | | { |
118 | | PROBLEM_RDFT, |
119 | | hash, |
120 | | zero, |
121 | | print, |
122 | | destroy |
123 | | }; |
124 | | |
125 | | /* Dimensions of size 1 that are not REDFT/RODFT are no-ops and can be |
126 | | eliminated. REDFT/RODFT unit dimensions often have factors of 2.0 |
127 | | and suchlike from normalization and phases, although in principle |
128 | | these constant factors from different dimensions could be combined. */ |
129 | | static int nontrivial(const iodim *d, rdft_kind kind) |
130 | 0 | { |
131 | 0 | return (d->n > 1 || kind == R2HC11 || kind == HC2R11 |
132 | 0 | || (REODFT_KINDP(kind) && kind != REDFT01 && kind != RODFT01)); |
133 | 0 | } |
134 | | |
135 | | problem *X(mkproblem_rdft)(const tensor *sz, const tensor *vecsz, |
136 | | R *I, R *O, const rdft_kind *kind) |
137 | 420 | { |
138 | 420 | problem_rdft *ego; |
139 | 420 | int rnk = sz->rnk; |
140 | 420 | int i; |
141 | | |
142 | 420 | A(X(tensor_kosherp)(sz)); |
143 | 420 | A(X(tensor_kosherp)(vecsz)); |
144 | 420 | A(FINITE_RNK(sz->rnk)); |
145 | | |
146 | 420 | if (UNTAINT(I) == UNTAINT(O)) |
147 | 188 | I = O = JOIN_TAINT(I, O); |
148 | | |
149 | 420 | if (I == O && !X(tensor_inplace_locations)(sz, vecsz)) |
150 | 0 | return X(mkproblem_unsolvable)(); |
151 | | |
152 | 420 | for (i = rnk = 0; i < sz->rnk; ++i) { |
153 | 0 | A(sz->dims[i].n > 0); |
154 | 0 | if (nontrivial(sz->dims + i, kind[i])) |
155 | 0 | ++rnk; |
156 | 0 | } |
157 | | |
158 | 420 | #if defined(STRUCT_HACK_KR) |
159 | 420 | ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft) |
160 | 420 | + sizeof(rdft_kind) |
161 | 420 | * (rnk > 0 ? rnk - 1u : 0u), &padt); |
162 | | #elif defined(STRUCT_HACK_C99) |
163 | | ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft) |
164 | | + sizeof(rdft_kind) * (unsigned)rnk, &padt); |
165 | | #else |
166 | | ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft), &padt); |
167 | | ego->kind = (rdft_kind *) MALLOC(sizeof(rdft_kind) * (unsigned)rnk, PROBLEMS); |
168 | | #endif |
169 | | |
170 | | /* do compression and sorting as in X(tensor_compress), but take |
171 | | transform kind into account (sigh) */ |
172 | 420 | ego->sz = X(mktensor)(rnk); |
173 | 420 | for (i = rnk = 0; i < sz->rnk; ++i) { |
174 | 0 | if (nontrivial(sz->dims + i, kind[i])) { |
175 | 0 | ego->kind[rnk] = kind[i]; |
176 | 0 | ego->sz->dims[rnk++] = sz->dims[i]; |
177 | 0 | } |
178 | 0 | } |
179 | 420 | for (i = 0; i + 1 < rnk; ++i) { |
180 | 0 | int j; |
181 | 0 | for (j = i + 1; j < rnk; ++j) |
182 | 0 | if (X(dimcmp)(ego->sz->dims + i, ego->sz->dims + j) > 0) { |
183 | 0 | iodim dswap; |
184 | 0 | rdft_kind kswap; |
185 | 0 | dswap = ego->sz->dims[i]; |
186 | 0 | ego->sz->dims[i] = ego->sz->dims[j]; |
187 | 0 | ego->sz->dims[j] = dswap; |
188 | 0 | kswap = ego->kind[i]; |
189 | 0 | ego->kind[i] = ego->kind[j]; |
190 | 0 | ego->kind[j] = kswap; |
191 | 0 | } |
192 | 0 | } |
193 | | |
194 | 420 | for (i = 0; i < rnk; ++i) |
195 | 0 | if (ego->sz->dims[i].n == 2 && (ego->kind[i] == REDFT00 |
196 | 0 | || ego->kind[i] == DHT |
197 | 0 | || ego->kind[i] == HC2R)) |
198 | 0 | ego->kind[i] = R2HC; /* size-2 transforms are equivalent */ |
199 | | |
200 | 420 | ego->vecsz = X(tensor_compress_contiguous)(vecsz); |
201 | 420 | ego->I = I; |
202 | 420 | ego->O = O; |
203 | | |
204 | 420 | A(FINITE_RNK(ego->sz->rnk)); |
205 | | |
206 | 420 | return &(ego->super); |
207 | 420 | } |
208 | | |
209 | | /* Same as X(mkproblem_rdft), but also destroy input tensors. */ |
210 | | problem *X(mkproblem_rdft_d)(tensor *sz, tensor *vecsz, |
211 | | R *I, R *O, const rdft_kind *kind) |
212 | 0 | { |
213 | 0 | problem *p = X(mkproblem_rdft)(sz, vecsz, I, O, kind); |
214 | 0 | X(tensor_destroy2)(vecsz, sz); |
215 | 0 | return p; |
216 | 0 | } |
217 | | |
218 | | /* As above, but for rnk <= 1 only and takes a scalar kind parameter */ |
219 | | problem *X(mkproblem_rdft_1)(const tensor *sz, const tensor *vecsz, |
220 | | R *I, R *O, rdft_kind kind) |
221 | 420 | { |
222 | 420 | A(sz->rnk <= 1); |
223 | 420 | return X(mkproblem_rdft)(sz, vecsz, I, O, &kind); |
224 | 420 | } |
225 | | |
226 | | problem *X(mkproblem_rdft_1_d)(tensor *sz, tensor *vecsz, |
227 | | R *I, R *O, rdft_kind kind) |
228 | 0 | { |
229 | 0 | A(sz->rnk <= 1); |
230 | 0 | return X(mkproblem_rdft_d)(sz, vecsz, I, O, &kind); |
231 | 0 | } |
232 | | |
233 | | /* create a zero-dimensional problem */ |
234 | | problem *X(mkproblem_rdft_0_d)(tensor *vecsz, R *I, R *O) |
235 | 0 | { |
236 | 0 | return X(mkproblem_rdft_d)(X(mktensor_0d)(), vecsz, I, O, |
237 | 0 | (const rdft_kind *)0); |
238 | 0 | } |