/src/fftw3/rdft/scalar/r2cf/hf2_5.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Mon Sep 25 07:06:20 UTC 2023 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 5 -dit -name hf2_5 -include rdft/scalar/hf.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 44 FP additions, 40 FP multiplications, |
32 | | * (or, 14 additions, 10 multiplications, 30 fused multiply/add), |
33 | | * 38 stack variables, 4 constants, and 20 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hf.h" |
36 | | |
37 | | static void hf2_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
40 | | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
41 | | DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
42 | | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
43 | | { |
44 | | INT m; |
45 | | for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) { |
46 | | E T2, Ta, T8, T5, Tb, Tm, Tf, Tj, T9, Te; |
47 | | T2 = W[0]; |
48 | | Ta = W[3]; |
49 | | T8 = W[2]; |
50 | | T9 = T2 * T8; |
51 | | Te = T2 * Ta; |
52 | | T5 = W[1]; |
53 | | Tb = FNMS(T5, Ta, T9); |
54 | | Tm = FNMS(T5, T8, Te); |
55 | | Tf = FMA(T5, T8, Te); |
56 | | Tj = FMA(T5, Ta, T9); |
57 | | { |
58 | | E T1, TL, T7, Th, Ti, Tz, TB, TM, To, Ts, Tt, TE, TG, TN; |
59 | | T1 = cr[0]; |
60 | | TL = ci[0]; |
61 | | { |
62 | | E T3, T4, T6, Ty, Tc, Td, Tg, TA; |
63 | | T3 = cr[WS(rs, 1)]; |
64 | | T4 = T2 * T3; |
65 | | T6 = ci[WS(rs, 1)]; |
66 | | Ty = T2 * T6; |
67 | | Tc = cr[WS(rs, 4)]; |
68 | | Td = Tb * Tc; |
69 | | Tg = ci[WS(rs, 4)]; |
70 | | TA = Tb * Tg; |
71 | | T7 = FMA(T5, T6, T4); |
72 | | Th = FMA(Tf, Tg, Td); |
73 | | Ti = T7 + Th; |
74 | | Tz = FNMS(T5, T3, Ty); |
75 | | TB = FNMS(Tf, Tc, TA); |
76 | | TM = Tz + TB; |
77 | | } |
78 | | { |
79 | | E Tk, Tl, Tn, TD, Tp, Tq, Tr, TF; |
80 | | Tk = cr[WS(rs, 2)]; |
81 | | Tl = Tj * Tk; |
82 | | Tn = ci[WS(rs, 2)]; |
83 | | TD = Tj * Tn; |
84 | | Tp = cr[WS(rs, 3)]; |
85 | | Tq = T8 * Tp; |
86 | | Tr = ci[WS(rs, 3)]; |
87 | | TF = T8 * Tr; |
88 | | To = FMA(Tm, Tn, Tl); |
89 | | Ts = FMA(Ta, Tr, Tq); |
90 | | Tt = To + Ts; |
91 | | TE = FNMS(Tm, Tk, TD); |
92 | | TG = FNMS(Ta, Tp, TF); |
93 | | TN = TE + TG; |
94 | | } |
95 | | { |
96 | | E Tw, Tu, Tv, TI, TK, TC, TH, Tx, TJ; |
97 | | Tw = Ti - Tt; |
98 | | Tu = Ti + Tt; |
99 | | Tv = FNMS(KP250000000, Tu, T1); |
100 | | TC = Tz - TB; |
101 | | TH = TE - TG; |
102 | | TI = FMA(KP618033988, TH, TC); |
103 | | TK = FNMS(KP618033988, TC, TH); |
104 | | cr[0] = T1 + Tu; |
105 | | Tx = FMA(KP559016994, Tw, Tv); |
106 | | ci[0] = FNMS(KP951056516, TI, Tx); |
