Coverage Report

Created: 2023-09-25 07:08

/src/fftw3/rdft/scalar/r2cb/hc2cbdft_6.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Mon Sep 25 07:07:29 UTC 2023 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cbdft_6 -include rdft/scalar/hc2cb.h */
29
30
/*
31
 * This function contains 58 FP additions, 32 FP multiplications,
32
 * (or, 36 additions, 10 multiplications, 22 fused multiply/add),
33
 * 34 stack variables, 2 constants, and 24 memory accesses
34
 */
35
#include "rdft/scalar/hc2cb.h"
36
37
static void hc2cbdft_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
40
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
41
     {
42
    INT m;
43
    for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) {
44
         E Tp, TD, Tj, TV, Tq, Tr, TG, TP, T4, Ts, TQ, Tb, Tc, TA, TU;
45
         {
46
        E Tf, TF, Ti, TE, Td, Te;
47
        Td = Ip[WS(rs, 1)];
48
        Te = Im[WS(rs, 1)];
49
        Tf = Td - Te;
50
        TF = Te + Td;
51
        {
52
       E Tn, To, Tg, Th;
53
       Tn = Ip[0];
54
       To = Im[WS(rs, 2)];
55
       Tp = Tn - To;
56
       TD = Tn + To;
57
       Tg = Ip[WS(rs, 2)];
58
       Th = Im[0];
59
       Ti = Tg - Th;
60
       TE = Tg + Th;
61
        }
62
        Tj = Tf - Ti;
63
        TV = TF + TE;
64
        Tq = Tf + Ti;
65
        Tr = FNMS(KP500000000, Tq, Tp);
66
        TG = TE - TF;
67
        TP = FNMS(KP500000000, TG, TD);
68
         }
69
         {
70
        E Tw, Ta, Ty, T7, Tx, T2, T3, Tz;
71
        T2 = Rp[0];
72
        T3 = Rm[WS(rs, 2)];
73
        T4 = T2 + T3;
74
        Tw = T2 - T3;
75
        {
76
       E T8, T9, T5, T6;
77
       T8 = Rm[WS(rs, 1)];
78
       T9 = Rp[WS(rs, 1)];
79
       Ta = T8 + T9;
80
       Ty = T8 - T9;
81
       T5 = Rp[WS(rs, 2)];
82
       T6 = Rm[0];
83
       T7 = T5 + T6;
84
       Tx = T5 - T6;
85
        }
86
        Ts = T7 - Ta;
87
        TQ = Tx - Ty;
88
        Tb = T7 + Ta;
89
        Tc = FNMS(KP500000000, Tb, T4);
90
        Tz = Tx + Ty;
91
        TA = Tw + Tz;
92
        TU = FNMS(KP500000000, Tz, Tw);
93
         }
94
         {
95
        E TN, TY, TR, TW, TS, TZ, TO, TX, T10, TT;
96
        TN = T4 + Tb;
97
        TY = Tp + Tq;
98
        TR = FMA(KP866025403, TQ, TP);
99
        TW = FNMS(KP866025403, TV, TU);
100
        TO = W[0];
101
        TS = TO * TR;
102
        TZ = TO * TW;
103
        TT = W[1];
104
        TX = FMA(TT, TW, TS);
105
        T10 = FNMS(TT, TR, TZ);
106
        Rp[0] = TN - TX;
107
        Ip[0] = TY + T10;
108
        Rm[0] = TN + TX;
109
        Im[0] = T10 - TY;
110
         }
111
         {
112
        E Tt, TH, Tv, TB, TC, TL, T1, Tl, Tm, TJ, Tk;
113
        Tt = FNMS(KP866025403, Ts, Tr);
114
        TH = TD + TG;
115
        Tv = W[4];
116
        TB = Tv * TA;
117
        TC = W[5];
118
        TL = TC * TA;
119
        Tk = FNMS(KP866025403, Tj, Tc);
120
        T1 = W[3];
121
        Tl = T1 * Tk;
122
        Tm = W[2];
123
        TJ = Tm * Tk;
124
        {
125
       E Tu, TI, TK, TM;
126
