/src/fftw3/rdft/scalar/r2cb/hc2cb_6.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Mon Sep 25 07:07:22 UTC 2023 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cb_6 -include rdft/scalar/hc2cb.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 46 FP additions, 32 FP multiplications, |
32 | | * (or, 24 additions, 10 multiplications, 22 fused multiply/add), |
33 | | * 31 stack variables, 2 constants, and 24 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hc2cb.h" |
36 | | |
37 | | static void hc2cb_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
40 | | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
41 | | { |
42 | | INT m; |
43 | | for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) { |
44 | | E Td, Tn, TO, TJ, TN, Tk, Tr, T3, TC, Ts, TQ, Ta, Tm, TF, TG; |
45 | | { |
46 | | E Tb, Tc, Tj, TI, Tg, TH; |
47 | | Tb = Ip[0]; |
48 | | Tc = Im[WS(rs, 2)]; |
49 | | Td = Tb - Tc; |
50 | | { |
51 | | E Th, Ti, Te, Tf; |
52 | | Th = Ip[WS(rs, 1)]; |
53 | | Ti = Im[WS(rs, 1)]; |
54 | | Tj = Th - Ti; |
55 | | TI = Th + Ti; |
56 | | Te = Ip[WS(rs, 2)]; |
57 | | Tf = Im[0]; |
58 | | Tg = Te - Tf; |
59 | | TH = Te + Tf; |
60 | | } |
61 | | Tn = Tj - Tg; |
62 | | TO = TH - TI; |
63 | | TJ = TH + TI; |
64 | | TN = Tb + Tc; |
65 | | Tk = Tg + Tj; |
66 | | Tr = FNMS(KP500000000, Tk, Td); |
67 | | } |
68 | | { |
69 | | E T9, TE, T6, TD, T1, T2; |
70 | | T1 = Rp[0]; |
71 | | T2 = Rm[WS(rs, 2)]; |
72 | | T3 = T1 + T2; |
73 | | TC = T1 - T2; |
74 | | { |
75 | | E T7, T8, T4, T5; |
76 | | T7 = Rm[WS(rs, 1)]; |
77 | | T8 = Rp[WS(rs, 1)]; |
78 | | T9 = T7 + T8; |
79 | | TE = T7 - T8; |
80 | | T4 = Rp[WS(rs, 2)]; |
81 | | T5 = Rm[0]; |
82 | | T6 = T4 + T5; |
83 | | TD = T4 - T5; |
84 | | } |
85 | | Ts = T6 - T9; |
86 | | TQ = TD - TE; |
87 | | Ta = T6 + T9; |
88 | | Tm = FNMS(KP500000000, Ta, T3); |
89 | | TF = TD + TE; |
90 | | TG = FNMS(KP500000000, TF, TC); |
91 | | } |
92 | | Rp[0] = T3 + Ta; |
93 | | Rm[0] = Td + Tk; |
94 | | { |
95 | | E To, Tt, Tp, Tu, Tl, Tq; |
96 | | To = FNMS(KP866025403, Tn, Tm); |
97 | | Tt = FNMS(KP866025403, Ts, Tr); |
98 | | Tl = W[2]; |
99 | | Tp = Tl * To; |
100 | | Tu = Tl * Tt; |
101 | | Tq = W[3]; |
102 | | Rp[WS(rs, 1)] = FNMS(Tq, Tt, Tp); |
103 | | Rm[WS(rs, 1)] = FMA(Tq, To, Tu); |
104 | | } |
105 | | { |
106 | | E T13, TZ, T11, T12, T14, T10; |
107 | | T13 = TN + TO; |
108 | | T10 = TC + TF; |
109 | | TZ = W[4]; |
110 | | T11 = TZ * T10; |
111 | | T12 = W[5]; |
112 | | T14 = T12 * T10; |
113 | | Ip[WS(rs, 1)] = FNMS(T12, T13, T11); |
114 | | Im[WS(rs, 1)] = FMA(TZ, T13, T14); |
115 | | } |
116 | | { |
117 | | E Tw, Tz, Tx, TA, Tv, Ty; |
