/src/fftw3/rdft/scalar/r2cb/hc2cb_10.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Mon Sep 25 07:07:22 UTC 2023 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hc2cb_10 -include rdft/scalar/hc2cb.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 102 FP additions, 72 FP multiplications, |
32 | | * (or, 48 additions, 18 multiplications, 54 fused multiply/add), |
33 | | * 47 stack variables, 4 constants, and 40 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hc2cb.h" |
36 | | |
37 | | static void hc2cb_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
40 | | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
41 | | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
42 | | DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
43 | | { |
44 | | INT m; |
45 | | for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) { |
46 | | E TH, T1B, TB, T11, T1E, T1G, TK, TM, T1x, T1V, T3, T1g, Tl, T1I, T1J; |
47 | | E TO, TP, T1p, Ti, Tk, T1n, T1o, TF, TG; |
48 | | TF = Ip[0]; |
49 | | TG = Im[WS(rs, 4)]; |
50 | | TH = TF - TG; |
51 | | T1B = TF + TG; |
52 | | { |
53 | | E Tp, T1u, Tz, T1s, Ts, T1v, Tw, T1r; |
54 | | { |
55 | | E Tn, To, Tx, Ty; |
56 | | Tn = Ip[WS(rs, 4)]; |
57 | | To = Im[0]; |
58 | | Tp = Tn - To; |
59 | | T1u = Tn + To; |
60 | | Tx = Ip[WS(rs, 3)]; |
61 | | Ty = Im[WS(rs, 1)]; |
62 | | Tz = Tx - Ty; |
63 | | T1s = Tx + Ty; |
64 | | } |
65 | | { |
66 | | E Tq, Tr, Tu, Tv; |
67 | | Tq = Ip[WS(rs, 1)]; |
68 | | Tr = Im[WS(rs, 3)]; |
69 | | Ts = Tq - Tr; |
70 | | T1v = Tq + Tr; |
71 | | Tu = Ip[WS(rs, 2)]; |
72 | | Tv = Im[WS(rs, 2)]; |
73 | | Tw = Tu - Tv; |
74 | | T1r = Tu + Tv; |
75 | | } |
76 | | { |
77 | | E Tt, TA, T1C, T1D; |
78 | | Tt = Tp - Ts; |
79 | | TA = Tw - Tz; |
80 | | TB = FNMS(KP618033988, TA, Tt); |
81 | | T11 = FMA(KP618033988, Tt, TA); |
82 | | T1C = T1r - T1s; |
83 | | T1D = T1u - T1v; |
84 | | T1E = T1C + T1D; |
85 | | T1G = T1C - T1D; |
86 | | } |
87 | | { |
88 | | E TI, TJ, T1t, T1w; |
89 | | TI = Tw + Tz; |
90 | | TJ = Tp + Ts; |
91 | | TK = TI + TJ; |
92 | | TM = TI - TJ; |
93 | | T1t = T1r + T1s; |
94 | | T1w = T1u + T1v; |
95 | | T1x = FMA(KP618033988, T1w, T1t); |
96 | | T1V = FNMS(KP618033988, T1t, T1w); |
97 | | } |
98 | | } |
99 | | { |
100 | | E Td, T1k, Tg, T1l, Th, T1m, T6, T1h, T9, T1i, Ta, T1j, T1, T2; |
101 | | T1 = Rp[0]; |
102 | | T2 = Rm[WS(rs, 4)]; |
103 | | T3 = T1 + T2; |
104 | | T1g = T1 - T2; |
105 | | { |
106 | | E Tb, Tc, Te, Tf; |
107 | | Tb = Rp[WS(rs, 4)]; |
108 | | Tc = Rm[0]; |
