/src/fftw3/rdft/scalar/r2cf/hf_32.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Mon Sep 25 07:06:13 UTC 2023 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -n 32 -dit -name hf_32 -include rdft/scalar/hf.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 434 FP additions, 260 FP multiplications, |
32 | | * (or, 236 additions, 62 multiplications, 198 fused multiply/add), |
33 | | * 102 stack variables, 7 constants, and 128 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hf.h" |
36 | | |
37 | | static void hf_32(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
40 | | DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
41 | | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
42 | | DK(KP198912367, +0.198912367379658006911597622644676228597850501); |
43 | | DK(KP668178637, +0.668178637919298919997757686523080761552472251); |
44 | | DK(KP414213562, +0.414213562373095048801688724209698078569671875); |
45 | | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
46 | | { |
47 | | INT m; |
48 | | for (m = mb, W = W + ((mb - 1) * 62); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 62, MAKE_VOLATILE_STRIDE(64, rs)) { |
49 | | E T8, T8y, T3w, T87, Tl, T8x, T3B, T83, Tz, T6G, T3J, T5T, TM, T6F, T3Q; |
50 | | E T5U, T11, T1e, T6J, T6K, T6L, T6M, T3Z, T5Y, T46, T5X, T1s, T1F, T6O, T6P; |
51 | | E T6Q, T6R, T4e, T61, T4l, T60, T32, T76, T7d, T7N, T54, T6c, T5r, T6f, T29; |
52 | | E T6V, T72, T7I, T4v, T65, T4S, T68, T3t, T7e, T79, T7O, T5b, T5t, T5i, T5s; |
53 | | E T2A, T73, T6Y, T7J, T4C, T4T, T4J, T4U; |
54 | | { |
55 | | E T1, T86, T3, T6, T4, T84, T2, T7, T85, T5; |
56 | | T1 = cr[0]; |
57 | | T86 = ci[0]; |
58 | | T3 = cr[WS(rs, 16)]; |
59 | | T6 = ci[WS(rs, 16)]; |
60 | | T2 = W[30]; |
61 | | T4 = T2 * T3; |
62 | | T84 = T2 * T6; |
63 | | T5 = W[31]; |
64 | | T7 = FMA(T5, T6, T4); |
65 | | T85 = FNMS(T5, T3, T84); |
66 | | T8 = T1 + T7; |
67 | | T8y = T86 - T85; |
68 | | T3w = T1 - T7; |
69 | | T87 = T85 + T86; |
70 | | } |
71 | | { |
72 | | E Ta, Td, Tb, T3x, Tg, Tj, Th, T3z, T9, Tf; |
73 | | Ta = cr[WS(rs, 8)]; |
74 | | Td = ci[WS(rs, 8)]; |
75 | | T9 = W[14]; |
76 | | Tb = T9 * Ta; |
77 | | T3x = T9 * Td; |
78 | | Tg = cr[WS(rs, 24)]; |
79 | | Tj = ci[WS(rs, 24)]; |
80 | | Tf = W[46]; |
81 | | Th = Tf * Tg; |
82 | | T3z = Tf * Tj; |
83 | | { |
84 | | E Te, T3y, Tk, T3A, Tc, Ti; |
85 | | Tc = W[15]; |
86 | | Te = FMA(Tc, Td, Tb); |
87 | | T3y = FNMS(Tc, Ta, T3x); |
88 | | Ti = W[47]; |
89 | | Tk = FMA(Ti, Tj, Th); |
90 | | T3A = FNMS(Ti, Tg, T3z); |
91 | | Tl = Te + Tk; |
92 | | T8x = Te - Tk; |
93 | | T3B = T3y - T3A; |
94 | | T83 = T3y + T3A; |
95 | | } |
96 | | } |
97 | | { |
98 | | E Ts, T3F, Ty, T3H, T3D, T3I; |
99 | | { |
100 | | E To, Tr, Tp, T3E, Tn, Tq; |
101 | | To = cr[WS(rs, 4)]; |
102 | | Tr = ci[WS(rs, 4)]; |
103 | | Tn = W[6]; |
104 | | Tp = Tn * To; |
105 | | T3E = Tn * Tr; |
106 | | Tq = W[7]; |
107 | | Ts = FMA(Tq, Tr, Tp); |
108 | | T3F = FNMS(Tq, To, T3E); |
109 | | } |
110 | | { |
111 | | E Tu, Tx, Tv, T3G, Tt, Tw; |
112 | | Tu = cr[WS(rs, 20)]; |
113 | | Tx = ci[WS(rs, 20)]; |
114 | | Tt = W[38]; |
115 | | Tv = Tt * Tu; |
116 | | T3G = Tt * Tx; |
117 | | Tw = W[39]; |
118 | | Ty = FMA(Tw, Tx, Tv); |
119 | | T3H = FNMS(Tw, Tu, T3G); |
120 | | } |
121 | | Tz = Ts + Ty; |
122 | | T6G = T3F + T3H; |
123 | | T3D = Ts - Ty; |
124 | | T3I = T3F - T3H; |
125 | | T3J = T3D - T3I; |
126 | | T5T = T3D + T3I; |
127 | | } |
128 | | { |
129 | | E TF, T3M, TL, T3O, T3K, T3P; |
130 | | { |
131 | | E TB, TE, TC, T3L, TA, TD; |
132 | | TB = cr[WS(rs, 28)]; |
133 | | TE = ci[WS(rs, 28)]; |
134 | | TA = W[54]; |
135 | | TC = TA * TB; |
136 | | T3L = TA * TE; |
137 | | TD = W[55]; |
138 | | TF = FMA(TD, TE, TC); |
139 | | T3M = FNMS(TD, TB, T3L); |
140 | | } |
141 | | { |
142 | | E TH, TK, TI, T3N, TG, TJ; |
143 | | TH = cr[WS(rs, 12)]; |
144 | | TK = ci[WS(rs, 12)]; |
145 | | TG = W[22]; |
146 | | TI = TG * TH; |
