Coverage Report

Created: 2023-09-25 07:08

/src/fftw3/rdft/scalar/r2cb/hc2cb_10.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Mon Sep 25 07:07:22 UTC 2023 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hc2cb_10 -include rdft/scalar/hc2cb.h */
29
30
/*
31
 * This function contains 102 FP additions, 72 FP multiplications,
32
 * (or, 48 additions, 18 multiplications, 54 fused multiply/add),
33
 * 47 stack variables, 4 constants, and 40 memory accesses
34
 */
35
#include "rdft/scalar/hc2cb.h"
36
37
static void hc2cb_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
42
     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
43
     {
44
    INT m;
45
    for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) {
46
         E TH, T1B, TB, T11, T1E, T1G, TK, TM, T1x, T1V, T3, T1g, Tl, T1I, T1J;
47
         E TO, TP, T1p, Ti, Tk, T1n, T1o, TF, TG;
48
         TF = Ip[0];
49
         TG = Im[WS(rs, 4)];
50
         TH = TF - TG;
51
         T1B = TF + TG;
52
         {
53
        E Tp, T1u, Tz, T1s, Ts, T1v, Tw, T1r;
54
        {
55
       E Tn, To, Tx, Ty;
56
       Tn = Ip[WS(rs, 4)];
57
       To = Im[0];
58
       Tp = Tn - To;
59
       T1u = Tn + To;
60
       Tx = Ip[WS(rs, 3)];
61
       Ty = Im[WS(rs, 1)];
62
       Tz = Tx - Ty;
63
       T1s = Tx + Ty;
64
        }
65
        {
66
       E Tq, Tr, Tu, Tv;
67
       Tq = Ip[WS(rs, 1)];
68
       Tr = Im[WS(rs, 3)];
69
       Ts = Tq - Tr;
70
       T1v = Tq + Tr;
71
       Tu = Ip[WS(rs, 2)];
72
       Tv = Im[WS(rs, 2)];
73
       Tw = Tu - Tv;
74
       T1r = Tu + Tv;
75
        }
76
        {
77
       E Tt, TA, T1C, T1D;
78
       Tt = Tp - Ts;
79
       TA = Tw - Tz;
80
       TB = FNMS(KP618033988, TA, Tt);
81
       T11 = FMA(KP618033988, Tt, TA);
82
       T1C = T1r - T1s;
83
       T1D = T1u - T1v;
84
       T1E = T1C + T1D;
85
       T1G = T1C - T1D;
86
        }
87
        {
88
       E TI, TJ, T1t, T1w;
89
       TI = Tw + Tz;
90
       TJ = Tp + Ts;
91
       TK = TI + TJ;
92
       TM = TI - TJ;
93
       T1t = T1r + T1s;
94
       T1w = T1u + T1v;
95
       T1x = FMA(KP618033988, T1w, T1t);
96
       T1V = FNMS(KP618033988, T1t, T1w);
97
        }
98
         }
99
         {
100
        E Td, T1k, Tg, T1l, Th, T1m, T6, T1h, T9, T1i, Ta, T1j, T1, T2;
101
        T1 = Rp[0];
102
        T2 = Rm[WS(rs, 4)];
103
        T3 = T1 + T2;
104
        T1g = T1 - T2;
105
        {
106
       E Tb, Tc, Te, Tf;
107
       Tb = Rp[WS(rs, 4)];
108
       Tc = Rm[0];
109
       Td = Tb + Tc;
110
       T1k = Tb - Tc;
111
       Te = Rm[WS(rs, 3)];
112
       Tf = Rp[WS(rs, 1)];
113
       Tg = Te + Tf;
114
       T1l = Te - Tf;
115
        }
116
        Th = Td + Tg;
117
        T1m = T1k + T1l;
118
        {
119
       E T4, T5, T7, T8;
120
       T4 = Rp[WS(rs, 2)];
121
       T5 = Rm[WS(rs, 2)];
122
       T6 = T4 + T5;
123
       T1h = T4 - T5;
124
       T7 = Rm[WS(rs, 1)];
125
       T8 = Rp[WS(rs, 3)];
126
       T9 = T7 + T8;
127
       T1i = T7 - T8;
128
        }
129
        Ta = T6 + T9;
130
        T1j = T1h + T1i;
131