109 | | Td = Tb + Tc; |
110 | | T1k = Tb - Tc; |
111 | | Te = Rm[WS(rs, 3)]; |
112 | | Tf = Rp[WS(rs, 1)]; |
113 | | Tg = Te + Tf; |
114 | | T1l = Te - Tf; |
115 | | } |
116 | | Th = Td + Tg; |
117 | | T1m = T1k + T1l; |
118 | | { |
119 | | E T4, T5, T7, T8; |
120 | | T4 = Rp[WS(rs, 2)]; |
121 | | T5 = Rm[WS(rs, 2)]; |
122 | | T6 = T4 + T5; |
123 | | T1h = T4 - T5; |
124 | | T7 = Rm[WS(rs, 1)]; |
125 | | T8 = Rp[WS(rs, 3)]; |
126 | | T9 = T7 + T8; |
127 | | T1i = T7 - T8; |
128 | | } |
129 | | Ta = T6 + T9; |
130 | | T1j = T1h + T1i; |
131 | | Tl = Ta - Th; |
132 | | T1I = T1h - T1i; |
133 | | T1J = T1k - T1l; |
134 | | TO = Td - Tg; |
135 | | TP = T6 - T9; |
136 | | T1p = T1j - T1m; |
137 | | Ti = Ta + Th; |
138 | | Tk = FNMS(KP250000000, Ti, T3); |
139 | | T1n = T1j + T1m; |
140 | | T1o = FNMS(KP250000000, T1n, T1g); |
141 | | } |
142 | | Rp[0] = T3 + Ti; |
143 | | Rm[0] = TH + TK; |
144 | | { |
145 | | E T2d, T29, T2b, T2c, T2e, T2a; |
146 | | T2d = T1B + T1E; |
147 | | T2a = T1g + T1n; |
148 | | T29 = W[8]; |
149 | | T2b = T29 * T2a; |
150 | | T2c = W[9]; |
151 | | T2e = T2c * T2a; |
152 | | Ip[WS(rs, 2)] = FNMS(T2c, T2d, T2b); |
153 | | Im[WS(rs, 2)] = FMA(T29, T2d, T2e); |
154 | | } |
155 | | { |
156 | | E TQ, T16, TC, TU, TN, T15, T12, T1a, Tm, TL, T10; |
157 | | TQ = FNMS(KP618033988, TP, TO); |
158 | | T16 = FMA(KP618033988, TO, TP); |
159 | | Tm = FNMS(KP559016994, Tl, Tk); |
160 | | TC = FMA(KP951056516, TB, Tm); |
161 | | TU = FNMS(KP951056516, TB, Tm); |
162 | | TL = FNMS(KP250000000, TK, TH); |
163 | | TN = FNMS(KP559016994, TM, TL); |
164 | | T15 = FMA(KP559016994, TM, TL); |
165 | | T10 = FMA(KP559016994, Tl, Tk); |
166 | | T12 = FMA(KP951056516, T11, T10); |
167 | | T1a = FNMS(KP951056516, T11, T10); |
168 | | { |
169 | | E TR, TE, TS, Tj, TD; |
170 | | TR = FNMS(KP951056516, TQ, TN); |
171 | | TE = W[3]; |
172 | | TS = TE * TC; |
173 | | Tj = W[2]; |
174 | | TD = Tj * TC; |
175 | | Rp[WS(rs, 1)] = FNMS(TE, TR, TD); |
176 | | Rm[WS(rs, 1)] = FMA(Tj, TR, TS); |
177 | | } |
178 | | { |
179 | | E T1d, T1c, T1e, T19, T1b; |
180 | | T1d = FMA(KP951056516, T16, T15); |
181 | | T1c = W[11]; |
182 | | T1e = T1c * T1a; |
183 | | T19 = W[10]; |
184 | | T1b = T19 * T1a; |
185 | | Rp[WS(rs, 3)] = FNMS(T1c, T1d, T1b); |
186 | | Rm[WS(rs, 3)] = FMA(T19, T1d, T1e); |
187 | | } |
188 | | { |
189 | | E TX, TW, TY, TT, TV; |
190 | | TX = FMA(KP951056516, TQ, TN); |
191 | | TW = W[15]; |
192 | | TY = TW * TU; |
193 | | TT = W[14]; |
194 | | TV = TT * TU; |