118 | | Tw = FMA(KP866025403, Tn, Tm); |
119 | | Tz = FMA(KP866025403, Ts, Tr); |
120 | | Tv = W[6]; |
121 | | Tx = Tv * Tw; |
122 | | TA = Tv * Tz; |
123 | | Ty = W[7]; |
124 | | Rp[WS(rs, 2)] = FNMS(Ty, Tz, Tx); |
125 | | Rm[WS(rs, 2)] = FMA(Ty, Tw, TA); |
126 | | } |
127 | | { |
128 | | E TR, TX, TT, TV, TW, TY, TB, TL, TM, TS, TP, TU, TK; |
129 | | TP = FNMS(KP500000000, TO, TN); |
130 | | TR = FMA(KP866025403, TQ, TP); |
131 | | TX = FNMS(KP866025403, TQ, TP); |
132 | | TU = FMA(KP866025403, TJ, TG); |
133 | | TT = W[8]; |
134 | | TV = TT * TU; |
135 | | TW = W[9]; |
136 | | TY = TW * TU; |
137 | | TK = FNMS(KP866025403, TJ, TG); |
138 | | TB = W[0]; |
139 | | TL = TB * TK; |
140 | | TM = W[1]; |
141 | | TS = TM * TK; |
142 | | Ip[0] = FNMS(TM, TR, TL); |
143 | | Im[0] = FMA(TB, TR, TS); |
144 | | Ip[WS(rs, 2)] = FNMS(TW, TX, TV); |
145 | | Im[WS(rs, 2)] = FMA(TT, TX, TY); |
146 | | } |
147 | | } |
148 | | } |
149 | | } |
150 | | |
151 | | static const tw_instr twinstr[] = { |
152 | | { TW_FULL, 1, 6 }, |
153 | | { TW_NEXT, 1, 0 } |
154 | | }; |
155 | | |
156 | | static const hc2c_desc desc = { 6, "hc2cb_6", twinstr, &GENUS, { 24, 10, 22, 0 } }; |
157 | | |
158 | | void X(codelet_hc2cb_6) (planner *p) { |
159 | | X(khc2c_register) (p, hc2cb_6, &desc, HC2C_VIA_RDFT); |
160 | | } |
161 | | #else |
162 | | |
163 | | /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cb_6 -include rdft/scalar/hc2cb.h */ |
164 | | |
165 | | /* |
166 | | * This function contains 46 FP additions, 28 FP multiplications, |
167 | | * (or, 32 additions, 14 multiplications, 14 fused multiply/add), |
168 | | * 25 stack variables, 2 constants, and 24 memory accesses |
169 | | */ |
170 | | #include "rdft/scalar/hc2cb.h" |
171 | | |
172 | | static void hc2cb_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
173 | 0 | { |
174 | 0 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
175 | 0 | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
176 | 0 | { |
177 | 0 | INT m; |
178 | 0 | for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) { |
179 | 0 | E T3, Ty, Td, TE, Ta, TO, Tr, TB, Tk, TL, Tn, TH; |
180 | 0 | { |
181 | 0 | E T1, T2, Tb, Tc; |
182 | 0 | T1 = Rp[0]; |
183 | 0 | T2 = Rm[WS(rs, 2)]; |
184 | 0 | T3 = T1 + T2; |
185 | 0 | Ty = T1 - T2; |
186 | 0 | Tb = Ip[0]; |
187 | 0 | Tc = Im[WS(rs, 2)]; |
188 | 0 | Td = Tb - Tc; |
189 | 0 | TE = Tb + Tc; |
190 | 0 | } |
191 | 0 | { |
192 | 0 | E T6, Tz, T9, TA; |
193 | 0 | { |
194 | 0 | E T4, T5, T7, T8; |
195 | 0 | T4 = Rp[WS(rs, 2)]; |
196 | 0 | T5 = Rm[0]; |
197 | 0 | T6 = T4 + T5; |
198 | 0 | Tz = T4 - T5; |
199 | 0 | T7 = Rm[WS(rs, 1)]; |
200 | 0 | T8 = Rp[WS(rs, 1)]; |
