/src/fftw3/rdft/scalar/r2cb/hb2_16.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Mon Sep 25 07:07:07 UTC 2023 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 16 -dif -name hb2_16 -include rdft/scalar/hb.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 196 FP additions, 134 FP multiplications, |
32 | | * (or, 104 additions, 42 multiplications, 92 fused multiply/add), |
33 | | * 93 stack variables, 3 constants, and 64 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hb.h" |
36 | | |
37 | | static void hb2_16(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
40 | | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
41 | | DK(KP414213562, +0.414213562373095048801688724209698078569671875); |
42 | | { |
43 | | INT m; |
44 | | for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(32, rs)) { |
45 | | E Tv, Tw, T2z, T2C, TB, TF, Ty, Tz, T1V, TA, T2G, T3Q, T3C, T3g, T3L; |
46 | | E T30, T3m, T3z, T3w, T3s, T1X, T1Y, T2u, T2c, T2p, TE, TG, T1G, T1o, T1D; |
47 | | { |
48 | | E T3f, T3l, T2F, T3r, T2Z, T3v, TD, Tx; |
49 | | Tv = W[0]; |
50 | | Tw = W[2]; |
51 | | Tx = Tv * Tw; |
52 | | T2z = W[6]; |
53 | | T3f = Tv * T2z; |
54 | | T2C = W[7]; |
55 | | T3l = Tv * T2C; |
56 | | TB = W[4]; |
57 | | T2F = Tv * TB; |
58 | | T3r = Tw * TB; |
59 | | TF = W[5]; |
60 | | T2Z = Tv * TF; |
61 | | T3v = Tw * TF; |
62 | | Ty = W[1]; |
63 | | Tz = W[3]; |
64 | | TD = Tv * Tz; |
65 | | T1V = FMA(Ty, Tz, Tx); |
66 | | TA = FNMS(Ty, Tz, Tx); |
67 | | T2G = FNMS(Ty, TF, T2F); |
68 | | T3Q = FMA(Tz, TB, T3v); |
69 | | T3C = FNMS(Ty, TB, T2Z); |
70 | | T3g = FMA(Ty, T2C, T3f); |
71 | | T3L = FNMS(Tz, TF, T3r); |
72 | | T30 = FMA(Ty, TB, T2Z); |
73 | | T3m = FNMS(Ty, T2z, T3l); |
74 | | T3z = FMA(Ty, TF, T2F); |
75 | | T3w = FNMS(Tz, TB, T3v); |
76 | | T3s = FMA(Tz, TF, T3r); |
77 | | { |
78 | | E T1W, T2b, TC, T1n; |
79 | | T1W = T1V * TB; |
80 | | T2b = T1V * TF; |
81 | | T1X = FNMS(Ty, Tw, TD); |
82 | | T1Y = FNMS(T1X, TF, T1W); |
83 | | T2u = FNMS(T1X, TB, T2b); |
84 | | T2c = FMA(T1X, TB, T2b); |
85 | | T2p = FMA(T1X, TF, T1W); |
86 | | TC = TA * TB; |
87 | | T1n = TA * TF; |
88 | | TE = FMA(Ty, Tw, TD); |
89 | | TG = FNMS(TE, TF, TC); |
90 | | T1G = FNMS(TE, TB, T1n); |
91 | | T1o = FMA(TE, TB, T1n); |
92 | | T1D = FMA(TE, TF, TC); |
93 | | } |
94 | | } |
95 | | { |
96 | | E TL, T1Z, T2d, T1t, T31, T34, T3n, T3D, T3E, T3R, T1w, T20, Tf, T3M, T2L; |
97 | | E T3h, TW, T2e, T3G, T3H, T3N, T2Q, T36, T2V, T37, Tu, T3S, T18, T1z, T24; |
98 | | E T2g, T27, T2h, T1j, T1y; |
99 | | { |
100 | | E T3, TH, TU, T2I, T1s, T32, T6, T1p, Ta, TM, TK, T33, TP, T2J, Td; |
101 | | E TR; |
102 | | { |
103 | | E T1, T2, TS, TT; |
104 | | T1 = cr[0]; |
105 | | T2 = ci[WS(rs, 7)]; |
106 | | T3 = T1 + T2; |
107 | | TH = T1 - T2; |
108 | | TS = ci[WS(rs, 9)]; |
109 | | TT = cr[WS(rs, 14)]; |
110 | | TU = TS + TT; |
111 | | T2I = TS - TT; |
112 | | } |
113 | | { |
114 | | E T1q, T1r, T4, T5; |
115 | | T1q = ci[WS(rs, 15)]; |
116 | | T1r = cr[WS(rs, 8)]; |
117 | | T1s = T1q + T1r; |
118 | | T32 = T1q - T1r; |
119 | | T4 = cr[WS(rs, 4)]; |
120 | | T5 = ci[WS(rs, 3)]; |
121 | | T6 = T4 + T5; |
122 | | T1p = T4 - T5; |