147 | | T3N = TG * TK; |
148 | | TJ = W[23]; |
149 | | TL = FMA(TJ, TK, TI); |
150 | | T3O = FNMS(TJ, TH, T3N); |
151 | | } |
152 | | TM = TF + TL; |
153 | | T6F = T3M + T3O; |
154 | | T3K = TF - TL; |
155 | | T3P = T3M - T3O; |
156 | | T3Q = T3K + T3P; |
157 | | T5U = T3K - T3P; |
158 | | } |
159 | | { |
160 | | E TU, T3U, T1d, T44, T10, T3W, T17, T42; |
161 | | { |
162 | | E TQ, TT, TR, T3T, TP, TS; |
163 | | TQ = cr[WS(rs, 2)]; |
164 | | TT = ci[WS(rs, 2)]; |
165 | | TP = W[2]; |
166 | | TR = TP * TQ; |
167 | | T3T = TP * TT; |
168 | | TS = W[3]; |
169 | | TU = FMA(TS, TT, TR); |
170 | | T3U = FNMS(TS, TQ, T3T); |
171 | | } |
172 | | { |
173 | | E T19, T1c, T1a, T43, T18, T1b; |
174 | | T19 = cr[WS(rs, 26)]; |
175 | | T1c = ci[WS(rs, 26)]; |
176 | | T18 = W[50]; |
177 | | T1a = T18 * T19; |
178 | | T43 = T18 * T1c; |
179 | | T1b = W[51]; |
180 | | T1d = FMA(T1b, T1c, T1a); |
181 | | T44 = FNMS(T1b, T19, T43); |
182 | | } |
183 | | { |
184 | | E TW, TZ, TX, T3V, TV, TY; |
185 | | TW = cr[WS(rs, 18)]; |
186 | | TZ = ci[WS(rs, 18)]; |
187 | | TV = W[34]; |
188 | | TX = TV * TW; |
189 | | T3V = TV * TZ; |
190 | | TY = W[35]; |
191 | | T10 = FMA(TY, TZ, TX); |
192 | | T3W = FNMS(TY, TW, T3V); |
193 | | } |
194 | | { |
195 | | E T13, T16, T14, T41, T12, T15; |
196 | | T13 = cr[WS(rs, 10)]; |
197 | | T16 = ci[WS(rs, 10)]; |
198 | | T12 = W[18]; |
199 | | T14 = T12 * T13; |
200 | | T41 = T12 * T16; |
201 | | T15 = W[19]; |
202 | | T17 = FMA(T15, T16, T14); |
203 | | T42 = FNMS(T15, T13, T41); |
204 | | } |
205 | | T11 = TU + T10; |
206 | | T1e = T17 + T1d; |
207 | | T6J = T11 - T1e; |
208 | | T6K = T3U + T3W; |
209 | | T6L = T42 + T44; |
210 | | T6M = T6K - T6L; |
211 | | { |
212 | | E T3X, T3Y, T40, T45; |
213 | | T3X = T3U - T3W; |
214 | | T3Y = T17 - T1d; |
215 | | T3Z = T3X + T3Y; |
216 | | T5Y = T3X - T3Y; |
217 | | T40 = TU - T10; |
218 | | T45 = T42 - T44; |
219 | | T46 = T40 - T45; |
220 | | T5X = T40 + T45; |
221 | | } |
222 | | } |
223 | | { |
224 | | E T1l, T49, T1E, T4j, T1r, T4b, T1y, T4h; |
225 | | { |
226 | | E T1h, T1k, T1i, T48, T1g, T1j; |
227 | | T1h = cr[WS(rs, 30)]; |
228 | | T1k = ci[WS(rs, 30)]; |
229 | | T1g = W[58]; |
230 | | T1i = T1g * T1h; |
231 | | T48 = T1g * T1k; |
232 | | T1j = W[59]; |
233 | | T1l = FMA(T1j, T1k, T1i); |
234 | | T49 = FNMS(T1j, T1h, T48); |
235 | | } |
236 | | { |
237 | | E T1A, T1D, T1B, T4i, T1z, T1C; |
238 | | T1A = cr[WS(rs, 22)]; |
239 | | T1D = ci[WS(rs, 22)]; |
240 | | T1z = W[42]; |
241 | | T1B = T1z * T1A; |
242 | | T4i = T1z * T1D; |
243 | | T1C = W[43]; |
244 | | T1E = FMA(T1C, T1D, T1B); |
245 | | T4j = FNMS(T1C, T1A, T4i); |
246 | | } |
247 | | { |
248 | | E T1n, T1q, T1o, T4a, T1m, T1p; |
249 | | T1n = cr[WS(rs, 14)]; |
250 | | T1q = ci[WS(rs, 14)]; |
251 | | T1m = W[26]; |
252 | | T1o = T1m * T1n; |
253 | | T4a = T1m * T1q; |
254 | | T1p = W[27]; |
255 | | T1r = FMA(T1p, T1q, T1o); |
256 | | T4b = FNMS(T1p, T1n, T4a); |
257 | | } |
258 | | { |
259 | | E T1u, T1x, T1v, T4g, T1t, T1w; |
260 | | T1u = cr[WS(rs, 6)]; |
261 | | T1x = ci[WS(rs, 6)]; |
262 | | T1t = W[10]; |
263 | | T1v = T1t * T1u; |
264 | | T4g = T1t * T1x; |
265 | | T1w = W[11]; |
266 | | T1y = FMA(T1w, T1x, T1v); |
267 | | T4h = FNMS(T1w, T1u, T4g); |
268 | | } |
269 | | T1s = T1l + T1r; |
270 | | T1F = T1y + T1E; |
271 | | T6O = T1s - T1F; |
272 | | T6P = T49 + T4b; |
273 | | T6Q = T4h + T4j; |
274 | | T6R = T6P - T6Q; |
275 | | { |
276 | | E T4c, T4d, T4f, T4k; |
277 | | T4c = T49 - T4b; |
278 | | T4d = T1y - T1E; |
279 | | T4e = T4c + T4d; |
280 | | T61 = T4c - T4d; |
281 | | T4f = T1l - T1r; |
282 | | T4k = T4h - T4j; |
283 | | T4l = T4f - T4k; |
284 | | T60 = T4f + T4k; |
285 | | } |
286 | | } |
287 | | { |
288 | | E T2H, T5n, T30, T52, T2N, T5p, T2U, T50; |
289 | | { |
290 | | E T2D, T2G, T2E, T5m, T2C, T2F; |
291 | | T2D = cr[WS(rs, 31)]; |
292 | | T2G = ci[WS(rs, 31)]; |
293 | | T2C = W[60]; |