        Tl = Ta - Th;
132
        T1I = T1h - T1i;
133
        T1J = T1k - T1l;
134
        TO = Td - Tg;
135
        TP = T6 - T9;
136
        T1p = T1j - T1m;
137
        Ti = Ta + Th;
138
        Tk = FNMS(KP250000000, Ti, T3);
139
        T1n = T1j + T1m;
140
        T1o = FNMS(KP250000000, T1n, T1g);
141
         }
142
         Rp[0] = T3 + Ti;
143
         Rm[0] = TH + TK;
144
         {
145
        E T2d, T29, T2b, T2c, T2e, T2a;
146
        T2d = T1B + T1E;
147
        T2a = T1g + T1n;
148
        T29 = W[8];
149
        T2b = T29 * T2a;
150
        T2c = W[9];
151
        T2e = T2c * T2a;
152
        Ip[WS(rs, 2)] = FNMS(T2c, T2d, T2b);
153
        Im[WS(rs, 2)] = FMA(T29, T2d, T2e);
154
         }
155
         {
156
        E TQ, T16, TC, TU, TN, T15, T12, T1a, Tm, TL, T10;
157
        TQ = FNMS(KP618033988, TP, TO);
158
        T16 = FMA(KP618033988, TO, TP);
159
        Tm = FNMS(KP559016994, Tl, Tk);
160
        TC = FMA(KP951056516, TB, Tm);
161
        TU = FNMS(KP951056516, TB, Tm);
162
        TL = FNMS(KP250000000, TK, TH);
163
        TN = FNMS(KP559016994, TM, TL);
164
        T15 = FMA(KP559016994, TM, TL);
165
        T10 = FMA(KP559016994, Tl, Tk);
166
        T12 = FMA(KP951056516, T11, T10);
167
        T1a = FNMS(KP951056516, T11, T10);
168
        {
169
       E TR, TE, TS, Tj, TD;
170
       TR = FNMS(KP951056516, TQ, TN);
171
       TE = W[3];
172
       TS = TE * TC;
173
       Tj = W[2];
174
       TD = Tj * TC;
175
       Rp[WS(rs, 1)] = FNMS(TE, TR, TD);
176
       Rm[WS(rs, 1)] = FMA(Tj, TR, TS);
177
        }
178
        {
179
       E T1d, T1c, T1e, T19, T1b;
180
       T1d = FMA(KP951056516, T16, T15);
181
       T1c = W[11];
182
       T1e = T1c * T1a;
183
       T19 = W[10];
184
       T1b = T19 * T1a;
185
       Rp[WS(rs, 3)] = FNMS(T1c, T1d, T1b);
186
       Rm[WS(rs, 3)] = FMA(T19, T1d, T1e);
187
        }
188
        {
189
       E TX, TW, TY, TT, TV;
190
       TX = FMA(KP951056516, TQ, TN);
191
       TW = W[15];
192
       TY = TW * TU;
193
       TT = W[14];
194
       TV = TT * TU;
195
       Rp[WS(rs, 4)] = FNMS(TW, TX, TV);
196
       Rm[WS(rs, 4)] = FMA(TT, TX, TY);
197
        }
198
        {
199
       E T17, T14, T18, TZ, T13;
200
       T17 = FNMS(KP951056516, T16, T15);
201
       T14 = W[7];
202
       T18 = T14 * T12;
203
       TZ = W[6];
204
       T13 = TZ * T12;
205
       Rp[WS(rs, 2)] = FNMS(T14, T17, T13);
206
       Rm[WS(rs, 2)] = FMA(TZ, T17, T18);
207
        }
208
         }
209
         {
210
        E T1K, T20, T1y, T1O, T1H, T1Z, T1W, T24, T1q, T1F, T1U;
211
        T1K = FMA(KP618033988, T1J, T1I);
212
        T20 = FNMS(KP618033988, T1I, T1J);
213
        T1q = FMA(KP559016994, T1p, T1o);
214
        T1y = FNMS(KP951056516, T1x, T1q);
215
        T1O = FMA(KP951056516, T1x, T1q);
216
        T1F = FNMS(KP250000000, T1E, T1B);
217
        T1H = FMA(KP559016994, T1G, T1F);
218
        T1Z = FNMS(KP559016994, T1G, T1F);
219
        T1U = FNMS(KP559016994, T1p, T1o);
220
        T1W = FNMS(KP951056516, T1V, T1U);
221
        T24 = FMA(KP951056516, T1V, T1U);