       Tu = FMA(Tm, Tt, Tl);
127
       TI = FNMS(TC, TH, TB);
128
       Ip[WS(rs, 1)] = Tu + TI;
129
       Im[WS(rs, 1)] = TI - Tu;
130
       TK = FNMS(T1, Tt, TJ);
131
       TM = FMA(Tv, TH, TL);
132
       Rp[WS(rs, 1)] = TK - TM;
133
       Rm[WS(rs, 1)] = TK + TM;
134
        }
135
         }
136
         {
137
        E T15, T11, T13, T14, T1d, T18, T1b, T19, T1f, T12, T17;
138
        T15 = FMA(KP866025403, Ts, Tr);
139
        T12 = FMA(KP866025403, Tj, Tc);
140
        T11 = W[6];
141
        T13 = T11 * T12;
142
        T14 = W[7];
143
        T1d = T14 * T12;
144
        T18 = FNMS(KP866025403, TQ, TP);
145
        T1b = FMA(KP866025403, TV, TU);
146
        T17 = W[8];
147
        T19 = T17 * T18;
148
        T1f = T17 * T1b;
149
        {
150
       E T16, T1e, T1c, T1g, T1a;
151
       T16 = FNMS(T14, T15, T13);
152
       T1e = FMA(T11, T15, T1d);
153
       T1a = W[9];
154
       T1c = FMA(T1a, T1b, T19);
155
       T1g = FNMS(T1a, T18, T1f);
156
       Rp[WS(rs, 2)] = T16 - T1c;
157
       Ip[WS(rs, 2)] = T1e + T1g;
158
       Rm[WS(rs, 2)] = T16 + T1c;
159
       Im[WS(rs, 2)] = T1g - T1e;
160
        }
161
         }
162
    }
163
     }
164
}
165
166
static const tw_instr twinstr[] = {
167
     { TW_FULL, 1, 6 },
168
     { TW_NEXT, 1, 0 }
169
};
170
171
static const hc2c_desc desc = { 6, "hc2cbdft_6", twinstr, &GENUS, { 36, 10, 22, 0 } };
172
173
void X(codelet_hc2cbdft_6) (planner *p) {
174
     X(khc2c_register) (p, hc2cbdft_6, &desc, HC2C_VIA_DFT);
175
}
176
#else
177
178
/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cbdft_6 -include rdft/scalar/hc2cb.h */
179
180
/*
181
 * This function contains 58 FP additions, 28 FP multiplications,
182
 * (or, 44 additions, 14 multiplications, 14 fused multiply/add),
183
 * 29 stack variables, 2 constants, and 24 memory accesses
184
 */
185
#include "rdft/scalar/hc2cb.h"
186
187
static void hc2cbdft_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
188
0
{
189
0
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
190
0
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
191
0
     {
192
0
    INT m;
193
0
    for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) {
194
0
         E T4, Tv, Tr, TL, Tb, Tc, Ty, TP, To, TB, Tj, TQ, Tp, Tq, TE;
195
0
         E TM;
196
0
         {
197
0
        E Ta, Tx, T7, Tw, T2, T3;
198
0
        T2 = Rp[0];
199
0
        T3 = Rm[WS(rs, 2)];
200
0
        T4 = T2 + T3;
201
0
        Tv = T2 - T3;
202
0
        {
203
0
       E T8, T9, T5, T6;
204
0
       T8 = Rm[WS(rs, 1)];
205
0
       T9 = Rp[WS(rs, 1)];
206
0
       Ta = T8 + T9;
207
0
       Tx = T8 - T9;
208
0
       T5 = Rp[WS(rs, 2)];
209
0
       T6 = Rm[0];
210
0
       T7 = T5 + T6;
211
0
       Tw = T5 - T6;
212
0
        }
213
0
        Tr = KP866025403 * (T7 - Ta);
214
0
        TL = KP866025403 * (Tw - Tx);
215
0
        Tb = T7 + Ta;
216
0
        Tc = FNMS(KP500000000, Tb, T4);
217
0
        Ty = Tw + Tx;
218
0
        TP = FNMS(KP500000000, Ty, Tv);
219
0
         }
220
0
         {
221