294 | | T2E = T2C * T2D; |
295 | | T5m = T2C * T2G; |
296 | | T2F = W[61]; |
297 | | T2H = FMA(T2F, T2G, T2E); |
298 | | T5n = FNMS(T2F, T2D, T5m); |
299 | | } |
300 | | { |
301 | | E T2W, T2Z, T2X, T51, T2V, T2Y; |
302 | | T2W = cr[WS(rs, 23)]; |
303 | | T2Z = ci[WS(rs, 23)]; |
304 | | T2V = W[44]; |
305 | | T2X = T2V * T2W; |
306 | | T51 = T2V * T2Z; |
307 | | T2Y = W[45]; |
308 | | T30 = FMA(T2Y, T2Z, T2X); |
309 | | T52 = FNMS(T2Y, T2W, T51); |
310 | | } |
311 | | { |
312 | | E T2J, T2M, T2K, T5o, T2I, T2L; |
313 | | T2J = cr[WS(rs, 15)]; |
314 | | T2M = ci[WS(rs, 15)]; |
315 | | T2I = W[28]; |
316 | | T2K = T2I * T2J; |
317 | | T5o = T2I * T2M; |
318 | | T2L = W[29]; |
319 | | T2N = FMA(T2L, T2M, T2K); |
320 | | T5p = FNMS(T2L, T2J, T5o); |
321 | | } |
322 | | { |
323 | | E T2Q, T2T, T2R, T4Z, T2P, T2S; |
324 | | T2Q = cr[WS(rs, 7)]; |
325 | | T2T = ci[WS(rs, 7)]; |
326 | | T2P = W[12]; |
327 | | T2R = T2P * T2Q; |
328 | | T4Z = T2P * T2T; |
329 | | T2S = W[13]; |
330 | | T2U = FMA(T2S, T2T, T2R); |
331 | | T50 = FNMS(T2S, T2Q, T4Z); |
332 | | } |
333 | | { |
334 | | E T2O, T31, T7b, T7c; |
335 | | T2O = T2H + T2N; |
336 | | T31 = T2U + T30; |
337 | | T32 = T2O + T31; |
338 | | T76 = T2O - T31; |
339 | | T7b = T5n + T5p; |
340 | | T7c = T50 + T52; |
341 | | T7d = T7b - T7c; |
342 | | T7N = T7b + T7c; |
343 | | } |
344 | | { |
345 | | E T4Y, T53, T5l, T5q; |
346 | | T4Y = T2H - T2N; |
347 | | T53 = T50 - T52; |
348 | | T54 = T4Y - T53; |
349 | | T6c = T4Y + T53; |
350 | | T5l = T30 - T2U; |
351 | | T5q = T5n - T5p; |
352 | | T5r = T5l - T5q; |
353 | | T6f = T5q + T5l; |
354 | | } |
355 | | } |
356 | | { |
357 | | E T1O, T4N, T27, T4t, T1U, T4P, T21, T4r; |
358 | | { |
359 | | E T1K, T1N, T1L, T4M, T1J, T1M; |
360 | | T1K = cr[WS(rs, 1)]; |
361 | | T1N = ci[WS(rs, 1)]; |
362 | | T1J = W[0]; |
363 | | T1L = T1J * T1K; |
364 | | T4M = T1J * T1N; |
365 | | T1M = W[1]; |
366 | | T1O = FMA(T1M, T1N, T1L); |
367 | | T4N = FNMS(T1M, T1K, T4M); |
368 | | } |
369 | | { |
370 | | E T23, T26, T24, T4s, T22, T25; |
371 | | T23 = cr[WS(rs, 25)]; |
372 | | T26 = ci[WS(rs, 25)]; |
373 | | T22 = W[48]; |
374 | | T24 = T22 * T23; |
375 | | T4s = T22 * T26; |
376 | | T25 = W[49]; |
377 | | T27 = FMA(T25, T26, T24); |
378 | | T4t = FNMS(T25, T23, T4s); |
379 | | } |
380 | | { |
381 | | E T1Q, T1T, T1R, T4O, T1P, T1S; |
382 | | T1Q = cr[WS(rs, 17)]; |
383 | | T1T = ci[WS(rs, 17)]; |
384 | | T1P = W[32]; |
385 | | T1R = T1P * T1Q; |
386 | | T4O = T1P * T1T; |
387 | | T1S = W[33]; |
388 | | T1U = FMA(T1S, T1T, T1R); |
389 | | T4P = FNMS(T1S, T1Q, T4O); |
390 | | } |
391 | | { |
392 | | E T1X, T20, T1Y, T4q, T1W, T1Z; |
393 | | T1X = cr[WS(rs, 9)]; |
394 | | T20 = ci[WS(rs, 9)]; |
395 | | T1W = W[16]; |
396 | | T1Y = T1W * T1X; |
397 | | T4q = T1W * T20; |
398 | | T1Z = W[17]; |
399 | | T21 = FMA(T1Z, T20, T1Y); |
400 | | T4r = FNMS(T1Z, T1X, T4q); |
401 | | } |
402 | | { |
403 | | E T1V, T28, T70, T71; |
404 | | T1V = T1O + T1U; |
405 | | T28 = T21 + T27; |
406 | | T29 = T1V + T28; |
407 | | T6V = T1V - T28; |
408 | | T70 = T4N + T4P; |
409 | | T71 = T4r + T4t; |
410 | | T72 = T70 - T71; |
411 | | T7I = T70 + T71; |
412 | | } |
413 | | { |
414 | | E T4p, T4u, T4Q, T4R; |
415 | | T4p = T1O - T1U; |
416 | | T4u = T4r - T4t; |
417 | | T4v = T4p - T4u; |
418 | | T65 = T4p + T4u; |
419 | | T4Q = T4N - T4P; |
420 | | T4R = T21 - T27; |
421 | | T4S = T4Q + T4R; |
422 | | T68 = T4Q - T4R; |
423 | | } |
424 | | } |
425 | | { |
426 | | E T38, T57, T3r, T5g, T3e, T59, T3l, T5e; |
427 | | { |
428 | | E T34, T37, T35, T56, T33, T36; |
429 | | T34 = cr[WS(rs, 3)]; |
430 | | T37 = ci[WS(rs, 3)]; |
431 | | T33 = W[4]; |
432 | | T35 = T33 * T34; |
433 | | T56 = T33 * T37; |
434 | | T36 = W[5]; |
435 | | T38 = FMA(T36, T37, T35); |
436 | | T57 = FNMS(T36, T34, T56); |
437 | | } |
438 | | { |
439 | | E T3n, T3q, T3o, T5f, T3m, T3p; |
440 | | T3n = cr[WS(rs, 11)]; |
441 | | T3q = ci[WS(rs, 11)]; |