222
        {
223
       E T1L, T1A, T1M, T1f, T1z;
224
       T1L = FMA(KP951056516, T1K, T1H);
225
       T1A = W[1];
226
       T1M = T1A * T1y;
227
       T1f = W[0];
228
       T1z = T1f * T1y;
229
       Ip[0] = FNMS(T1A, T1L, T1z);
230
       Im[0] = FMA(T1f, T1L, T1M);
231
        }
232
        {
233
       E T27, T26, T28, T23, T25;
234
       T27 = FNMS(KP951056516, T20, T1Z);
235
       T26 = W[13];
236
       T28 = T26 * T24;
237
       T23 = W[12];
238
       T25 = T23 * T24;
239
       Ip[WS(rs, 3)] = FNMS(T26, T27, T25);
240
       Im[WS(rs, 3)] = FMA(T23, T27, T28);
241
        }
242
        {
243
       E T1R, T1Q, T1S, T1N, T1P;
244
       T1R = FNMS(KP951056516, T1K, T1H);
245
       T1Q = W[17];
246
       T1S = T1Q * T1O;
247
       T1N = W[16];
248
       T1P = T1N * T1O;
249
       Ip[WS(rs, 4)] = FNMS(T1Q, T1R, T1P);
250
       Im[WS(rs, 4)] = FMA(T1N, T1R, T1S);
251
        }
252
        {
253
       E T21, T1Y, T22, T1T, T1X;
254
       T21 = FMA(KP951056516, T20, T1Z);
255
       T1Y = W[5];
256
       T22 = T1Y * T1W;
257
       T1T = W[4];
258
       T1X = T1T * T1W;
259
       Ip[WS(rs, 1)] = FNMS(T1Y, T21, T1X);
260
       Im[WS(rs, 1)] = FMA(T1T, T21, T22);
261
        }
262
         }
263
    }
264
     }
265
}
266
267
static const tw_instr twinstr[] = {
268
     { TW_FULL, 1, 10 },
269
     { TW_NEXT, 1, 0 }
270
};
271
272
static const hc2c_desc desc = { 10, "hc2cb_10", twinstr, &GENUS, { 48, 18, 54, 0 } };
273
274
void X(codelet_hc2cb_10) (planner *p) {
275
     X(khc2c_register) (p, hc2cb_10, &desc, HC2C_VIA_RDFT);
276
}
277
#else
278
279
/* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hc2cb_10 -include rdft/scalar/hc2cb.h */
280
281
/*
282
 * This function contains 102 FP additions, 60 FP multiplications,
283
 * (or, 72 additions, 30 multiplications, 30 fused multiply/add),
284
 * 39 stack variables, 4 constants, and 40 memory accesses
285
 */
286
#include "rdft/scalar/hc2cb.h"
287
288
static void hc2cb_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
289
0
{
290
0
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
291
0
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
292
0
     DK(KP587785252, +0.587785252292473129168705954639072768597652438);
293
0
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
294
0
     {
295
0
    INT m;
296
0
    for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) {
297
0
         E T3, T18, TJ, T1i, TE, TF, T1B, T1A, T1f, T1t, Ti, Tl, Tt, TA, T1w;
298
0
         E T1v, T1p, T1E, TM, TO;
299
0
         {
300
0
        E T1, T2, TH, TI;
301
0
        T1 = Rp[0];
302
0
        T2 = Rm[WS(rs, 4)];
303
0
        T3 = T1 + T2;
304
0
        T18 = T1 - T2;
305
0
        TH = Ip[0];
306
0
        TI = Im[WS(rs, 4)];
307
0
        TJ = TH - TI;
308
0
        T1i = TH + TI;
309
0
         }
310
0
         {
311
0
        E T6, T19, Tg, T1d, T9, T1a, Td, T1c;
312
0
        {
313
0
       E T4, T5, Te, Tf;
314
0
       T4 = Rp[WS(rs, 2)];
315
0
       T5 = Rm[WS(rs, 2)];
316
0
       T6 = T4 + T5;
317
0