123 | | } |
124 | | { |
125 | | E T8, T9, TI, TJ; |
126 | | T8 = cr[WS(rs, 2)]; |
127 | | T9 = ci[WS(rs, 5)]; |
128 | | Ta = T8 + T9; |
129 | | TM = T8 - T9; |
130 | | TI = ci[WS(rs, 11)]; |
131 | | TJ = cr[WS(rs, 12)]; |
132 | | TK = TI + TJ; |
133 | | T33 = TI - TJ; |
134 | | } |
135 | | { |
136 | | E TN, TO, Tb, Tc; |
137 | | TN = ci[WS(rs, 13)]; |
138 | | TO = cr[WS(rs, 10)]; |
139 | | TP = TN + TO; |
140 | | T2J = TN - TO; |
141 | | Tb = ci[WS(rs, 1)]; |
142 | | Tc = cr[WS(rs, 6)]; |
143 | | Td = Tb + Tc; |
144 | | TR = Tb - Tc; |
145 | | } |
146 | | TL = TH - TK; |
147 | | T1Z = TH + TK; |
148 | | T2d = T1s - T1p; |
149 | | T1t = T1p + T1s; |
150 | | T31 = Ta - Td; |
151 | | T34 = T32 - T33; |
152 | | T3n = T34 - T31; |
153 | | { |
154 | | E T1u, T1v, T7, Te; |
155 | | T3D = T32 + T33; |
156 | | T3E = T2J + T2I; |
157 | | T3R = T3D - T3E; |
158 | | T1u = TM + TP; |
159 | | T1v = TR + TU; |
160 | | T1w = T1u - T1v; |
161 | | T20 = T1u + T1v; |
162 | | T7 = T3 + T6; |
163 | | Te = Ta + Td; |
164 | | Tf = T7 + Te; |
165 | | T3M = T7 - Te; |
166 | | { |
167 | | E T2H, T2K, TQ, TV; |
168 | | T2H = T3 - T6; |
169 | | T2K = T2I - T2J; |
170 | | T2L = T2H + T2K; |
171 | | T3h = T2H - T2K; |
172 | | TQ = TM - TP; |
173 | | TV = TR - TU; |
174 | | TW = TQ + TV; |
175 | | T2e = TQ - TV; |
176 | | } |
177 | | } |
178 | | } |
179 | | { |
180 | | E Ti, T1e, T1c, T2N, T1h, T2O, Tl, T19, Tp, T13, T11, T2S, T16, T2T, Ts; |
181 | | E TY, T2M, T2P; |
182 | | { |
183 | | E Tg, Th, T1a, T1b; |
184 | | Tg = cr[WS(rs, 1)]; |
185 | | Th = ci[WS(rs, 6)]; |
186 | | Ti = Tg + Th; |
187 | | T1e = Tg - Th; |
188 | | T1a = ci[WS(rs, 14)]; |
189 | | T1b = cr[WS(rs, 9)]; |
190 | | T1c = T1a + T1b; |
191 | | T2N = T1a - T1b; |
192 | | } |
193 | | { |
194 | | E T1f, T1g, Tj, Tk; |
195 | | T1f = ci[WS(rs, 10)]; |
196 | | T1g = cr[WS(rs, 13)]; |
197 | | T1h = T1f + T1g; |
198 | | T2O = T1f - T1g; |
199 | | Tj = cr[WS(rs, 5)]; |
200 | | Tk = ci[WS(rs, 2)]; |
201 | | Tl = Tj + Tk; |
202 | | T19 = Tj - Tk; |
203 | | } |
204 | | { |
205 | | E Tn, To, TZ, T10; |
206 | | Tn = ci[0]; |
207 | | To = cr[WS(rs, 7)]; |
208 | | Tp = Tn + To; |
209 | | T13 = Tn - To; |
210 | | TZ = ci[WS(rs, 8)]; |
211 | | T10 = cr[WS(rs, 15)]; |
212 | | T11 = TZ + T10; |
213 | | T2S = TZ - T10; |
214 | | } |
215 | | { |
216 | | E T14, T15, Tq, Tr; |
217 | | T14 = ci[WS(rs, 12)]; |
218 | | T15 = cr[WS(rs, 11)]; |
219 | | T16 = T14 + T15; |
220 | | T2T = T14 - T15; |
221 | | Tq = cr[WS(rs, 3)]; |
222 | | Tr = ci[WS(rs, 4)]; |
223 | | Ts = Tq + Tr; |
224 | | TY = Tq - Tr; |
225 | | } |
226 | | T3G = T2N + T2O; |
227 | | T3H = T2S + T2T; |
228 | | T3N = T3H - T3G; |
229 | | T2M = Ti - Tl; |
230 | | T2P = T2N - T2O; |
231 | | T2Q = T2M - T2P; |
232 | | T36 = T2M + T2P; |
233 | | { |
234 | | E T2R, T2U, Tm, Tt; |
235 | | T2R = Tp - Ts; |
236 | | T2U = T2S - T2T; |
237 | | T2V = T2R + T2U; |
238 | | T37 = T2U - T2R; |
239 | | Tm = Ti + Tl; |
240 | | Tt = Tp + Ts; |
241 | | Tu = Tm + Tt; |
242 | | T3S = Tm - Tt; |
243 | | } |
244 | | { |
245 | | E T12, T17, T22, T23; |
246 | | T12 = TY - T11; |
247 | | T17 = T13 - T16; |