195 | | Rp[WS(rs, 4)] = FNMS(TW, TX, TV); |
196 | | Rm[WS(rs, 4)] = FMA(TT, TX, TY); |
197 | | } |
198 | | { |
199 | | E T17, T14, T18, TZ, T13; |
200 | | T17 = FNMS(KP951056516, T16, T15); |
201 | | T14 = W[7]; |
202 | | T18 = T14 * T12; |
203 | | TZ = W[6]; |
204 | | T13 = TZ * T12; |
205 | | Rp[WS(rs, 2)] = FNMS(T14, T17, T13); |
206 | | Rm[WS(rs, 2)] = FMA(TZ, T17, T18); |
207 | | } |
208 | | } |
209 | | { |
210 | | E T1K, T20, T1y, T1O, T1H, T1Z, T1W, T24, T1q, T1F, T1U; |
211 | | T1K = FMA(KP618033988, T1J, T1I); |
212 | | T20 = FNMS(KP618033988, T1I, T1J); |
213 | | T1q = FMA(KP559016994, T1p, T1o); |
214 | | T1y = FNMS(KP951056516, T1x, T1q); |
215 | | T1O = FMA(KP951056516, T1x, T1q); |
216 | | T1F = FNMS(KP250000000, T1E, T1B); |
217 | | T1H = FMA(KP559016994, T1G, T1F); |
218 | | T1Z = FNMS(KP559016994, T1G, T1F); |
219 | | T1U = FNMS(KP559016994, T1p, T1o); |
220 | | T1W = FNMS(KP951056516, T1V, T1U); |
221 | | T24 = FMA(KP951056516, T1V, T1U); |
222 | | { |
223 | | E T1L, T1A, T1M, T1f, T1z; |
224 | | T1L = FMA(KP951056516, T1K, T1H); |
225 | | T1A = W[1]; |
226 | | T1M = T1A * T1y; |
227 | | T1f = W[0]; |
228 | | T1z = T1f * T1y; |
229 | | Ip[0] = FNMS(T1A, T1L, T1z); |
230 | | Im[0] = FMA(T1f, T1L, T1M); |
231 | | } |
232 | | { |
233 | | E T27, T26, T28, T23, T25; |
234 | | T27 = FNMS(KP951056516, T20, T1Z); |
235 | | T26 = W[13]; |
236 | | T28 = T26 * T24; |
237 | | T23 = W[12]; |
238 | | T25 = T23 * T24; |
239 | | Ip[WS(rs, 3)] = FNMS(T26, T27, T25); |
240 | | Im[WS(rs, 3)] = FMA(T23, T27, T28); |
241 | | } |
242 | | { |
243 | | E T1R, T1Q, T1S, T1N, T1P; |
244 | | T1R = FNMS(KP951056516, T1K, T1H); |
245 | | T1Q = W[17]; |
246 | | T1S = T1Q * T1O; |
247 | | T1N = W[16]; |
248 | | T1P = T1N * T1O; |
249 | | Ip[WS(rs, 4)] = FNMS(T1Q, T1R, T1P); |
250 | | Im[WS(rs, 4)] = FMA(T1N, T1R, T1S); |
251 | | } |
252 | | { |
253 | | E T21, T1Y, T22, T1T, T1X; |
254 | | T21 = FMA(KP951056516, T20, T1Z); |
255 | | T1Y = W[5]; |
256 | | T22 = T1Y * T1W; |
257 | | T1T = W[4]; |
258 | | T1X = T1T * T1W; |
259 | | Ip[WS(rs, 1)] = FNMS(T1Y, T21, T1X); |
260 | | Im[WS(rs, 1)] = FMA(T1T, T21, T22); |
261 | | } |
262 | | } |
263 | | } |
264 | | } |
265 | | } |
266 | | |
267 | | static const tw_instr twinstr[] = { |
268 | | { TW_FULL, 1, 10 }, |
269 | | { TW_NEXT, 1, 0 } |
270 | | }; |
271 | | |
272 | | static const hc2c_desc desc = { 10, "hc2cb_10", twinstr, &GENUS, { 48, 18, 54, 0 } }; |
273 | | |
274 | | void X(codelet_hc2cb_10) (planner *p) { |