442 | | T3m = W[20]; |
443 | | T3o = T3m * T3n; |
444 | | T5f = T3m * T3q; |
445 | | T3p = W[21]; |
446 | | T3r = FMA(T3p, T3q, T3o); |
447 | | T5g = FNMS(T3p, T3n, T5f); |
448 | | } |
449 | | { |
450 | | E T3a, T3d, T3b, T58, T39, T3c; |
451 | | T3a = cr[WS(rs, 19)]; |
452 | | T3d = ci[WS(rs, 19)]; |
453 | | T39 = W[36]; |
454 | | T3b = T39 * T3a; |
455 | | T58 = T39 * T3d; |
456 | | T3c = W[37]; |
457 | | T3e = FMA(T3c, T3d, T3b); |
458 | | T59 = FNMS(T3c, T3a, T58); |
459 | | } |
460 | | { |
461 | | E T3h, T3k, T3i, T5d, T3g, T3j; |
462 | | T3h = cr[WS(rs, 27)]; |
463 | | T3k = ci[WS(rs, 27)]; |
464 | | T3g = W[52]; |
465 | | T3i = T3g * T3h; |
466 | | T5d = T3g * T3k; |
467 | | T3j = W[53]; |
468 | | T3l = FMA(T3j, T3k, T3i); |
469 | | T5e = FNMS(T3j, T3h, T5d); |
470 | | } |
471 | | { |
472 | | E T3f, T3s, T77, T78; |
473 | | T3f = T38 + T3e; |
474 | | T3s = T3l + T3r; |
475 | | T3t = T3f + T3s; |
476 | | T7e = T3s - T3f; |
477 | | T77 = T5e + T5g; |
478 | | T78 = T57 + T59; |
479 | | T79 = T77 - T78; |
480 | | T7O = T78 + T77; |
481 | | } |
482 | | { |
483 | | E T55, T5a, T5c, T5h; |
484 | | T55 = T38 - T3e; |
485 | | T5a = T57 - T59; |
486 | | T5b = T55 - T5a; |
487 | | T5t = T55 + T5a; |
488 | | T5c = T3l - T3r; |
489 | | T5h = T5e - T5g; |
490 | | T5i = T5c + T5h; |
491 | | T5s = T5c - T5h; |
492 | | } |
493 | | } |
494 | | { |
495 | | E T2f, T4y, T2y, T4H, T2l, T4A, T2s, T4F; |
496 | | { |
497 | | E T2b, T2e, T2c, T4x, T2a, T2d; |
498 | | T2b = cr[WS(rs, 5)]; |
499 | | T2e = ci[WS(rs, 5)]; |
500 | | T2a = W[8]; |
501 | | T2c = T2a * T2b; |
502 | | T4x = T2a * T2e; |
503 | | T2d = W[9]; |
504 | | T2f = FMA(T2d, T2e, T2c); |
505 | | T4y = FNMS(T2d, T2b, T4x); |
506 | | } |
507 | | { |
508 | | E T2u, T2x, T2v, T4G, T2t, T2w; |
509 | | T2u = cr[WS(rs, 13)]; |
510 | | T2x = ci[WS(rs, 13)]; |
511 | | T2t = W[24]; |
512 | | T2v = T2t * T2u; |
513 | | T4G = T2t * T2x; |
514 | | T2w = W[25]; |
515 | | T2y = FMA(T2w, T2x, T2v); |
516 | | T4H = FNMS(T2w, T2u, T4G); |
517 | | } |
518 | | { |
519 | | E T2h, T2k, T2i, T4z, T2g, T2j; |
520 | | T2h = cr[WS(rs, 21)]; |
521 | | T2k = ci[WS(rs, 21)]; |
522 | | T2g = W[40]; |
523 | | T2i = T2g * T2h; |
524 | | T4z = T2g * T2k; |
525 | | T2j = W[41]; |
526 | | T2l = FMA(T2j, T2k, T2i); |
527 | | T4A = FNMS(T2j, T2h, T4z); |
528 | | } |
529 | | { |
530 | | E T2o, T2r, T2p, T4E, T2n, T2q; |
531 | | T2o = cr[WS(rs, 29)]; |
532 | | T2r = ci[WS(rs, 29)]; |
533 | | T2n = W[56]; |
534 | | T2p = T2n * T2o; |
535 | | T4E = T2n * T2r; |
536 | | T2q = W[57]; |
537 | | T2s = FMA(T2q, T2r, T2p); |
538 | | T4F = FNMS(T2q, T2o, T4E); |
539 | | } |
540 | | { |
541 | | E T2m, T2z, T6W, T6X; |
542 | | T2m = T2f + T2l; |
543 | | T2z = T2s + T2y; |
544 | | T2A = T2m + T2z; |
545 | | T73 = T2m - T2z; |
546 | | T6W = T4F + T4H; |
547 | | T6X = T4y + T4A; |
548 | | T6Y = T6W - T6X; |
549 | | T7J = T6X + T6W; |
550 | | } |
551 | | { |
552 | | E T4w, T4B, T4D, T4I; |
553 | | T4w = T2f - T2l; |
554 | | T4B = T4y - T4A; |
555 | | T4C = T4w - T4B; |
556 | | T4T = T4w + T4B; |
557 | | T4D = T2s - T2y; |
558 | | T4I = T4F - T4H; |
559 | | T4J = T4D + T4I; |
560 | | T4U = T4I - T4D; |
561 | | } |
562 | | } |
563 | | { |
564 | | E TO, T7C, T7Z, T80, T89, T8e, T1H, T8d, T3v, T8b, T7L, T7T, T7Q, T7U, T7F; |
565 | | E T81; |
566 | | { |
567 | | E Tm, TN, T7X, T7Y; |
568 | | Tm = T8 + Tl; |
569 | | TN = Tz + TM; |
570 | | TO = Tm + TN; |
571 | | T7C = Tm - TN; |
572 | | T7X = T7N + T7O; |
573 | | T7Y = T7I + T7J; |
574 | | T7Z = T7X - T7Y; |
575 | | T80 = T7Y + T7X; |
576 | | } |
577 | | { |
578 | | E T82, T88, T1f, T1G; |
579 | | T82 = T6G + T6F; |
580 | | T88 = T83 + T87; |
581 | | T89 = T82 + T88; |
582 | | T8e = T88 - T82; |
583 | | T1f = T11 + T1e; |
584 | | T1G = T1s + T1F; |
585 | | T1H = T1f + T1G; |
586 | | T8d = T1f - T1G; |
587 | | } |
588 | | { |
589 | | E T2B, T3u, T7H, T7K; |
590 | | T2B = T29 + T2A; |
591 | | T3u = T32 + T3t; |