248 | | T18 = FNMS(KP414213562, T17, T12); |
249 | | T1z = FMA(KP414213562, T12, T17); |
250 | | T22 = T1c - T19; |
251 | | T23 = T1e + T1h; |
252 | | T24 = FNMS(KP414213562, T23, T22); |
253 | | T2g = FMA(KP414213562, T22, T23); |
254 | | } |
255 | | { |
256 | | E T25, T26, T1d, T1i; |
257 | | T25 = TY + T11; |
258 | | T26 = T13 + T16; |
259 | | T27 = FNMS(KP414213562, T26, T25); |
260 | | T2h = FMA(KP414213562, T25, T26); |
261 | | T1d = T19 + T1c; |
262 | | T1i = T1e - T1h; |
263 | | T1j = FMA(KP414213562, T1i, T1d); |
264 | | T1y = FNMS(KP414213562, T1d, T1i); |
265 | | } |
266 | | } |
267 | | cr[0] = Tf + Tu; |
268 | | { |
269 | | E T3B, T3K, T3F, T3I, T3J, T3A; |
270 | | T3A = Tf - Tu; |
271 | | T3B = T3z * T3A; |
272 | | T3K = T3C * T3A; |
273 | | T3F = T3D + T3E; |
274 | | T3I = T3G + T3H; |
275 | | T3J = T3F - T3I; |
276 | | ci[0] = T3F + T3I; |
277 | | ci[WS(rs, 8)] = FMA(T3z, T3J, T3K); |
278 | | cr[WS(rs, 8)] = FNMS(T3C, T3J, T3B); |
279 | | } |
280 | | { |
281 | | E T3O, T3P, T3T, T3U; |
282 | | T3O = T3M - T3N; |
283 | | T3P = T3L * T3O; |
284 | | T3T = T3R - T3S; |
285 | | T3U = T3L * T3T; |
286 | | cr[WS(rs, 12)] = FNMS(T3Q, T3T, T3P); |
287 | | ci[WS(rs, 12)] = FMA(T3Q, T3O, T3U); |
288 | | } |
289 | | { |
290 | | E T3V, T3W, T3X, T3Y; |
291 | | T3V = T3M + T3N; |
292 | | T3W = TA * T3V; |
293 | | T3X = T3S + T3R; |
294 | | T3Y = TA * T3X; |
295 | | cr[WS(rs, 4)] = FNMS(TE, T3X, T3W); |
296 | | ci[WS(rs, 4)] = FMA(TE, T3V, T3Y); |
297 | | } |
298 | | { |
299 | | E T3j, T3t, T3p, T3x, T3i, T3o; |
300 | | T3i = T37 - T36; |
301 | | T3j = FNMS(KP707106781, T3i, T3h); |
302 | | T3t = FMA(KP707106781, T3i, T3h); |
303 | | T3o = T2Q - T2V; |
304 | | T3p = FNMS(KP707106781, T3o, T3n); |
305 | | T3x = FMA(KP707106781, T3o, T3n); |
306 | | { |
307 | | E T3k, T3q, T3u, T3y; |
308 | | T3k = T3g * T3j; |
309 | | cr[WS(rs, 14)] = FNMS(T3m, T3p, T3k); |
310 | | T3q = T3g * T3p; |
311 | | ci[WS(rs, 14)] = FMA(T3m, T3j, T3q); |
312 | | T3u = T3s * T3t; |
313 | | cr[WS(rs, 6)] = FNMS(T3w, T3x, T3u); |
314 | | T3y = T3s * T3x; |
315 | | ci[WS(rs, 6)] = FMA(T3w, T3t, T3y); |
316 | | } |
317 | | } |
318 | | { |
319 | | E T2X, T3b, T39, T3d, T2W, T35, T38; |
320 | | T2W = T2Q + T2V; |
321 | | T2X = FNMS(KP707106781, T2W, T2L); |
322 | | T3b = FMA(KP707106781, T2W, T2L); |
323 | | T35 = T31 + T34; |
324 | | T38 = T36 + T37; |
325 | | T39 = FNMS(KP707106781, T38, T35); |
326 | | T3d = FMA(KP707106781, T38, T35); |
327 | | { |
328 | | E T2Y, T3a, T3c, T3e; |
329 | | T2Y = T2G * T2X; |
330 | | cr[WS(rs, 10)] = FNMS(T30, T39, T2Y); |
331 | | T3a = T30 * T2X; |
332 | | ci[WS(rs, 10)] = FMA(T2G, T39, T3a); |
333 | | T3c = T1V * T3b; |
334 | | cr[WS(rs, 2)] = FNMS(T1X, T3d, T3c); |
335 | | T3e = T1X * T3b; |
336 | | ci[WS(rs, 2)] = FMA(T1V, T3d, T3e); |
337 | | } |
338 | | } |
339 | | { |
340 | | E T29, T2l, T2j, T2n; |
341 | | { |
342 | | E T21, T28, T2f, T2i; |
343 | | T21 = FNMS(KP707106781, T20, T1Z); |
344 | | T28 = T24 + T27; |
345 | | T29 = FMA(KP923879532, T28, T21); |
346 | | T2l = FNMS(KP923879532, T28, T21); |
347 | | T2f = FMA(KP707106781, T2e, T2d); |
348 | | T2i = T2g - T2h; |
349 | | T2j = FNMS(KP923879532, T2i, T2f); |