275 | | X(khc2c_register) (p, hc2cb_10, &desc, HC2C_VIA_RDFT); |
276 | | } |
277 | | #else |
278 | | |
279 | | /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hc2cb_10 -include rdft/scalar/hc2cb.h */ |
280 | | |
281 | | /* |
282 | | * This function contains 102 FP additions, 60 FP multiplications, |
283 | | * (or, 72 additions, 30 multiplications, 30 fused multiply/add), |
284 | | * 39 stack variables, 4 constants, and 40 memory accesses |
285 | | */ |
286 | | #include "rdft/scalar/hc2cb.h" |
287 | | |
288 | | static void hc2cb_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
289 | 0 | { |
290 | 0 | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
291 | 0 | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
292 | 0 | DK(KP587785252, +0.587785252292473129168705954639072768597652438); |
293 | 0 | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
294 | 0 | { |
295 | 0 | INT m; |
296 | 0 | for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) { |
297 | 0 | E T3, T18, TJ, T1i, TE, TF, T1B, T1A, T1f, T1t, Ti, Tl, Tt, TA, T1w; |
298 | 0 | E T1v, T1p, T1E, TM, TO; |
299 | 0 | { |
300 | 0 | E T1, T2, TH, TI; |
301 | 0 | T1 = Rp[0]; |
302 | 0 | T2 = Rm[WS(rs, 4)]; |
303 | 0 | T3 = T1 + T2; |
304 | 0 | T18 = T1 - T2; |
305 | 0 | TH = Ip[0]; |
306 | 0 | TI = Im[WS(rs, 4)]; |
307 | 0 | TJ = TH - TI; |
308 | 0 | T1i = TH + TI; |
309 | 0 | } |
310 | 0 | { |
311 | 0 | E T6, T19, Tg, T1d, T9, T1a, Td, T1c; |
312 | 0 | { |
313 | 0 | E T4, T5, Te, Tf; |
314 | 0 | T4 = Rp[WS(rs, 2)]; |
315 | 0 | T5 = Rm[WS(rs, 2)]; |
316 | 0 | T6 = T4 + T5; |
317 | 0 | T19 = T4 - T5; |
318 | 0 | Te = Rm[WS(rs, 3)]; |
319 | 0 | Tf = Rp[WS(rs, 1)]; |
320 | 0 | Tg = Te + Tf; |
321 | 0 | T1d = Te - Tf; |
322 | 0 | } |
323 | 0 | { |
324 | 0 | E T7, T8, Tb, Tc; |
325 | 0 | T7 = Rm[WS(rs, 1)]; |
326 | 0 | T8 = Rp[WS(rs, 3)]; |
327 | 0 | T9 = T7 + T8; |
328 | 0 | T1a = T7 - T8; |
329 | 0 | Tb = Rp[WS(rs, 4)]; |
330 | 0 | Tc = Rm[0]; |
331 | 0 | Td = Tb + Tc; |
332 | 0 | T1c = Tb - Tc; |
333 | 0 | } |
334 | 0 | TE = T6 - T9; |
335 | 0 | TF = Td - Tg; |
336 | 0 | T1B = T1c - T1d; |
337 | 0 | T1A = T19 - T1a; |
338 | 0 | { |
339 | 0 | E T1b, T1e, Ta, Th; |
340 | 0 | T1b = T19 + T1a; |
341 | 0 | T1e = T1c + T1d; |
342 | 0 | T1f = T1b + T1e; |
343 | 0 | T1t = KP559016994 * (T1b - T1e); |
344 | 0 | Ta = T6 + T9; |
345 | 0 | Th = Td + Tg; |
346 | 0 | Ti = Ta + Th; |
347 | 0 | Tl = KP559016994 * (Ta - Th); |
348 | 0 | } |
349 | 0 | } |
350 | 0 | { |
351 | 0 | E Tp, T1j, Tz, T1n, Ts, T1k, Tw, T1m; |