592 | | T3v = T2B + T3u; |
593 | | T8b = T3u - T2B; |
594 | | T7H = T29 - T2A; |
595 | | T7K = T7I - T7J; |
596 | | T7L = T7H + T7K; |
597 | | T7T = T7H - T7K; |
598 | | } |
599 | | { |
600 | | E T7M, T7P, T7D, T7E; |
601 | | T7M = T32 - T3t; |
602 | | T7P = T7N - T7O; |
603 | | T7Q = T7M - T7P; |
604 | | T7U = T7M + T7P; |
605 | | T7D = T6P + T6Q; |
606 | | T7E = T6K + T6L; |
607 | | T7F = T7D - T7E; |
608 | | T81 = T7E + T7D; |
609 | | } |
610 | | { |
611 | | E T1I, T8a, T8c, T7W; |
612 | | T1I = TO + T1H; |
613 | | ci[WS(rs, 15)] = T1I - T3v; |
614 | | cr[0] = T1I + T3v; |
615 | | T8a = T81 + T89; |
616 | | cr[WS(rs, 16)] = T80 - T8a; |
617 | | ci[WS(rs, 31)] = T80 + T8a; |
618 | | T8c = T89 - T81; |
619 | | cr[WS(rs, 24)] = T8b - T8c; |
620 | | ci[WS(rs, 23)] = T8b + T8c; |
621 | | T7W = TO - T1H; |
622 | | cr[WS(rs, 8)] = T7W - T7Z; |
623 | | ci[WS(rs, 7)] = T7W + T7Z; |
624 | | } |
625 | | { |
626 | | E T7G, T7R, T8f, T8g; |
627 | | T7G = T7C - T7F; |
628 | | T7R = T7L + T7Q; |
629 | | ci[WS(rs, 11)] = FNMS(KP707106781, T7R, T7G); |
630 | | cr[WS(rs, 4)] = FMA(KP707106781, T7R, T7G); |
631 | | T8f = T8d + T8e; |
632 | | T8g = T7Q - T7L; |
633 | | cr[WS(rs, 28)] = FMS(KP707106781, T8g, T8f); |
634 | | ci[WS(rs, 19)] = FMA(KP707106781, T8g, T8f); |
635 | | } |
636 | | { |
637 | | E T8h, T8i, T7S, T7V; |
638 | | T8h = T8e - T8d; |
639 | | T8i = T7U - T7T; |
640 | | cr[WS(rs, 20)] = FMS(KP707106781, T8i, T8h); |
641 | | ci[WS(rs, 27)] = FMA(KP707106781, T8i, T8h); |
642 | | T7S = T7C + T7F; |
643 | | T7V = T7T + T7U; |
644 | | cr[WS(rs, 12)] = FNMS(KP707106781, T7V, T7S); |
645 | | ci[WS(rs, 3)] = FMA(KP707106781, T7V, T7S); |
646 | | } |
647 | | } |
648 | | { |
649 | | E T3S, T5C, T4n, T8C, T8B, T8H, T5F, T8I, T5w, T5Q, T5A, T5M, T4X, T5P, T5z; |
650 | | E T5J; |
651 | | { |
652 | | E T3C, T3R, T5D, T5E; |
653 | | T3C = T3w - T3B; |
654 | | T3R = T3J + T3Q; |
655 | | T3S = FNMS(KP707106781, T3R, T3C); |
656 | | T5C = FMA(KP707106781, T3R, T3C); |
657 | | { |
658 | | E T47, T4m, T8z, T8A; |
659 | | T47 = FMA(KP414213562, T46, T3Z); |
660 | | T4m = FNMS(KP414213562, T4l, T4e); |
661 | | T4n = T47 - T4m; |
662 | | T8C = T47 + T4m; |
663 | | T8z = T8x + T8y; |
664 | | T8A = T5T - T5U; |
665 | | T8B = FMA(KP707106781, T8A, T8z); |
666 | | T8H = FNMS(KP707106781, T8A, T8z); |
667 | | } |
668 | | T5D = FNMS(KP414213562, T3Z, T46); |
669 | | T5E = FMA(KP414213562, T4e, T4l); |
670 | | T5F = T5D + T5E; |
671 | | T8I = T5E - T5D; |
672 | | { |
673 | | E T5k, T5K, T5v, T5L, T5j, T5u; |
674 | | T5j = T5b + T5i; |
675 | | T5k = FNMS(KP707106781, T5j, T54); |
676 | | T5K = FMA(KP707106781, T5j, T54); |
677 | | T5u = T5s - T5t; |
678 | | T5v = FNMS(KP707106781, T5u, T5r); |
679 | | T5L = FMA(KP707106781, T5u, T5r); |
680 | | T5w = FMA(KP668178637, T5v, T5k); |
681 | | T5Q = FMA(KP198912367, T5K, T5L); |
682 | | T5A = FNMS(KP668178637, T5k, T5v); |
683 | | T5M = FNMS(KP198912367, T5L, T5K); |
684 | | } |
685 | | { |
686 | | E T4L, T5H, T4W, T5I, T4K, T4V; |
687 | | T4K = T4C + T4J; |
688 | | T4L = FNMS(KP707106781, T4K, T4v); |
689 | | T5H = FMA(KP707106781, T4K, T4v); |
690 | | T4V = T4T + T4U; |
691 | | T4W = FNMS(KP707106781, T4V, T4S); |
692 | | T5I = FMA(KP707106781, T4V, T4S); |
693 | | T4X = FMA(KP668178637, T4W, T4L); |
694 | | T5P = FMA(KP198912367, T5H, T5I); |
695 | | T5z = FNMS(KP668178637, T4L, T4W); |
696 | | T5J = FNMS(KP198912367, T5I, T5H); |
697 | | } |
698 | | } |
699 | | { |
700 | | E T4o, T5x, T8J, T8K; |
701 | | T4o = FMA(KP923879532, T4n, T3S); |
702 | | T5x = T4X + T5w; |
703 | | ci[WS(rs, 12)] = FNMS(KP831469612, T5x, T4o); |
704 | | cr[WS(rs, 3)] = FMA(KP831469612, T5x, T4o); |
705 | | T8J = FMA(KP923879532, T8I, T8H); |
706 | | T8K = T5z - T5A; |
707 | | cr[WS(rs, 19)] = FMS(KP831469612, T8K, T8J); |
708 | | ci[WS(rs, 28)] = FMA(KP831469612, T8K, T8J); |
709 | | } |
710 | | { |
711 | | E T8L, T8M, T5y, T5B; |