350 | | T2n = FMA(KP923879532, T2i, T2f); |
351 | | } |
352 | | { |
353 | | E T2a, T2k, T2m, T2o; |
354 | | T2a = T1Y * T29; |
355 | | cr[WS(rs, 11)] = FNMS(T2c, T2j, T2a); |
356 | | T2k = T2c * T29; |
357 | | ci[WS(rs, 11)] = FMA(T1Y, T2j, T2k); |
358 | | T2m = Tw * T2l; |
359 | | cr[WS(rs, 3)] = FNMS(Tz, T2n, T2m); |
360 | | T2o = Tz * T2l; |
361 | | ci[WS(rs, 3)] = FMA(Tw, T2n, T2o); |
362 | | } |
363 | | } |
364 | | { |
365 | | E T1l, T1E, T1B, T1H; |
366 | | { |
367 | | E TX, T1k, T1x, T1A; |
368 | | TX = FNMS(KP707106781, TW, TL); |
369 | | T1k = T18 - T1j; |
370 | | T1l = FNMS(KP923879532, T1k, TX); |
371 | | T1E = FMA(KP923879532, T1k, TX); |
372 | | T1x = FNMS(KP707106781, T1w, T1t); |
373 | | T1A = T1y - T1z; |
374 | | T1B = FNMS(KP923879532, T1A, T1x); |
375 | | T1H = FMA(KP923879532, T1A, T1x); |
376 | | } |
377 | | { |
378 | | E T1m, T1C, T1F, T1I; |
379 | | T1m = TG * T1l; |
380 | | cr[WS(rs, 13)] = FNMS(T1o, T1B, T1m); |
381 | | T1C = T1o * T1l; |
382 | | ci[WS(rs, 13)] = FMA(TG, T1B, T1C); |
383 | | T1F = T1D * T1E; |
384 | | cr[WS(rs, 5)] = FNMS(T1G, T1H, T1F); |
385 | | T1I = T1G * T1E; |
386 | | ci[WS(rs, 5)] = FMA(T1D, T1H, T1I); |
387 | | } |
388 | | } |
389 | | { |
390 | | E T2s, T2A, T2x, T2D; |
391 | | { |
392 | | E T2q, T2r, T2v, T2w; |
393 | | T2q = FMA(KP707106781, T20, T1Z); |
394 | | T2r = T2g + T2h; |
395 | | T2s = FNMS(KP923879532, T2r, T2q); |
396 | | T2A = FMA(KP923879532, T2r, T2q); |
397 | | T2v = FNMS(KP707106781, T2e, T2d); |
398 | | T2w = T27 - T24; |
399 | | T2x = FMA(KP923879532, T2w, T2v); |
400 | | T2D = FNMS(KP923879532, T2w, T2v); |
401 | | } |
402 | | { |
403 | | E T2t, T2y, T2B, T2E; |
404 | | T2t = T2p * T2s; |
405 | | cr[WS(rs, 7)] = FNMS(T2u, T2x, T2t); |
406 | | T2y = T2p * T2x; |
407 | | ci[WS(rs, 7)] = FMA(T2u, T2s, T2y); |
408 | | T2B = T2z * T2A; |
409 | | cr[WS(rs, 15)] = FNMS(T2C, T2D, T2B); |
410 | | T2E = T2z * T2D; |
411 | | ci[WS(rs, 15)] = FMA(T2C, T2A, T2E); |
412 | | } |
413 | | } |
414 | | { |
415 | | E T1L, T1R, T1P, T1T; |
416 | | { |
417 | | E T1J, T1K, T1N, T1O; |
418 | | T1J = FMA(KP707106781, TW, TL); |
419 | | T1K = T1y + T1z; |
420 | | T1L = FNMS(KP923879532, T1K, T1J); |
421 | | T1R = FMA(KP923879532, T1K, T1J); |
422 | | T1N = FMA(KP707106781, T1w, T1t); |
423 | | T1O = T1j + T18; |
424 | | T1P = FNMS(KP923879532, T1O, T1N); |
425 | | T1T = FMA(KP923879532, T1O, T1N); |
426 | | } |
427 | | { |
428 | | E T1M, T1Q, T1S, T1U; |
429 | | T1M = TB * T1L; |
430 | | cr[WS(rs, 9)] = FNMS(TF, T1P, T1M); |
431 | | T1Q = TB * T1P; |
432 | | ci[WS(rs, 9)] = FMA(TF, T1L, T1Q); |
433 | | T1S = Tv * T1R; |
434 | | cr[WS(rs, 1)] = FNMS(Ty, T1T, T1S); |
435 | | T1U = Tv * T1T; |
436 | | ci[WS(rs, 1)] = FMA(Ty, T1R, T1U); |
437 | | } |
438 | | } |
439 | | } |
440 | | } |
441 | | } |
442 | | } |
443 | | |
444 | | static const tw_instr twinstr[] = { |
445 | | { TW_CEXP, 1, 1 }, |
446 | | { TW_CEXP, 1, 3 }, |
447 | | { TW_CEXP, 1, 9 }, |
448 | | { TW_CEXP, 1, 15 }, |
449 | | { TW_NEXT, 1, 0 } |
450 | | }; |
451 | | |
452 | | static const hc2hc_desc desc = { 16, "hb2_16", twinstr, &GENUS, { 104, 42, 92, 0 } }; |