201 | 0 | T9 = T7 + T8; |
202 | 0 | TA = T7 - T8; |
203 | 0 | } |
204 | 0 | Ta = T6 + T9; |
205 | 0 | TO = KP866025403 * (Tz - TA); |
206 | 0 | Tr = KP866025403 * (T6 - T9); |
207 | 0 | TB = Tz + TA; |
208 | 0 | } |
209 | 0 | { |
210 | 0 | E Tg, TG, Tj, TF; |
211 | 0 | { |
212 | 0 | E Te, Tf, Th, Ti; |
213 | 0 | Te = Ip[WS(rs, 2)]; |
214 | 0 | Tf = Im[0]; |
215 | 0 | Tg = Te - Tf; |
216 | 0 | TG = Te + Tf; |
217 | 0 | Th = Ip[WS(rs, 1)]; |
218 | 0 | Ti = Im[WS(rs, 1)]; |
219 | 0 | Tj = Th - Ti; |
220 | 0 | TF = Th + Ti; |
221 | 0 | } |
222 | 0 | Tk = Tg + Tj; |
223 | 0 | TL = KP866025403 * (TG + TF); |
224 | 0 | Tn = KP866025403 * (Tj - Tg); |
225 | 0 | TH = TF - TG; |
226 | 0 | } |
227 | 0 | Rp[0] = T3 + Ta; |
228 | 0 | Rm[0] = Td + Tk; |
229 | 0 | { |
230 | 0 | E TC, TI, Tx, TD; |
231 | 0 | TC = Ty + TB; |
232 | 0 | TI = TE - TH; |
233 | 0 | Tx = W[4]; |
234 | 0 | TD = W[5]; |
235 | 0 | Ip[WS(rs, 1)] = FNMS(TD, TI, Tx * TC); |
236 | 0 | Im[WS(rs, 1)] = FMA(TD, TC, Tx * TI); |
237 | 0 | } |
238 | 0 | { |
239 | 0 | E To, Tu, Ts, Tw, Tm, Tq; |
240 | 0 | Tm = FNMS(KP500000000, Ta, T3); |
241 | 0 | To = Tm - Tn; |
242 | 0 | Tu = Tm + Tn; |
243 | 0 | Tq = FNMS(KP500000000, Tk, Td); |
244 | 0 | Ts = Tq - Tr; |
245 | 0 | Tw = Tr + Tq; |
246 | 0 | { |
247 | 0 | E Tl, Tp, Tt, Tv; |
248 | 0 | Tl = W[2]; |
249 | 0 | Tp = W[3]; |
250 | 0 | Rp[WS(rs, 1)] = FNMS(Tp, Ts, Tl * To); |
251 | 0 | Rm[WS(rs, 1)] = FMA(Tl, Ts, Tp * To); |
252 | 0 | Tt = W[6]; |
253 | 0 | Tv = W[7]; |
254 | 0 | Rp[WS(rs, 2)] = FNMS(Tv, Tw, Tt * Tu); |
255 | 0 | Rm[WS(rs, 2)] = FMA(Tt, Tw, Tv * Tu); |
256 | 0 | } |
257 | 0 | } |
258 | 0 | { |
259 | 0 | E TM, TS, TQ, TU, TK, TP; |
260 | 0 | TK = FNMS(KP500000000, TB, Ty); |
261 | 0 | TM = TK - TL; |
262 | 0 | TS = TK + TL; |
263 | 0 | TP = FMA(KP500000000, TH, TE); |
264 | 0 | TQ = TO + TP; |
265 | 0 | TU = TP - TO; |
266 | 0 | { |
267 | 0 | E TJ, TN, TR, TT; |
268 | 0 | TJ = W[0]; |
269 | 0 | TN = W[1]; |
270 | 0 | Ip[0] = FNMS(TN, TQ, TJ * TM); |
271 | 0 | Im[0] = FMA(TN, TM, TJ * TQ); |
272 | 0 | TR = W[8]; |
273 | 0 | TT = W[9]; |
274 | 0 | Ip[WS(rs, 2)] = FNMS(TT, TU, TR * TS); |
275 | 0 | Im[WS(rs, 2)] = FMA(TT, TS, TR * TU); |
276 | 0 | } |
277 | 0 | } |
278 | 0 | } |
279 | 0 | } |
280 | 0 | } |
281 | | |
282 | | static const tw_instr twinstr[] = { |
283 | | { TW_FULL, 1, 6 }, |
284 | | { TW_NEXT, 1, 0 } |
285 | | }; |
286 | | |
287 | | static const hc2c_desc desc = { 6, "hc2cb_6", twinstr, &GENUS, { 32, 14, 14, 0 } }; |
288 | | |
289 | 1 | void X(codelet_hc2cb_6) (planner *p) { |
290 | 1 | X(khc2c_register) (p, hc2cb_6, &desc, HC2C_VIA_RDFT); |
291 | 1 | } |
292 | | #endif |