352 | 0 | { |
353 | 0 | E Tn, To, Tx, Ty; |
354 | 0 | Tn = Ip[WS(rs, 2)]; |
355 | 0 | To = Im[WS(rs, 2)]; |
356 | 0 | Tp = Tn - To; |
357 | 0 | T1j = Tn + To; |
358 | 0 | Tx = Ip[WS(rs, 1)]; |
359 | 0 | Ty = Im[WS(rs, 3)]; |
360 | 0 | Tz = Tx - Ty; |
361 | 0 | T1n = Tx + Ty; |
362 | 0 | } |
363 | 0 | { |
364 | 0 | E Tq, Tr, Tu, Tv; |
365 | 0 | Tq = Ip[WS(rs, 3)]; |
366 | 0 | Tr = Im[WS(rs, 1)]; |
367 | 0 | Ts = Tq - Tr; |
368 | 0 | T1k = Tq + Tr; |
369 | 0 | Tu = Ip[WS(rs, 4)]; |
370 | 0 | Tv = Im[0]; |
371 | 0 | Tw = Tu - Tv; |
372 | 0 | T1m = Tu + Tv; |
373 | 0 | } |
374 | 0 | Tt = Tp - Ts; |
375 | 0 | TA = Tw - Tz; |
376 | 0 | T1w = T1m + T1n; |
377 | 0 | T1v = T1j + T1k; |
378 | 0 | { |
379 | 0 | E T1l, T1o, TK, TL; |
380 | 0 | T1l = T1j - T1k; |
381 | 0 | T1o = T1m - T1n; |
382 | 0 | T1p = T1l + T1o; |
383 | 0 | T1E = KP559016994 * (T1l - T1o); |
384 | 0 | TK = Tp + Ts; |
385 | 0 | TL = Tw + Tz; |
386 | 0 | TM = TK + TL; |
387 | 0 | TO = KP559016994 * (TK - TL); |
388 | 0 | } |
389 | 0 | } |
390 | 0 | Rp[0] = T3 + Ti; |
391 | 0 | Rm[0] = TJ + TM; |
392 | 0 | { |
393 | 0 | E T1g, T1q, T17, T1h; |
394 | 0 | T1g = T18 + T1f; |
395 | 0 | T1q = T1i + T1p; |
396 | 0 | T17 = W[8]; |
397 | 0 | T1h = W[9]; |
398 | 0 | Ip[WS(rs, 2)] = FNMS(T1h, T1q, T17 * T1g); |
399 | 0 | Im[WS(rs, 2)] = FMA(T1h, T1g, T17 * T1q); |
400 | 0 | } |
401 | 0 | { |
402 | 0 | E TB, TG, T11, TX, TP, T10, Tm, TW, TN, Tk; |
403 | 0 | TB = FNMS(KP951056516, TA, KP587785252 * Tt); |
404 | 0 | TG = FNMS(KP951056516, TF, KP587785252 * TE); |
405 | 0 | T11 = FMA(KP951056516, TE, KP587785252 * TF); |
406 | 0 | TX = FMA(KP951056516, Tt, KP587785252 * TA); |
407 | 0 | TN = FNMS(KP250000000, TM, TJ); |
408 | 0 | TP = TN - TO; |
409 | 0 | T10 = TO + TN; |
410 | 0 | Tk = FNMS(KP250000000, Ti, T3); |
411 | 0 | Tm = Tk - Tl; |
412 | 0 | TW = Tl + Tk; |
413 | 0 | { |
414 | 0 | E TC, TQ, Tj, TD; |
415 | 0 | TC = Tm - TB; |
416 | 0 | TQ = TG + TP; |
417 | 0 | Tj = W[2]; |
418 | 0 | TD = W[3]; |
419 | 0 | Rp[WS(rs, 1)] = FNMS(TD, TQ, Tj * TC); |
420 | 0 | Rm[WS(rs, 1)] = FMA(TD, TC, Tj * TQ); |
421 | 0 | } |
422 | 0 | { |
423 | 0 | E T14, T16, T13, T15; |
424 | 0 | T14 = TW - TX; |
425 | 0 | T16 = T11 + T10; |
426 | 0 | T13 = W[10]; |
427 | 0 | T15 = W[11]; |
428 | 0 | Rp[WS(rs, 3)] = FNMS(T15, T16, T13 * T14); |
429 | 0 | Rm[WS(rs, 3)] = FMA(T15, T14, T13 * T16); |
430 | 0 | } |
431 | 0 | { |
432 | 0 | E TS, TU, TR, TT; |
433 | 0 | TS = Tm + TB; |
434 | 0 | TU = TP - TG; |
435 | 0 | TR = W[14]; |
