Coverage Report

Created: 2023-09-25 07:08

/src/fftw3/rdft/scalar/r2cf/hf2_5.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Mon Sep 25 07:06:20 UTC 2023 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 5 -dit -name hf2_5 -include rdft/scalar/hf.h */
29
30
/*
31
 * This function contains 44 FP additions, 40 FP multiplications,
32
 * (or, 14 additions, 10 multiplications, 30 fused multiply/add),
33
 * 38 stack variables, 4 constants, and 20 memory accesses
34
 */
35
#include "rdft/scalar/hf.h"
36
37
static void hf2_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41
     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
42
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
43
     {
44
    INT m;
45
    for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) {
46
         E T2, Ta, T8, T5, Tb, Tm, Tf, Tj, T9, Te;
47
         T2 = W[0];
48
         Ta = W[3];
49
         T8 = W[2];
50
         T9 = T2 * T8;
51
         Te = T2 * Ta;
52
         T5 = W[1];
53
         Tb = FNMS(T5, Ta, T9);
54
         Tm = FNMS(T5, T8, Te);
55
         Tf = FMA(T5, T8, Te);
56
         Tj = FMA(T5, Ta, T9);
57
         {
58
        E T1, TL, T7, Th, Ti, Tz, TB, TM, To, Ts, Tt, TE, TG, TN;
59
        T1 = cr[0];
60
        TL = ci[0];
61
        {
62
       E T3, T4, T6, Ty, Tc, Td, Tg, TA;
63
       T3 = cr[WS(rs, 1)];
64
       T4 = T2 * T3;
65
       T6 = ci[WS(rs, 1)];
66
       Ty = T2 * T6;
67
       Tc = cr[WS(rs, 4)];
68
       Td = Tb * Tc;
69
       Tg = ci[WS(rs, 4)];
70
       TA = Tb * Tg;
71
       T7 = FMA(T5, T6, T4);
72
       Th = FMA(Tf, Tg, Td);
73
       Ti = T7 + Th;
74
       Tz = FNMS(T5, T3, Ty);
75
       TB = FNMS(Tf, Tc, TA);
76
       TM = Tz + TB;
77
        }
78
        {
79
       E Tk, Tl, Tn, TD, Tp, Tq, Tr, TF;
80
       Tk = cr[WS(rs, 2)];
81
       Tl = Tj * Tk;
82
       Tn = ci[WS(rs, 2)];
83
       TD = Tj * Tn;
84
       Tp = cr[WS(rs, 3)];
85
       Tq = T8 * Tp;
86
       Tr = ci[WS(rs, 3)];
87
       TF = T8 * Tr;
88
       To = FMA(Tm, Tn, Tl);
89
       Ts = FMA(Ta, Tr, Tq);
90
       Tt = To + Ts;
91
       TE = FNMS(Tm, Tk, TD);
92
       TG = FNMS(Ta, Tp, TF);
93
       TN = TE + TG;
94
        }
95
        {
96
       E Tw, Tu, Tv, TI, TK, TC, TH, Tx, TJ;
97
       Tw = Ti - Tt;
98
       Tu = Ti + Tt;
99
       Tv = FNMS(KP250000000, Tu, T1);
100
       TC = Tz - TB;
101
       TH = TE - TG;
102
       TI = FMA(KP618033988, TH, TC);
103
       TK = FNMS(KP618033988, TC, TH);
104
       cr[0] = T1 + Tu;
105
       Tx = FMA(KP559016994, Tw, Tv);
106
       ci[0] = FNMS(KP951056516, TI, Tx);
107
       cr[WS(rs, 1)] = FMA(KP951056516, TI, Tx);
108
       TJ = FNMS(KP559016994, Tw, Tv);
109
       cr[WS(rs, 2)] = FNMS(KP951056516, TK, TJ);
110
       ci[WS(rs, 1)] = FMA(KP951056516, TK, TJ);
111
        }
112
        {
113
       E TQ, TO, TP, TU, TW, TS, TT, TV, TR;
114
       TQ = TM - TN;
115
       TO = TM + TN;
116
       TP = FNMS(KP250000000, TO, TL);
117
       TS = To - Ts;
118
       TT = Th - T7;
119
       TU = FMA(KP618033988, TT, TS);
120
       TW = FNMS(KP618033988, TS, TT);
121
       ci[WS(rs, 4)] = TO + TL;
122
       TV = FMA(KP559016994, TQ, TP);
123
       cr[WS(rs, 4)] = FMS(KP951056516, TW, TV);
124
       ci[WS(rs, 3)] = FMA(KP951056516, TW, TV);
125
       TR = FNMS(KP559016994, TQ, TP);
126
       cr[WS(rs, 3)] = FMS(KP951056516, TU, TR);
127
       ci[WS(rs, 2)] = FMA(KP951056516, TU, TR);
128
        }
129
         }
130
    }
131
     }
132
}
133
134
static const tw_instr twinstr[] = {
135
     { TW_CEXP, 1, 1 },
136
     { TW_CEXP, 1, 3 },
137
     { TW_NEXT, 1, 0 }
138
};
139
140
static const hc2hc_desc desc = { 5, "hf2_5", twinstr, &GENUS, { 14, 10, 30, 0 } };
141
142
void X(codelet_hf2_5) (planner *p) {
143
     X(khc2hc_register) (p, hf2_5, &desc);
144
}
145
#else
146
147
/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 5 -dit -name hf2_5 -include rdft/scalar/hf.h */