107 | | cr[WS(rs, 1)] = FMA(KP951056516, TI, Tx); |
108 | | TJ = FNMS(KP559016994, Tw, Tv); |
109 | | cr[WS(rs, 2)] = FNMS(KP951056516, TK, TJ); |
110 | | ci[WS(rs, 1)] = FMA(KP951056516, TK, TJ); |
111 | | } |
112 | | { |
113 | | E TQ, TO, TP, TU, TW, TS, TT, TV, TR; |
114 | | TQ = TM - TN; |
115 | | TO = TM + TN; |
116 | | TP = FNMS(KP250000000, TO, TL); |
117 | | TS = To - Ts; |
118 | | TT = Th - T7; |
119 | | TU = FMA(KP618033988, TT, TS); |
120 | | TW = FNMS(KP618033988, TS, TT); |
121 | | ci[WS(rs, 4)] = TO + TL; |
122 | | TV = FMA(KP559016994, TQ, TP); |
123 | | cr[WS(rs, 4)] = FMS(KP951056516, TW, TV); |
124 | | ci[WS(rs, 3)] = FMA(KP951056516, TW, TV); |
125 | | TR = FNMS(KP559016994, TQ, TP); |
126 | | cr[WS(rs, 3)] = FMS(KP951056516, TU, TR); |
127 | | ci[WS(rs, 2)] = FMA(KP951056516, TU, TR); |
128 | | } |
129 | | } |
130 | | } |
131 | | } |
132 | | } |
133 | | |
134 | | static const tw_instr twinstr[] = { |
135 | | { TW_CEXP, 1, 1 }, |
136 | | { TW_CEXP, 1, 3 }, |
137 | | { TW_NEXT, 1, 0 } |
138 | | }; |
139 | | |
140 | | static const hc2hc_desc desc = { 5, "hf2_5", twinstr, &GENUS, { 14, 10, 30, 0 } }; |
141 | | |
142 | | void X(codelet_hf2_5) (planner *p) { |
143 | | X(khc2hc_register) (p, hf2_5, &desc); |
144 | | } |
145 | | #else |
146 | | |
147 | | /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 5 -dit -name hf2_5 -include rdft/scalar/hf.h */ |
148 | | |
149 | | /* |
150 | | * This function contains 44 FP additions, 32 FP multiplications, |
151 | | * (or, 30 additions, 18 multiplications, 14 fused multiply/add), |
152 | | * 37 stack variables, 4 constants, and 20 memory accesses |
153 | | */ |
154 | | #include "rdft/scalar/hf.h" |
155 | | |
156 | | static void hf2_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) |
157 | 0 | { |
158 | 0 | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
159 | 0 | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
160 | 0 | DK(KP587785252, +0.587785252292473129168705954639072768597652438); |
161 | 0 | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
162 | 0 | { |
163 | 0 | INT m; |
164 | 0 | for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) { |
165 | 0 | E T2, T4, T7, T9, Tb, Tl, Tf, Tj; |
166 | 0 | { |
167 | 0 | E T8, Te, Ta, Td; |
168 | 0 | T2 = W[0]; |
169 | 0 | T4 = W[1]; |
170 | 0 | T7 = W[2]; |
171 | 0 | T9 = W[3]; |
172 | 0 | T8 = T2 * T7; |
173 | 0 | Te = T4 * T7; |
174 | 0 | Ta = T4 * T9; |
175 | 0 | Td = T2 * T9; |
176 | 0 | Tb = T8 - Ta; |
177 | 0 | Tl = Td - Te; |
178 | 0 | Tf = Td + Te; |
179 | 0 | Tj = T8 + Ta; |
180 | 0 | } |
181 | 0 | { |