436 | 0 | TT = W[15]; |
437 | 0 | Rp[WS(rs, 4)] = FNMS(TT, TU, TR * TS); |
438 | 0 | Rm[WS(rs, 4)] = FMA(TT, TS, TR * TU); |
439 | 0 | } |
440 | 0 | { |
441 | 0 | E TY, T12, TV, TZ; |
442 | 0 | TY = TW + TX; |
443 | 0 | T12 = T10 - T11; |
444 | 0 | TV = W[6]; |
445 | 0 | TZ = W[7]; |
446 | 0 | Rp[WS(rs, 2)] = FNMS(TZ, T12, TV * TY); |
447 | 0 | Rm[WS(rs, 2)] = FMA(TZ, TY, TV * T12); |
448 | 0 | } |
449 | 0 | } |
450 | 0 | { |
451 | 0 | E T1x, T1C, T1Q, T1N, T1F, T1R, T1u, T1M, T1D, T1s; |
452 | 0 | T1x = FNMS(KP951056516, T1w, KP587785252 * T1v); |
453 | 0 | T1C = FNMS(KP951056516, T1B, KP587785252 * T1A); |
454 | 0 | T1Q = FMA(KP951056516, T1A, KP587785252 * T1B); |
455 | 0 | T1N = FMA(KP951056516, T1v, KP587785252 * T1w); |
456 | 0 | T1D = FNMS(KP250000000, T1p, T1i); |
457 | 0 | T1F = T1D - T1E; |
458 | 0 | T1R = T1E + T1D; |
459 | 0 | T1s = FNMS(KP250000000, T1f, T18); |
460 | 0 | T1u = T1s - T1t; |
461 | 0 | T1M = T1t + T1s; |
462 | 0 | { |
463 | 0 | E T1y, T1G, T1r, T1z; |
464 | 0 | T1y = T1u - T1x; |
465 | 0 | T1G = T1C + T1F; |
466 | 0 | T1r = W[12]; |
467 | 0 | T1z = W[13]; |
468 | 0 | Ip[WS(rs, 3)] = FNMS(T1z, T1G, T1r * T1y); |
469 | 0 | Im[WS(rs, 3)] = FMA(T1r, T1G, T1z * T1y); |
470 | 0 | } |
471 | 0 | { |
472 | 0 | E T1U, T1W, T1T, T1V; |
473 | 0 | T1U = T1M + T1N; |
474 | 0 | T1W = T1R - T1Q; |
475 | 0 | T1T = W[16]; |
476 | 0 | T1V = W[17]; |
477 | 0 | Ip[WS(rs, 4)] = FNMS(T1V, T1W, T1T * T1U); |
478 | 0 | Im[WS(rs, 4)] = FMA(T1T, T1W, T1V * T1U); |
479 | 0 | } |
480 | 0 | { |
481 | 0 | E T1I, T1K, T1H, T1J; |
482 | 0 | T1I = T1u + T1x; |
483 | 0 | T1K = T1F - T1C; |
484 | 0 | T1H = W[4]; |
485 | 0 | T1J = W[5]; |
486 | 0 | Ip[WS(rs, 1)] = FNMS(T1J, T1K, T1H * T1I); |
487 | 0 | Im[WS(rs, 1)] = FMA(T1H, T1K, T1J * T1I); |
488 | 0 | } |
489 | 0 | { |
490 | 0 | E T1O, T1S, T1L, T1P; |
491 | 0 | T1O = T1M - T1N; |
492 | 0 | T1S = T1Q + T1R; |
493 | 0 | T1L = W[0]; |
494 | 0 | T1P = W[1]; |
495 | 0 | Ip[0] = FNMS(T1P, T1S, T1L * T1O); |
496 | 0 | Im[0] = FMA(T1L, T1S, T1P * T1O); |
497 | 0 | } |
498 | 0 | } |
499 | 0 | } |
500 | 0 | } |
501 | 0 | } |
502 | | |
503 | | static const tw_instr twinstr[] = { |
504 | | { TW_FULL, 1, 10 }, |
505 | | { TW_NEXT, 1, 0 } |
506 | | }; |
507 | | |
508 | | static const hc2c_desc desc = { 10, "hc2cb_10", twinstr, &GENUS, { 72, 30, 30, 0 } }; |
509 | | |
510 | 1 | void X(codelet_hc2cb_10) (planner *p) { |
511 | 1 | X(khc2c_register) (p, hc2cb_10, &desc, HC2C_VIA_RDFT); |
512 | 1 | } |
513 | | #endif |