453 | | |
454 | | void X(codelet_hb2_16) (planner *p) { |
455 | | X(khc2hc_register) (p, hb2_16, &desc); |
456 | | } |
457 | | #else |
458 | | |
459 | | /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 16 -dif -name hb2_16 -include rdft/scalar/hb.h */ |
460 | | |
461 | | /* |
462 | | * This function contains 196 FP additions, 108 FP multiplications, |
463 | | * (or, 156 additions, 68 multiplications, 40 fused multiply/add), |
464 | | * 80 stack variables, 3 constants, and 64 memory accesses |
465 | | */ |
466 | | #include "rdft/scalar/hb.h" |
467 | | |
468 | | static void hb2_16(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) |
469 | 0 | { |
470 | 0 | DK(KP382683432, +0.382683432365089771728459984030398866761344562); |
471 | 0 | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
472 | 0 | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
473 | 0 | { |
474 | 0 | INT m; |
475 | 0 | for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(32, rs)) { |
476 | 0 | E Tv, Ty, T1l, T1n, T1p, T1t, T27, T25, Tz, Tw, TB, T21, T1P, T1H, T1X; |
477 | 0 | E T17, T1L, T1N, T1v, T1w, T1x, T1B, T2F, T2T, T2b, T2R, T3j, T3x, T35, T3t; |
478 | 0 | { |
479 | 0 | E TA, T1J, T15, T1G, Tx, T1K, T16, T1F; |
480 | 0 | { |
481 | 0 | E T1m, T1s, T1o, T1r; |
482 | 0 | Tv = W[0]; |
483 | 0 | Ty = W[1]; |
484 | 0 | T1l = W[2]; |
485 | 0 | T1n = W[3]; |
486 | 0 | T1m = Tv * T1l; |
487 | 0 | T1s = Ty * T1l; |
488 | 0 | T1o = Ty * T1n; |
489 | 0 | T1r = Tv * T1n; |
490 | 0 | T1p = T1m + T1o; |
491 | 0 | T1t = T1r - T1s; |
492 | 0 | T27 = T1r + T1s; |
493 | 0 | T25 = T1m - T1o; |
494 | 0 | Tz = W[5]; |
495 | 0 | TA = Ty * Tz; |
496 | 0 | T1J = T1l * Tz; |
497 | 0 | T15 = Tv * Tz; |
498 | 0 | T1G = T1n * Tz; |
499 | 0 | Tw = W[4]; |
500 | 0 | Tx = Tv * Tw; |
501 | 0 | T1K = T1n * Tw; |
502 | 0 | T16 = Ty * Tw; |
503 | 0 | T1F = T1l * Tw; |
504 | 0 | } |
505 | 0 | TB = Tx - TA; |
506 | 0 | T21 = T1J + T1K; |
507 | 0 | T1P = T15 - T16; |
508 | 0 | T1H = T1F + T1G; |
509 | 0 | T1X = T1F - T1G; |
510 | 0 | T17 = T15 + T16; |
511 | 0 | T1L = T1J - T1K; |
512 | 0 | T1N = Tx + TA; |
513 | 0 | T1v = W[6]; |
514 | 0 | T1w = W[7]; |
515 | 0 | T1x = FMA(Tv, T1v, Ty * T1w); |
516 | 0 | T1B = FNMS(Ty, T1v, Tv * T1w); |
517 | 0 | { |
518 | 0 | E T2D, T2E, T29, T2a; |
519 | 0 | T2D = T25 * Tz; |
520 | 0 | T2E = T27 * Tw; |
521 | 0 | T2F = T2D + T2E; |
522 | 0 | T2T = T2D - T2E; |
523 | 0 | T29 = T25 * Tw; |
524 | 0 | T2a = T27 * Tz; |
525 | 0 | T2b = T29 - T2a; |
526 | 0 | T2R = T29 + T2a; |
527 | 0 | } |
528 | 0 | { |
529 | 0 | E T3h, T3i, T33, T34; |
530 | 0 | T3h = T1p * Tz; |
531 | 0 | T3i = T1t * Tw; |
532 | 0 | T3j = T3h + T3i; |
533 | 0 | T3x = T3h - T3i; |
534 | 0 | T33 = T1p * Tw; |
535 | 0 | T34 = T1t * Tz; |
536 | 0 | T35 = T33 - T34; |
537 | 0 | T3t = T33 + T34; |
538 | 0 | } |
539 | 0 | } |
540 | 0 | { |
541 | 0 | E T7, T36, T3k, TC, T1f, T2e, T2I, T1Q, Te, TJ, T1R, T18, T2L, T37, T2l; |
542 | 0 | E T3l, Tm, T1T, TT, T1h, T2A, T2N, T3b, T3n, Tt, T1U, T12, T1i, T2t, T2O; |
543 | 0 | E T3e, T3o; |
544 | 0 | { |
545 | 0 | E T3, T2c, T1e, T2d, T6, T2G, T1b, T2H; |
546 | 0 | { |
547 | 0 | E T1, T2, T1c, T1d; |