712 | | T8L = FNMS(KP923879532, T8I, T8H); |
713 | | T8M = T5w - T4X; |
714 | | cr[WS(rs, 27)] = FMS(KP831469612, T8M, T8L); |
715 | | ci[WS(rs, 20)] = FMA(KP831469612, T8M, T8L); |
716 | | T5y = FNMS(KP923879532, T4n, T3S); |
717 | | T5B = T5z + T5A; |
718 | | cr[WS(rs, 11)] = FMA(KP831469612, T5B, T5y); |
719 | | ci[WS(rs, 4)] = FNMS(KP831469612, T5B, T5y); |
720 | | } |
721 | | { |
722 | | E T5G, T5N, T8D, T8E; |
723 | | T5G = FMA(KP923879532, T5F, T5C); |
724 | | T5N = T5J + T5M; |
725 | | cr[WS(rs, 15)] = FNMS(KP980785280, T5N, T5G); |
726 | | ci[0] = FMA(KP980785280, T5N, T5G); |
727 | | T8D = FMA(KP923879532, T8C, T8B); |
728 | | T8E = T5Q - T5P; |
729 | | cr[WS(rs, 31)] = FMS(KP980785280, T8E, T8D); |
730 | | ci[WS(rs, 16)] = FMA(KP980785280, T8E, T8D); |
731 | | } |
732 | | { |
733 | | E T8F, T8G, T5O, T5R; |
734 | | T8F = FNMS(KP923879532, T8C, T8B); |
735 | | T8G = T5M - T5J; |
736 | | cr[WS(rs, 23)] = FMS(KP980785280, T8G, T8F); |
737 | | ci[WS(rs, 24)] = FMA(KP980785280, T8G, T8F); |
738 | | T5O = FNMS(KP923879532, T5F, T5C); |
739 | | T5R = T5P + T5Q; |
740 | | ci[WS(rs, 8)] = FNMS(KP980785280, T5R, T5O); |
741 | | cr[WS(rs, 7)] = FMA(KP980785280, T5R, T5O); |
742 | | } |
743 | | } |
744 | | { |
745 | | E T6I, T7m, T7w, T7A, T8l, T8r, T6T, T8m, T75, T7k, T7p, T8s, T7t, T7z, T7g; |
746 | | E T7j; |
747 | | { |
748 | | E T6E, T6H, T7u, T7v; |
749 | | T6E = T8 - Tl; |
750 | | T6H = T6F - T6G; |
751 | | T6I = T6E - T6H; |
752 | | T7m = T6E + T6H; |
753 | | T7u = T76 + T79; |
754 | | T7v = T7e - T7d; |
755 | | T7w = FNMS(KP414213562, T7v, T7u); |
756 | | T7A = FMA(KP414213562, T7u, T7v); |
757 | | } |
758 | | { |
759 | | E T8j, T8k, T6N, T6S; |
760 | | T8j = Tz - TM; |
761 | | T8k = T87 - T83; |
762 | | T8l = T8j + T8k; |
763 | | T8r = T8k - T8j; |
764 | | T6N = T6J + T6M; |
765 | | T6S = T6O - T6R; |
766 | | T6T = T6N + T6S; |
767 | | T8m = T6N - T6S; |
768 | | } |
769 | | { |
770 | | E T6Z, T74, T7n, T7o; |
771 | | T6Z = T6V - T6Y; |
772 | | T74 = T72 - T73; |
773 | | T75 = FMA(KP414213562, T74, T6Z); |
774 | | T7k = FNMS(KP414213562, T6Z, T74); |
775 | | T7n = T6J - T6M; |
776 | | T7o = T6O + T6R; |
777 | | T7p = T7n + T7o; |
778 | | T8s = T7o - T7n; |
779 | | } |
780 | | { |
781 | | E T7r, T7s, T7a, T7f; |
782 | | T7r = T6V + T6Y; |
783 | | T7s = T72 + T73; |
784 | | T7t = FNMS(KP414213562, T7s, T7r); |
785 | | T7z = FMA(KP414213562, T7r, T7s); |
786 | | T7a = T76 - T79; |
787 | | T7f = T7d + T7e; |
788 | | T7g = FNMS(KP414213562, T7f, T7a); |
789 | | T7j = FMA(KP414213562, T7a, T7f); |
790 | | } |
791 | | { |
792 | | E T6U, T7h, T8t, T8u; |
793 | | T6U = FMA(KP707106781, T6T, T6I); |
794 | | T7h = T75 + T7g; |
795 | | ci[WS(rs, 13)] = FNMS(KP923879532, T7h, T6U); |
796 | | cr[WS(rs, 2)] = FMA(KP923879532, T7h, T6U); |
797 | | T8t = FMA(KP707106781, T8s, T8r); |
798 | | T8u = T7k + T7j; |
799 | | cr[WS(rs, 18)] = FMS(KP923879532, T8u, T8t); |
800 | | ci[WS(rs, 29)] = FMA(KP923879532, T8u, T8t); |
801 | | } |
802 | | { |
803 | | E T8v, T8w, T7i, T7l; |
804 | | T8v = FNMS(KP707106781, T8s, T8r); |
805 | | T8w = T7g - T75; |
806 | | cr[WS(rs, 26)] = FMS(KP923879532, T8w, T8v); |
807 | | ci[WS(rs, 21)] = FMA(KP923879532, T8w, T8v); |
808 | | T7i = FNMS(KP707106781, T6T, T6I); |
809 | | T7l = T7j - T7k; |
810 | | cr[WS(rs, 10)] = FNMS(KP923879532, T7l, T7i); |
811 | | ci[WS(rs, 5)] = FMA(KP923879532, T7l, T7i); |
812 | | } |
813 | | { |
814 | | E T7q, T7x, T8n, T8o; |
815 | | T7q = FMA(KP707106781, T7p, T7m); |
816 | | T7x = T7t + T7w; |
817 | | cr[WS(rs, 14)] = FNMS(KP923879532, T7x, T7q); |
818 | | ci[WS(rs, 1)] = FMA(KP923879532, T7x, T7q); |
819 | | T8n = FMA(KP707106781, T8m, T8l); |
820 | | T8o = T7A - T7z; |
821 | | cr[WS(rs, 30)] = FMS(KP923879532, T8o, T8n); |
822 | | ci[WS(rs, 17)] = FMA(KP923879532, T8o, T8n); |
823 | | } |
824 | | { |
825 | | E T8p, T8q, T7y, T7B; |
826 | | T8p = FNMS(KP707106781, T8m, T8l); |
827 | | T8q = T7w - T7t; |