0
        E Tf, TC, Ti, TD, Td, Te;
222
0
        Td = Ip[WS(rs, 1)];
223
0
        Te = Im[WS(rs, 1)];
224
0
        Tf = Td - Te;
225
0
        TC = Te + Td;
226
0
        {
227
0
       E Tm, Tn, Tg, Th;
228
0
       Tm = Ip[0];
229
0
       Tn = Im[WS(rs, 2)];
230
0
       To = Tm - Tn;
231
0
       TB = Tm + Tn;
232
0
       Tg = Ip[WS(rs, 2)];
233
0
       Th = Im[0];
234
0
       Ti = Tg - Th;
235
0
       TD = Tg + Th;
236
0
        }
237
0
        Tj = KP866025403 * (Tf - Ti);
238
0
        TQ = KP866025403 * (TC + TD);
239
0
        Tp = Tf + Ti;
240
0
        Tq = FNMS(KP500000000, Tp, To);
241
0
        TE = TC - TD;
242
0
        TM = FMA(KP500000000, TE, TB);
243
0
         }
244
0
         {
245
0
        E TJ, TT, TS, TU;
246
0
        TJ = T4 + Tb;
247
0
        TT = To + Tp;
248
0
        {
249
0
       E TN, TR, TK, TO;
250
0
       TN = TL + TM;
251
0
       TR = TP - TQ;
252
0
       TK = W[0];
253
0
       TO = W[1];
254
0
       TS = FMA(TK, TN, TO * TR);
255
0
       TU = FNMS(TO, TN, TK * TR);
256
0
        }
257
0
        Rp[0] = TJ - TS;
258
0
        Ip[0] = TT + TU;
259
0
        Rm[0] = TJ + TS;
260
0
        Im[0] = TU - TT;
261
0
         }
262
0
         {
263
0
        E TZ, T15, T14, T16;
264
0
        {
265
0
       E TW, TY, TV, TX;
266
0
       TW = Tc + Tj;
267
0
       TY = Tr + Tq;
268
0
       TV = W[6];
269
0
       TX = W[7];
270
0
       TZ = FNMS(TX, TY, TV * TW);
271
0
       T15 = FMA(TX, TW, TV * TY);
272
0
        }
273
0
        {
274
0
       E T11, T13, T10, T12;
275
0
       T11 = TM - TL;
276
0
       T13 = TP + TQ;
277
0
       T10 = W[8];
278
0
       T12 = W[9];
279
0
       T14 = FMA(T10, T11, T12 * T13);
280
0
       T16 = FNMS(T12, T11, T10 * T13);
281
0
        }
282
0
        Rp[WS(rs, 2)] = TZ - T14;
283
0
        Ip[WS(rs, 2)] = T15 + T16;
284
0
        Rm[WS(rs, 2)] = TZ + T14;
285
0
        Im[WS(rs, 2)] = T16 - T15;
286
0
         }
287
0
         {
288
0
        E Tt, TH, TG, TI;
289
0
        {
290
0
       E Tk, Ts, T1, Tl;
291
0
       Tk = Tc - Tj;
292
0
       Ts = Tq - Tr;
293
0
       T1 = W[3];
294
0
       Tl = W[2];
295
0
       Tt = FMA(T1, Tk, Tl * Ts);
296
0
       TH = FNMS(T1, Ts, Tl * Tk);
297
0
        }
298
0
        {
299
0
       E Tz, TF, Tu, TA;
300
0
       Tz = Tv + Ty;
301
0
       TF = TB - TE;
302
0
       Tu = W[4];
303
0
       TA = W[5];
304
0
       TG = FNMS(TA, TF, Tu * Tz);
305
0
       TI = FMA(TA, Tz, Tu * TF);
306
0
        }
307
0
        Ip[WS(rs, 1)] = Tt + TG;
308
0
        Rp[WS(rs, 1)] = TH - TI;
309
0
        Im[WS(rs, 1)] = TG - Tt;
310
0
        Rm[WS(rs, 1)] = TH + TI;
311
0
         }
312
0
    }
313
0
     }
314
0
}
315
316
static const tw_instr twinstr[] = {
317
     { TW_FULL, 1, 6 },
318
     { TW_NEXT, 1, 0 }
319
};
320
321
static const hc2c_desc desc = { 6, "hc2cbdft_6", twinstr, &GENUS, { 44, 14, 14, 0 } };
322
323
1
void X(codelet_hc2cbdft_6) (planner *p) {
324
1
     X(khc2c_register) (p, hc2cbdft_6, &desc, HC2C_VIA_DFT);
325
1
}
326
#endif