548 | 0 | T1 = cr[0]; |
549 | 0 | T2 = ci[WS(rs, 7)]; |
550 | 0 | T3 = T1 + T2; |
551 | 0 | T2c = T1 - T2; |
552 | 0 | T1c = ci[WS(rs, 11)]; |
553 | 0 | T1d = cr[WS(rs, 12)]; |
554 | 0 | T1e = T1c - T1d; |
555 | 0 | T2d = T1c + T1d; |
556 | 0 | } |
557 | 0 | { |
558 | 0 | E T4, T5, T19, T1a; |
559 | 0 | T4 = cr[WS(rs, 4)]; |
560 | 0 | T5 = ci[WS(rs, 3)]; |
561 | 0 | T6 = T4 + T5; |
562 | 0 | T2G = T4 - T5; |
563 | 0 | T19 = ci[WS(rs, 15)]; |
564 | 0 | T1a = cr[WS(rs, 8)]; |
565 | 0 | T1b = T19 - T1a; |
566 | 0 | T2H = T19 + T1a; |
567 | 0 | } |
568 | 0 | T7 = T3 + T6; |
569 | 0 | T36 = T2c + T2d; |
570 | 0 | T3k = T2H - T2G; |
571 | 0 | TC = T3 - T6; |
572 | 0 | T1f = T1b - T1e; |
573 | 0 | T2e = T2c - T2d; |
574 | 0 | T2I = T2G + T2H; |
575 | 0 | T1Q = T1b + T1e; |
576 | 0 | } |
577 | 0 | { |
578 | 0 | E Ta, T2f, TI, T2g, Td, T2i, TF, T2j; |
579 | 0 | { |
580 | 0 | E T8, T9, TG, TH; |
581 | 0 | T8 = cr[WS(rs, 2)]; |
582 | 0 | T9 = ci[WS(rs, 5)]; |
583 | 0 | Ta = T8 + T9; |
584 | 0 | T2f = T8 - T9; |
585 | 0 | TG = ci[WS(rs, 13)]; |
586 | 0 | TH = cr[WS(rs, 10)]; |
587 | 0 | TI = TG - TH; |
588 | 0 | T2g = TG + TH; |
589 | 0 | } |
590 | 0 | { |
591 | 0 | E Tb, Tc, TD, TE; |
592 | 0 | Tb = ci[WS(rs, 1)]; |
593 | 0 | Tc = cr[WS(rs, 6)]; |
594 | 0 | Td = Tb + Tc; |
595 | 0 | T2i = Tb - Tc; |
596 | 0 | TD = ci[WS(rs, 9)]; |
597 | 0 | TE = cr[WS(rs, 14)]; |
598 | 0 | TF = TD - TE; |
599 | 0 | T2j = TD + TE; |
600 | 0 | } |
601 | 0 | Te = Ta + Td; |
602 | 0 | TJ = TF - TI; |
603 | 0 | T1R = TI + TF; |
604 | 0 | T18 = Ta - Td; |
605 | 0 | { |
606 | 0 | E T2J, T2K, T2h, T2k; |
607 | 0 | T2J = T2f + T2g; |
608 | 0 | T2K = T2i + T2j; |
609 | 0 | T2L = KP707106781 * (T2J - T2K); |
610 | 0 | T37 = KP707106781 * (T2J + T2K); |
611 | 0 | T2h = T2f - T2g; |
612 | 0 | T2k = T2i - T2j; |
613 | 0 | T2l = KP707106781 * (T2h + T2k); |
614 | 0 | T3l = KP707106781 * (T2h - T2k); |
615 | 0 | } |
616 | 0 | } |
617 | 0 | { |
618 | 0 | E Ti, T2x, TR, T2y, Tl, T2u, TO, T2v, TL, TS; |
619 | 0 | { |
620 | 0 | E Tg, Th, TP, TQ; |
621 | 0 | Tg = cr[WS(rs, 1)]; |
622 | 0 | Th = ci[WS(rs, 6)]; |
623 | 0 | Ti = Tg + Th; |
624 | 0 | T2x = Tg - Th; |
625 | 0 | TP = ci[WS(rs, 10)]; |
626 | 0 | TQ = cr[WS(rs, 13)]; |
627 | 0 | TR = TP - TQ; |
628 | 0 | T2y = TP + TQ; |
629 | 0 | } |
630 | 0 | { |
631 | 0 | E Tj, Tk, TM, TN; |
632 | 0 | Tj = cr[WS(rs, 5)]; |
633 | 0 | Tk = ci[WS(rs, 2)]; |
634 | 0 | Tl = Tj + Tk; |
635 | 0 | T2u = Tj - Tk; |
636 | 0 | TM = ci[WS(rs, 14)]; |
637 | 0 | TN = cr[WS(rs, 9)]; |
638 | 0 | TO = TM - TN; |
639 | 0 | T2v = TM + TN; |
640 | 0 | } |
641 | 0 | Tm = Ti + Tl; |
642 | 0 | T1T = TO + TR; |
643 | 0 | TL = Ti - Tl; |
644 | 0 | TS = TO - TR; |
645 | 0 | TT = TL - TS; |
646 | 0 | T1h = TL + TS; |
647 | 0 | { |
648 | 0 | E T2w, T2z, T39, T3a; |
649 | 0 | T2w = T2u + T2v; |
650 | 0 | T2z = T2x - T2y; |
651 | 0 | T2A = FMA(KP923879532, T2w, KP382683432 * T2z); |
652 | 0 | T2N = FNMS(KP382683432, T2w, KP923879532 * T2z); |
653 | 0 | T39 = T2x + T2y; |
654 | 0 | T3a = T2v - T2u; |
655 | 0 | T3b = FNMS(KP923879532, T3a, KP382683432 * T39); |
656 | 0 | T3n = FMA(KP382683432, T3a, KP923879532 * T39); |