828 | | cr[WS(rs, 22)] = FMS(KP923879532, T8q, T8p); |
829 | | ci[WS(rs, 25)] = FMA(KP923879532, T8q, T8p); |
830 | | T7y = FNMS(KP707106781, T7p, T7m); |
831 | | T7B = T7z + T7A; |
832 | | ci[WS(rs, 9)] = FNMS(KP923879532, T7B, T7y); |
833 | | cr[WS(rs, 6)] = FMA(KP923879532, T7B, T7y); |
834 | | } |
835 | | } |
836 | | { |
837 | | E T5W, T6o, T63, T8W, T8P, T8V, T6r, T8Q, T6i, T6C, T6l, T6y, T6b, T6B, T6m; |
838 | | E T6v; |
839 | | { |
840 | | E T5S, T5V, T6p, T6q; |
841 | | T5S = T3w + T3B; |
842 | | T5V = T5T + T5U; |
843 | | T5W = FMA(KP707106781, T5V, T5S); |
844 | | T6o = FNMS(KP707106781, T5V, T5S); |
845 | | { |
846 | | E T5Z, T62, T8N, T8O; |
847 | | T5Z = FMA(KP414213562, T5Y, T5X); |
848 | | T62 = FNMS(KP414213562, T61, T60); |
849 | | T63 = T5Z + T62; |
850 | | T8W = T5Z - T62; |
851 | | T8N = T8y - T8x; |
852 | | T8O = T3Q - T3J; |
853 | | T8P = FMA(KP707106781, T8O, T8N); |
854 | | T8V = FNMS(KP707106781, T8O, T8N); |
855 | | } |
856 | | T6p = FMA(KP414213562, T60, T61); |
857 | | T6q = FNMS(KP414213562, T5X, T5Y); |
858 | | T6r = T6p - T6q; |
859 | | T8Q = T6q + T6p; |
860 | | { |
861 | | E T6e, T6w, T6h, T6x, T6d, T6g; |
862 | | T6d = T5t + T5s; |
863 | | T6e = FMA(KP707106781, T6d, T6c); |
864 | | T6w = FNMS(KP707106781, T6d, T6c); |
865 | | T6g = T5i - T5b; |
866 | | T6h = FMA(KP707106781, T6g, T6f); |
867 | | T6x = FNMS(KP707106781, T6g, T6f); |
868 | | T6i = FNMS(KP198912367, T6h, T6e); |
869 | | T6C = FNMS(KP668178637, T6w, T6x); |
870 | | T6l = FMA(KP198912367, T6e, T6h); |
871 | | T6y = FMA(KP668178637, T6x, T6w); |
872 | | } |
873 | | { |
874 | | E T67, T6t, T6a, T6u, T66, T69; |
875 | | T66 = T4T - T4U; |
876 | | T67 = FMA(KP707106781, T66, T65); |
877 | | T6t = FNMS(KP707106781, T66, T65); |
878 | | T69 = T4J - T4C; |
879 | | T6a = FMA(KP707106781, T69, T68); |
880 | | T6u = FNMS(KP707106781, T69, T68); |
881 | | T6b = FMA(KP198912367, T6a, T67); |
882 | | T6B = FMA(KP668178637, T6t, T6u); |
883 | | T6m = FNMS(KP198912367, T67, T6a); |
884 | | T6v = FNMS(KP668178637, T6u, T6t); |
885 | | } |
886 | | } |
887 | | { |
888 | | E T64, T6j, T8X, T8Y; |
889 | | T64 = FMA(KP923879532, T63, T5W); |
890 | | T6j = T6b + T6i; |
891 | | ci[WS(rs, 14)] = FNMS(KP980785280, T6j, T64); |
892 | | cr[WS(rs, 1)] = FMA(KP980785280, T6j, T64); |
893 | | T8X = FMA(KP923879532, T8W, T8V); |
894 | | T8Y = T6B + T6C; |
895 | | cr[WS(rs, 29)] = -(FMA(KP831469612, T8Y, T8X)); |
896 | | ci[WS(rs, 18)] = FNMS(KP831469612, T8Y, T8X); |
897 | | } |
898 | | { |
899 | | E T8Z, T90, T6k, T6n; |
900 | | T8Z = FNMS(KP923879532, T8W, T8V); |
901 | | T90 = T6y - T6v; |
902 | | cr[WS(rs, 21)] = FMS(KP831469612, T90, T8Z); |
903 | | ci[WS(rs, 26)] = FMA(KP831469612, T90, T8Z); |
904 | | T6k = FNMS(KP923879532, T63, T5W); |
905 | | T6n = T6l - T6m; |
906 | | cr[WS(rs, 9)] = FNMS(KP980785280, T6n, T6k); |
907 | | ci[WS(rs, 6)] = FMA(KP980785280, T6n, T6k); |
908 | | } |
909 | | { |
910 | | E T6s, T6z, T8R, T8S; |
911 | | T6s = FMA(KP923879532, T6r, T6o); |
912 | | T6z = T6v + T6y; |
913 | | cr[WS(rs, 13)] = FNMS(KP831469612, T6z, T6s); |
914 | | ci[WS(rs, 2)] = FMA(KP831469612, T6z, T6s); |
915 | | T8R = FMA(KP923879532, T8Q, T8P); |
916 | | T8S = T6m + T6l; |
917 | | cr[WS(rs, 17)] = FMS(KP980785280, T8S, T8R); |
918 | | ci[WS(rs, 30)] = FMA(KP980785280, T8S, T8R); |
919 | | } |
920 | | { |
921 | | E T8T, T8U, T6A, T6D; |
922 | | T8T = FNMS(KP923879532, T8Q, T8P); |
923 | | T8U = T6i - T6b; |
924 | | cr[WS(rs, 25)] = FMS(KP980785280, T8U, T8T); |
925 | | ci[WS(rs, 22)] = FMA(KP980785280, T8U, T8T); |
926 | | T6A = FNMS(KP923879532, T6r, T6o); |
927 | | T6D = T6B - T6C; |
928 | | ci[WS(rs, 10)] = FNMS(KP831469612, T6D, T6A); |
929 | | cr[WS(rs, 5)] = FMA(KP831469612, T6D, T6A); |
930 | | } |
931 | | } |
932 | | } |
933 | | } |
934 | | } |
935 | | |
936 | | static const tw_instr twinstr[] = { |
937 | | { TW_FULL, 1, 32 }, |
938 | | { TW_NEXT, 1, 0 } |