182 | 0 | E T1, TI, Ty, TB, TG, TF, TJ, TK, TL, Ti, Tr, Ts; |
183 | 0 | T1 = cr[0]; |
184 | 0 | TI = ci[0]; |
185 | 0 | { |
186 | 0 | E T6, Tw, Tq, TA, Th, Tx, Tn, Tz; |
187 | 0 | { |
188 | 0 | E T3, T5, To, Tp; |
189 | 0 | T3 = cr[WS(rs, 1)]; |
190 | 0 | T5 = ci[WS(rs, 1)]; |
191 | 0 | T6 = FMA(T2, T3, T4 * T5); |
192 | 0 | Tw = FNMS(T4, T3, T2 * T5); |
193 | 0 | To = cr[WS(rs, 3)]; |
194 | 0 | Tp = ci[WS(rs, 3)]; |
195 | 0 | Tq = FMA(T7, To, T9 * Tp); |
196 | 0 | TA = FNMS(T9, To, T7 * Tp); |
197 | 0 | } |
198 | 0 | { |
199 | 0 | E Tc, Tg, Tk, Tm; |
200 | 0 | Tc = cr[WS(rs, 4)]; |
201 | 0 | Tg = ci[WS(rs, 4)]; |
202 | 0 | Th = FMA(Tb, Tc, Tf * Tg); |
203 | 0 | Tx = FNMS(Tf, Tc, Tb * Tg); |
204 | 0 | Tk = cr[WS(rs, 2)]; |
205 | 0 | Tm = ci[WS(rs, 2)]; |
206 | 0 | Tn = FMA(Tj, Tk, Tl * Tm); |
207 | 0 | Tz = FNMS(Tl, Tk, Tj * Tm); |
208 | 0 | } |
209 | 0 | Ty = Tw - Tx; |
210 | 0 | TB = Tz - TA; |
211 | 0 | TG = Tn - Tq; |
212 | 0 | TF = Th - T6; |
213 | 0 | TJ = Tw + Tx; |
214 | 0 | TK = Tz + TA; |
215 | 0 | TL = TJ + TK; |
216 | 0 | Ti = T6 + Th; |
217 | 0 | Tr = Tn + Tq; |
218 | 0 | Ts = Ti + Tr; |
219 | 0 | } |
220 | 0 | cr[0] = T1 + Ts; |
221 | 0 | { |
222 | 0 | E TC, TE, Tv, TD, Tt, Tu; |
223 | 0 | TC = FMA(KP951056516, Ty, KP587785252 * TB); |
224 | 0 | TE = FNMS(KP587785252, Ty, KP951056516 * TB); |
225 | 0 | Tt = KP559016994 * (Ti - Tr); |
226 | 0 | Tu = FNMS(KP250000000, Ts, T1); |
227 | 0 | Tv = Tt + Tu; |
228 | 0 | TD = Tu - Tt; |
229 | 0 | ci[0] = Tv - TC; |
230 | 0 | ci[WS(rs, 1)] = TD + TE; |
231 | 0 | cr[WS(rs, 1)] = Tv + TC; |
232 | 0 | cr[WS(rs, 2)] = TD - TE; |
233 | 0 | } |
234 | 0 | ci[WS(rs, 4)] = TL + TI; |
235 | 0 | { |
236 | 0 | E TH, TP, TO, TQ, TM, TN; |
237 | 0 | TH = FMA(KP587785252, TF, KP951056516 * TG); |
238 | 0 | TP = FNMS(KP587785252, TG, KP951056516 * TF); |
239 | 0 | TM = FNMS(KP250000000, TL, TI); |
240 | 0 | TN = KP559016994 * (TJ - TK); |
241 | 0 | TO = TM - TN; |
242 | 0 | TQ = TN + TM; |
243 | 0 | cr[WS(rs, 3)] = TH - TO; |
244 | 0 | ci[WS(rs, 3)] = TP + TQ; |
245 | 0 | ci[WS(rs, 2)] = TH + TO; |
246 | 0 | cr[WS(rs, 4)] = TP - TQ; |
247 | 0 | } |
248 | 0 | } |
249 | 0 | } |
250 | 0 | } |
251 | 0 | } |
252 | | |
253 | | static const tw_instr twinstr[] = { |
254 | | { TW_CEXP, 1, 1 }, |
255 | | { TW_CEXP, 1, 3 }, |
256 | | { TW_NEXT, 1, 0 } |
257 | | }; |
258 | | |
259 | | static const hc2hc_desc desc = { 5, "hf2_5", twinstr, &GENUS, { 30, 18, 14, 0 } }; |
260 | | |
261 | 1 | void X(codelet_hf2_5) (planner *p) { |
262 | 1 | X(khc2hc_register) (p, hf2_5, &desc); |
263 | 1 | } |
264 | | #endif |