657 | 0 | } |
658 | 0 | } |
659 | 0 | { |
660 | 0 | E Tp, T2q, T10, T2r, Ts, T2n, TX, T2o, TU, T11; |
661 | 0 | { |
662 | 0 | E Tn, To, TY, TZ; |
663 | 0 | Tn = ci[0]; |
664 | 0 | To = cr[WS(rs, 7)]; |
665 | 0 | Tp = Tn + To; |
666 | 0 | T2q = Tn - To; |
667 | 0 | TY = ci[WS(rs, 12)]; |
668 | 0 | TZ = cr[WS(rs, 11)]; |
669 | 0 | T10 = TY - TZ; |
670 | 0 | T2r = TY + TZ; |
671 | 0 | } |
672 | 0 | { |
673 | 0 | E Tq, Tr, TV, TW; |
674 | 0 | Tq = cr[WS(rs, 3)]; |
675 | 0 | Tr = ci[WS(rs, 4)]; |
676 | 0 | Ts = Tq + Tr; |
677 | 0 | T2n = Tq - Tr; |
678 | 0 | TV = ci[WS(rs, 8)]; |
679 | 0 | TW = cr[WS(rs, 15)]; |
680 | 0 | TX = TV - TW; |
681 | 0 | T2o = TV + TW; |
682 | 0 | } |
683 | 0 | Tt = Tp + Ts; |
684 | 0 | T1U = TX + T10; |
685 | 0 | TU = Tp - Ts; |
686 | 0 | T11 = TX - T10; |
687 | 0 | T12 = TU + T11; |
688 | 0 | T1i = T11 - TU; |
689 | 0 | { |
690 | 0 | E T2p, T2s, T3c, T3d; |
691 | 0 | T2p = T2n - T2o; |
692 | 0 | T2s = T2q - T2r; |
693 | 0 | T2t = FNMS(KP382683432, T2s, KP923879532 * T2p); |
694 | 0 | T2O = FMA(KP382683432, T2p, KP923879532 * T2s); |
695 | 0 | T3c = T2q + T2r; |
696 | 0 | T3d = T2n + T2o; |
697 | 0 | T3e = FNMS(KP923879532, T3d, KP382683432 * T3c); |
698 | 0 | T3o = FMA(KP382683432, T3d, KP923879532 * T3c); |
699 | 0 | } |
700 | 0 | } |
701 | 0 | { |
702 | 0 | E Tf, Tu, T1O, T1S, T1V, T1W; |
703 | 0 | Tf = T7 + Te; |
704 | 0 | Tu = Tm + Tt; |
705 | 0 | T1O = Tf - Tu; |
706 | 0 | T1S = T1Q + T1R; |
707 | 0 | T1V = T1T + T1U; |
708 | 0 | T1W = T1S - T1V; |
709 | 0 | cr[0] = Tf + Tu; |
710 | 0 | ci[0] = T1S + T1V; |
711 | 0 | cr[WS(rs, 8)] = FNMS(T1P, T1W, T1N * T1O); |
712 | 0 | ci[WS(rs, 8)] = FMA(T1P, T1O, T1N * T1W); |
713 | 0 | } |
714 | 0 | { |
715 | 0 | E T3g, T3r, T3q, T3s; |
716 | 0 | { |
717 | 0 | E T38, T3f, T3m, T3p; |
718 | 0 | T38 = T36 - T37; |
719 | 0 | T3f = T3b + T3e; |
720 | 0 | T3g = T38 - T3f; |
721 | 0 | T3r = T38 + T3f; |
722 | 0 | T3m = T3k + T3l; |
723 | 0 | T3p = T3n - T3o; |
724 | 0 | T3q = T3m - T3p; |
725 | 0 | T3s = T3m + T3p; |
726 | 0 | } |
727 | 0 | cr[WS(rs, 11)] = FNMS(T3j, T3q, T35 * T3g); |
728 | 0 | ci[WS(rs, 11)] = FMA(T3j, T3g, T35 * T3q); |
729 | 0 | cr[WS(rs, 3)] = FNMS(T1n, T3s, T1l * T3r); |
730 | 0 | ci[WS(rs, 3)] = FMA(T1n, T3r, T1l * T3s); |
731 | 0 | } |
732 | 0 | { |
733 | 0 | E T3w, T3B, T3A, T3C; |
734 | 0 | { |
735 | 0 | E T3u, T3v, T3y, T3z; |
736 | 0 | T3u = T36 + T37; |
737 | 0 | T3v = T3n + T3o; |
738 | 0 | T3w = T3u - T3v; |
739 | 0 | T3B = T3u + T3v; |
740 | 0 | T3y = T3k - T3l; |
741 | 0 | T3z = T3b - T3e; |
742 | 0 | T3A = T3y + T3z; |
743 | 0 | T3C = T3y - T3z; |
744 | 0 | } |
745 | 0 | cr[WS(rs, 7)] = FNMS(T3x, T3A, T3t * T3w); |
746 | 0 | ci[WS(rs, 7)] = FMA(T3t, T3A, T3x * T3w); |
747 | 0 | cr[WS(rs, 15)] = FNMS(T1w, T3C, T1v * T3B); |
748 | 0 | ci[WS(rs, 15)] = FMA(T1v, T3C, T1w * T3B); |
749 | 0 | } |
750 | 0 | { |
751 | 0 | E T14, T1q, T1k, T1u; |
752 | 0 | { |
753 | 0 | E TK, T13, T1g, T1j; |
754 | 0 | TK = TC + TJ; |
755 | 0 | T13 = KP707106781 * (TT + T12); |
756 | 0 | T14 = TK - T13; |
757 | 0 | T1q = TK + T13; |
758 | 0 | T1g = T18 + T1f; |
759 | 0 | T1j = KP707106781 * (T1h + T1i); |