       T19 = T4 - T5;
318
0
       Te = Rm[WS(rs, 3)];
319
0
       Tf = Rp[WS(rs, 1)];
320
0
       Tg = Te + Tf;
321
0
       T1d = Te - Tf;
322
0
        }
323
0
        {
324
0
       E T7, T8, Tb, Tc;
325
0
       T7 = Rm[WS(rs, 1)];
326
0
       T8 = Rp[WS(rs, 3)];
327
0
       T9 = T7 + T8;
328
0
       T1a = T7 - T8;
329
0
       Tb = Rp[WS(rs, 4)];
330
0
       Tc = Rm[0];
331
0
       Td = Tb + Tc;
332
0
       T1c = Tb - Tc;
333
0
        }
334
0
        TE = T6 - T9;
335
0
        TF = Td - Tg;
336
0
        T1B = T1c - T1d;
337
0
        T1A = T19 - T1a;
338
0
        {
339
0
       E T1b, T1e, Ta, Th;
340
0
       T1b = T19 + T1a;
341
0
       T1e = T1c + T1d;
342
0
       T1f = T1b + T1e;
343
0
       T1t = KP559016994 * (T1b - T1e);
344
0
       Ta = T6 + T9;
345
0
       Th = Td + Tg;
346
0
       Ti = Ta + Th;
347
0
       Tl = KP559016994 * (Ta - Th);
348
0
        }
349
0
         }
350
0
         {
351
0
        E Tp, T1j, Tz, T1n, Ts, T1k, Tw, T1m;
352
0
        {
353
0
       E Tn, To, Tx, Ty;
354
0
       Tn = Ip[WS(rs, 2)];
355
0
       To = Im[WS(rs, 2)];
356
0
       Tp = Tn - To;
357
0
       T1j = Tn + To;
358
0
       Tx = Ip[WS(rs, 1)];
359
0
       Ty = Im[WS(rs, 3)];
360
0
       Tz = Tx - Ty;
361
0
       T1n = Tx + Ty;
362
0
        }
363
0
        {
364
0
       E Tq, Tr, Tu, Tv;
365
0
       Tq = Ip[WS(rs, 3)];
366
0
       Tr = Im[WS(rs, 1)];
367
0
       Ts = Tq - Tr;
368
0
       T1k = Tq + Tr;
369
0
       Tu = Ip[WS(rs, 4)];
370
0
       Tv = Im[0];
371
0
       Tw = Tu - Tv;
372
0
       T1m = Tu + Tv;
373
0
        }
374
0
        Tt = Tp - Ts;
375
0
        TA = Tw - Tz;
376
0
        T1w = T1m + T1n;
377
0
        T1v = T1j + T1k;
378
0
        {
379
0
       E T1l, T1o, TK, TL;
380
0
       T1l = T1j - T1k;
381
0
       T1o = T1m - T1n;
382
0
       T1p = T1l + T1o;
383
0
       T1E = KP559016994 * (T1l - T1o);
384
0
       TK = Tp + Ts;
385
0
       TL = Tw + Tz;
386
0
       TM = TK + TL;
387
0
       TO = KP559016994 * (TK - TL);
388
0
        }
389
0
         }
390
0
         Rp[0] = T3 + Ti;
391
0
         Rm[0] = TJ + TM;
392
0
         {
393
0
        E T1g, T1q, T17, T1h;
394
0
        T1g = T18 + T1f;
395
0
        T1q = T1i + T1p;
396
0
        T17 = W[8];
397
0
        T1h = W[9];
398
0
        Ip[WS(rs, 2)] = FNMS(T1h, T1q, T17 * T1g);
399
0
        Im[WS(rs, 2)] = FMA(T1h, T1g, T17 * T1q);
400
0
         }
401
0
         {
402
0
        E TB, TG, T11, TX, TP, T10, Tm, TW, TN, Tk;
403
0
        TB = FNMS(KP951056516, TA, KP587785252 * Tt);
404
0
        TG = FNMS(KP951056516, TF, KP587785252 * TE);
405
0
        T11 = FMA(KP951056516, TE, KP587785252 * TF);
406
0
        TX = FMA(KP951056516, Tt, KP587785252 * TA);
407
0
        TN = FNMS(KP250000000, TM, TJ);
408
0
        TP = TN - TO;
409
0
        T10 = TO + TN;
410
0
        Tk = FNMS(KP250000000, Ti, T3);
411
0
        Tm = Tk - Tl;
412
0
        TW = Tl + Tk;
413
0
        {
414
0
       E TC, TQ, Tj, TD;
415
0
       TC = Tm - TB;
416
0
       TQ = TG + TP;
417
0
       Tj = W[2];
418
0