148
149
/*
150
 * This function contains 44 FP additions, 32 FP multiplications,
151
 * (or, 30 additions, 18 multiplications, 14 fused multiply/add),
152
 * 37 stack variables, 4 constants, and 20 memory accesses
153
 */
154
#include "rdft/scalar/hf.h"
155
156
static void hf2_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
157
0
{
158
0
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
159
0
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
160
0
     DK(KP587785252, +0.587785252292473129168705954639072768597652438);
161
0
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
162
0
     {
163
0
    INT m;
164
0
    for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) {
165
0
         E T2, T4, T7, T9, Tb, Tl, Tf, Tj;
166
0
         {
167
0
        E T8, Te, Ta, Td;
168
0
        T2 = W[0];
169
0
        T4 = W[1];
170
0
        T7 = W[2];
171
0
        T9 = W[3];
172
0
        T8 = T2 * T7;
173
0
        Te = T4 * T7;
174
0
        Ta = T4 * T9;
175
0
        Td = T2 * T9;
176
0
        Tb = T8 - Ta;
177
0
        Tl = Td - Te;
178
0
        Tf = Td + Te;
179
0
        Tj = T8 + Ta;
180
0
         }
181
0
         {
182
0
        E T1, TI, Ty, TB, TG, TF, TJ, TK, TL, Ti, Tr, Ts;
183
0
        T1 = cr[0];
184
0
        TI = ci[0];
185
0
        {
186
0
       E T6, Tw, Tq, TA, Th, Tx, Tn, Tz;
187
0
       {
188
0
            E T3, T5, To, Tp;
189
0
            T3 = cr[WS(rs, 1)];
190
0
            T5 = ci[WS(rs, 1)];
191
0
            T6 = FMA(T2, T3, T4 * T5);
192
0
            Tw = FNMS(T4, T3, T2 * T5);
193
0
            To = cr[WS(rs, 3)];
194
0
            Tp = ci[WS(rs, 3)];
195
0
            Tq = FMA(T7, To, T9 * Tp);
196
0
            TA = FNMS(T9, To, T7 * Tp);
197
0
       }
198
0
       {
199
0
            E Tc, Tg, Tk, Tm;
200
0
            Tc = cr[WS(rs, 4)];
201
0
            Tg = ci[WS(rs, 4)];
202
0
            Th = FMA(Tb, Tc, Tf * Tg);
203
0
            Tx = FNMS(Tf, Tc, Tb * Tg);
204
0
            Tk = cr[WS(rs, 2)];
205
0
            Tm = ci[WS(rs, 2)];
206
0
            Tn = FMA(Tj, Tk, Tl * Tm);
207
0
            Tz = FNMS(Tl, Tk, Tj * Tm);
208
0
       }
209
0
       Ty = Tw - Tx;
210
0
       TB = Tz - TA;
211
0
       TG = Tn - Tq;
212
0
       TF = Th - T6;
213
0
       TJ = Tw + Tx;
214
0
       TK = Tz + TA;
215
0
       TL = TJ + TK;
216
0
       Ti = T6 + Th;
217
0
       Tr = Tn + Tq;
218
0
       Ts = Ti + Tr;
219
0
        }
220
0
        cr[0] = T1 + Ts;
221
0
        {
222
0
       E TC, TE, Tv, TD, Tt, Tu;
223
0
       TC = FMA(KP951056516, Ty, KP587785252 * TB);
224
0
       TE = FNMS(KP587785252, Ty, KP951056516 * TB);
225
0
       Tt = KP559016994 * (Ti - Tr);
226
0
       Tu = FNMS(KP250000000, Ts, T1);
227
0
       Tv = Tt + Tu;
228
0
       TD = Tu - Tt;
229
0
       ci[0] = Tv - TC;
230
0
       ci[WS(rs, 1)] = TD + TE;
231
0
       cr[WS(rs, 1)] = Tv + TC;
232
0
       cr[WS(rs, 2)] = TD - TE;
233
0
        }
234
0
        ci[WS(rs, 4)] = TL + TI;
235
0
        {
236
0
       E TH, TP, TO, TQ, TM, TN;
237
0
       TH = FMA(KP587785252, TF, KP951056516 * TG);
238
0
       TP = FNMS(KP587785252, TG, KP951056516 * TF);
239
0
       TM = FNMS(KP250000000, TL, TI);
240
0
       TN = KP559016994 * (TJ - TK);
241
0
       TO = TM - TN;
242
0
       TQ = TN + TM;
243
0
       cr[WS(rs, 3)] = TH - TO;
244
0
       ci[WS(rs, 3)] = TP + TQ;
245
0
       ci[WS(rs, 2)] = TH + TO;
246
0
       cr[WS(rs, 4)] = TP - TQ;
247
0
        }
248
0
         }
249
0
    }
250
0
     }
251
0
}
252
253
static const tw_instr twinstr[] = {
254
     { TW_CEXP, 1, 1 },
255
     { TW_CEXP, 1, 3 },
256
     { TW_NEXT, 1, 0 }
257
};
258
259
static const hc2hc_desc desc = { 5, "hf2_5", twinstr, &GENUS, { 30, 18, 14, 0 } };
260
261
1
void X(codelet_hf2_5) (planner *p) {
262
1
     X(khc2hc_register) (p, hf2_5, &desc);
263
1
}
264
#endif