760 | 0 | T1k = T1g - T1j; |
761 | 0 | T1u = T1g + T1j; |
762 | 0 | } |
763 | 0 | cr[WS(rs, 10)] = FNMS(T17, T1k, TB * T14); |
764 | 0 | ci[WS(rs, 10)] = FMA(T17, T14, TB * T1k); |
765 | 0 | cr[WS(rs, 2)] = FNMS(T1t, T1u, T1p * T1q); |
766 | 0 | ci[WS(rs, 2)] = FMA(T1t, T1q, T1p * T1u); |
767 | 0 | } |
768 | 0 | { |
769 | 0 | E T1A, T1I, T1E, T1M; |
770 | 0 | { |
771 | 0 | E T1y, T1z, T1C, T1D; |
772 | 0 | T1y = TC - TJ; |
773 | 0 | T1z = KP707106781 * (T1i - T1h); |
774 | 0 | T1A = T1y - T1z; |
775 | 0 | T1I = T1y + T1z; |
776 | 0 | T1C = T1f - T18; |
777 | 0 | T1D = KP707106781 * (TT - T12); |
778 | 0 | T1E = T1C - T1D; |
779 | 0 | T1M = T1C + T1D; |
780 | 0 | } |
781 | 0 | cr[WS(rs, 14)] = FNMS(T1B, T1E, T1x * T1A); |
782 | 0 | ci[WS(rs, 14)] = FMA(T1x, T1E, T1B * T1A); |
783 | 0 | cr[WS(rs, 6)] = FNMS(T1L, T1M, T1H * T1I); |
784 | 0 | ci[WS(rs, 6)] = FMA(T1H, T1M, T1L * T1I); |
785 | 0 | } |
786 | 0 | { |
787 | 0 | E T2C, T2S, T2Q, T2U; |
788 | 0 | { |
789 | 0 | E T2m, T2B, T2M, T2P; |
790 | 0 | T2m = T2e - T2l; |
791 | 0 | T2B = T2t - T2A; |
792 | 0 | T2C = T2m - T2B; |
793 | 0 | T2S = T2m + T2B; |
794 | 0 | T2M = T2I - T2L; |
795 | 0 | T2P = T2N - T2O; |
796 | 0 | T2Q = T2M - T2P; |
797 | 0 | T2U = T2M + T2P; |
798 | 0 | } |
799 | 0 | cr[WS(rs, 13)] = FNMS(T2F, T2Q, T2b * T2C); |
800 | 0 | ci[WS(rs, 13)] = FMA(T2F, T2C, T2b * T2Q); |
801 | 0 | cr[WS(rs, 5)] = FNMS(T2T, T2U, T2R * T2S); |
802 | 0 | ci[WS(rs, 5)] = FMA(T2T, T2S, T2R * T2U); |
803 | 0 | } |
804 | 0 | { |
805 | 0 | E T2X, T31, T30, T32; |
806 | 0 | { |
807 | 0 | E T2V, T2W, T2Y, T2Z; |
808 | 0 | T2V = T2e + T2l; |
809 | 0 | T2W = T2N + T2O; |
810 | 0 | T2X = T2V - T2W; |
811 | 0 | T31 = T2V + T2W; |
812 | 0 | T2Y = T2I + T2L; |
813 | 0 | T2Z = T2A + T2t; |
814 | 0 | T30 = T2Y - T2Z; |
815 | 0 | T32 = T2Y + T2Z; |
816 | 0 | } |
817 | 0 | cr[WS(rs, 9)] = FNMS(Tz, T30, Tw * T2X); |
818 | 0 | ci[WS(rs, 9)] = FMA(Tw, T30, Tz * T2X); |
819 | 0 | cr[WS(rs, 1)] = FNMS(Ty, T32, Tv * T31); |
820 | 0 | ci[WS(rs, 1)] = FMA(Tv, T32, Ty * T31); |
821 | 0 | } |
822 | 0 | { |
823 | 0 | E T20, T26, T24, T28; |
824 | 0 | { |
825 | 0 | E T1Y, T1Z, T22, T23; |
826 | 0 | T1Y = T7 - Te; |
827 | 0 | T1Z = T1U - T1T; |
828 | 0 | T20 = T1Y - T1Z; |
829 | 0 | T26 = T1Y + T1Z; |
830 | 0 | T22 = T1Q - T1R; |
831 | 0 | T23 = Tm - Tt; |
832 | 0 | T24 = T22 - T23; |
833 | 0 | T28 = T23 + T22; |
834 | 0 | } |
835 | 0 | cr[WS(rs, 12)] = FNMS(T21, T24, T1X * T20); |
836 | 0 | ci[WS(rs, 12)] = FMA(T1X, T24, T21 * T20); |
837 | 0 | cr[WS(rs, 4)] = FNMS(T27, T28, T25 * T26); |
838 | 0 | ci[WS(rs, 4)] = FMA(T25, T28, T27 * T26); |
839 | 0 | } |
840 | 0 | } |
841 | 0 | } |
842 | 0 | } |
843 | 0 | } |
844 | | |
845 | | static const tw_instr twinstr[] = { |
846 | | { TW_CEXP, 1, 1 }, |
847 | | { TW_CEXP, 1, 3 }, |
848 | | { TW_CEXP, 1, 9 }, |
849 | | { TW_CEXP, 1, 15 }, |
850 | | { TW_NEXT, 1, 0 } |
851 | | }; |
852 | | |
853 | | static const hc2hc_desc desc = { 16, "hb2_16", twinstr, &GENUS, { 156, 68, 40, 0 } }; |
854 | | |
855 | 1 | void X(codelet_hb2_16) (planner *p) { |
856 | 1 | X(khc2hc_register) (p, hb2_16, &desc); |
857 | 1 | } |
858 | | #endif |