       TD = W[3];
419
0
       Rp[WS(rs, 1)] = FNMS(TD, TQ, Tj * TC);
420
0
       Rm[WS(rs, 1)] = FMA(TD, TC, Tj * TQ);
421
0
        }
422
0
        {
423
0
       E T14, T16, T13, T15;
424
0
       T14 = TW - TX;
425
0
       T16 = T11 + T10;
426
0
       T13 = W[10];
427
0
       T15 = W[11];
428
0
       Rp[WS(rs, 3)] = FNMS(T15, T16, T13 * T14);
429
0
       Rm[WS(rs, 3)] = FMA(T15, T14, T13 * T16);
430
0
        }
431
0
        {
432
0
       E TS, TU, TR, TT;
433
0
       TS = Tm + TB;
434
0
       TU = TP - TG;
435
0
       TR = W[14];
436
0
       TT = W[15];
437
0
       Rp[WS(rs, 4)] = FNMS(TT, TU, TR * TS);
438
0
       Rm[WS(rs, 4)] = FMA(TT, TS, TR * TU);
439
0
        }
440
0
        {
441
0
       E TY, T12, TV, TZ;
442
0
       TY = TW + TX;
443
0
       T12 = T10 - T11;
444
0
       TV = W[6];
445
0
       TZ = W[7];
446
0
       Rp[WS(rs, 2)] = FNMS(TZ, T12, TV * TY);
447
0
       Rm[WS(rs, 2)] = FMA(TZ, TY, TV * T12);
448
0
        }
449
0
         }
450
0
         {
451
0
        E T1x, T1C, T1Q, T1N, T1F, T1R, T1u, T1M, T1D, T1s;
452
0
        T1x = FNMS(KP951056516, T1w, KP587785252 * T1v);
453
0
        T1C = FNMS(KP951056516, T1B, KP587785252 * T1A);
454
0
        T1Q = FMA(KP951056516, T1A, KP587785252 * T1B);
455
0
        T1N = FMA(KP951056516, T1v, KP587785252 * T1w);
456
0
        T1D = FNMS(KP250000000, T1p, T1i);
457
0
        T1F = T1D - T1E;
458
0
        T1R = T1E + T1D;
459
0
        T1s = FNMS(KP250000000, T1f, T18);
460
0
        T1u = T1s - T1t;
461
0
        T1M = T1t + T1s;
462
0
        {
463
0
       E T1y, T1G, T1r, T1z;
464
0
       T1y = T1u - T1x;
465
0
       T1G = T1C + T1F;
466
0
       T1r = W[12];
467
0
       T1z = W[13];
468
0
       Ip[WS(rs, 3)] = FNMS(T1z, T1G, T1r * T1y);
469
0
       Im[WS(rs, 3)] = FMA(T1r, T1G, T1z * T1y);
470
0
        }
471
0
        {
472
0
       E T1U, T1W, T1T, T1V;
473
0
       T1U = T1M + T1N;
474
0
       T1W = T1R - T1Q;
475
0
       T1T = W[16];
476
0
       T1V = W[17];
477
0
       Ip[WS(rs, 4)] = FNMS(T1V, T1W, T1T * T1U);
478
0
       Im[WS(rs, 4)] = FMA(T1T, T1W, T1V * T1U);
479
0
        }
480
0
        {
481
0
       E T1I, T1K, T1H, T1J;
482
0
       T1I = T1u + T1x;
483
0
       T1K = T1F - T1C;
484
0
       T1H = W[4];
485
0
       T1J = W[5];
486
0
       Ip[WS(rs, 1)] = FNMS(T1J, T1K, T1H * T1I);
487
0
       Im[WS(rs, 1)] = FMA(T1H, T1K, T1J * T1I);
488
0
        }
489
0
        {
490
0
       E T1O, T1S, T1L, T1P;
491
0
       T1O = T1M - T1N;
492
0
       T1S = T1Q + T1R;
493
0
       T1L = W[0];
494
0
       T1P = W[1];
495
0
       Ip[0] = FNMS(T1P, T1S, T1L * T1O);
496
0
       Im[0] = FMA(T1L, T1S, T1P * T1O);
497
0
        }
498
0
         }
499
0
    }
500
0
     }
501
0
}
502
503
static const tw_instr twinstr[] = {
504
     { TW_FULL, 1, 10 },
505
     { TW_NEXT, 1, 0 }
506
};
507
508
static const hc2c_desc desc = { 10, "hc2cb_10", twinstr, &GENUS, { 72, 30, 30, 0 } };
509
510
1
void X(codelet_hc2cb_10) (planner *p) {
511
1
     X(khc2c_register) (p, hc2cb_10, &desc, HC2C_VIA_RDFT);
512
1
}
513
#endif