939 | | }; |
940 | | |
941 | | static const hc2hc_desc desc = { 32, "hf_32", twinstr, &GENUS, { 236, 62, 198, 0 } }; |
942 | | |
943 | | void X(codelet_hf_32) (planner *p) { |
944 | | X(khc2hc_register) (p, hf_32, &desc); |
945 | | } |
946 | | #else |
947 | | |
948 | | /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -n 32 -dit -name hf_32 -include rdft/scalar/hf.h */ |
949 | | |
950 | | /* |
951 | | * This function contains 434 FP additions, 208 FP multiplications, |
952 | | * (or, 340 additions, 114 multiplications, 94 fused multiply/add), |
953 | | * 96 stack variables, 7 constants, and 128 memory accesses |
954 | | */ |
955 | | #include "rdft/scalar/hf.h" |
956 | | |
957 | | static void hf_32(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) |
958 | 0 | { |
959 | 0 | DK(KP555570233, +0.555570233019602224742830813948532874374937191); |
960 | 0 | DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
961 | 0 | DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
962 | 0 | DK(KP195090322, +0.195090322016128267848284868477022240927691618); |
963 | 0 | DK(KP382683432, +0.382683432365089771728459984030398866761344562); |
964 | 0 | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
965 | 0 | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
966 | 0 | { |
967 | 0 | INT m; |
968 | 0 | for (m = mb, W = W + ((mb - 1) * 62); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 62, MAKE_VOLATILE_STRIDE(64, rs)) { |
969 | 0 | E Tj, T5F, T7C, T7Q, T35, T4T, T78, T7m, T1Q, T61, T5Y, T6J, T3K, T56, T41; |
970 | 0 | E T59, T2B, T67, T6e, T6O, T4b, T5g, T4s, T5d, TG, T7l, T5I, T73, T3a, T4U; |
971 | 0 | E T3f, T4V, T14, T5K, T5N, T6F, T3m, T4Z, T3r, T4Y, T1r, T5P, T5S, T6E, T3x; |
972 | 0 | E T52, T3C, T51, T2d, T5Z, T64, T6K, T3V, T5a, T44, T57, T2Y, T6f, T6a, T6P; |
973 | 0 | E T4m, T5e, T4v, T5h; |
974 | 0 | { |
975 | 0 | E T1, T76, T6, T75, Tc, T32, Th, T33; |
976 | 0 | T1 = cr[0]; |
977 | 0 | T76 = ci[0]; |
978 | 0 | { |
979 | 0 | E T3, T5, T2, T4; |
980 | 0 | T3 = cr[WS(rs, 16)]; |
981 | 0 | T5 = ci[WS(rs, 16)]; |
982 | 0 | T2 = W[30]; |
983 | 0 | T4 = W[31]; |
984 | 0 | T6 = FMA(T2, T3, T4 * T5); |
985 | 0 | T75 = FNMS(T4, T3, T2 * T5); |
986 | 0 | } |
987 | 0 | { |
988 | 0 | E T9, Tb, T8, Ta; |
989 | 0 | T9 = cr[WS(rs, 8)]; |
990 | 0 | Tb = ci[WS(rs, 8)]; |
991 | 0 | T8 = W[14]; |
992 | 0 | Ta = W[15]; |
993 | 0 | Tc = FMA(T8, T9, Ta * Tb); |
994 | 0 | T32 = FNMS(Ta, T9, T8 * Tb); |
995 | 0 | } |
996 | 0 | { |
997 | 0 | E Te, Tg, Td, Tf; |
998 | 0 | Te = cr[WS(rs, 24)]; |
999 | 0 | Tg = ci[WS(rs, 24)]; |
1000 | 0 | Td = W[46]; |
1001 | 0 | Tf = W[47]; |
1002 | 0 | Th = FMA(Td, Te, Tf * Tg); |
1003 | 0 | T33 = FNMS(Tf, Te, Td * Tg); |
1004 | 0 | } |
1005 | 0 | { |
1006 | 0 | E T7, Ti, T7A, T7B; |
1007 | 0 | T7 = T1 + T6; |
1008 | 0 | Ti = Tc + Th; |
1009 | 0 | Tj = T7 + Ti; |
1010 | 0 | T5F = T7 - Ti; |
1011 | 0 | T7A = Tc - Th; |
1012 | 0 | T7B = T76 - T75; |
1013 | 0 | T7C = T7A + T7B; |
1014 | 0 | T7Q = T7B - T7A; |
1015 | 0 | } |
1016 | 0 | { |
1017 | 0 | E T31, T34, T74, T77; |
1018 | 0 | T31 = T1 - T6; |
1019 | 0 | T34 = T32 - T33; |
1020 | 0 | T35 = T31 + T34; |
1021 | 0 | T4T = T31 - T34; |
1022 | 0 | T74 = T32 + T33; |
1023 | 0 | T77 = T75 + T76; |
1024 | 0 | T78 = T74 + T77; |
1025 | 0 | T7m = T77 - T74; |
1026 | 0 | } |
1027 | 0 | } |
1028 | 0 | { |
1029 | 0 | E T1y, T3X, T1O, T3I, T1D, T3Y, T1J, T3H; |
1030 | 0 | { |
1031 | 0 | E T1v, T1x, T1u, T1w; |
1032 | 0 | T1v = cr[WS(rs, 1)]; |
1033 | 0 | T1x = ci[WS(rs, 1)]; |
1034 | 0 | T1u = W[0]; |
1035 | 0 | T1w = W[1]; |
1036 | 0 | T1y = FMA(T1u, T1v, T1w * T1x); |
1037 | 0 | T3X = FNMS(T1w, T1v, T1u * T1x); |
1038 | 0 | } |
1039 | 0 | { |
1040 | 0 | E T1L, T1N, T1K, T1M; |
1041 | 0 | T1L = cr[WS(rs, 25)]; |
1042 | 0 | T1N = ci[WS(rs, 25)]; |
1043 | 0 | T1K = W[48]; |
1044 | 0 | T1M = W[49]; |
1045 | 0 | T1O = FMA(T1K, T1L, T1M * T1N); |
1046 | 0 | T3I = FNMS(T1M, T1L, T1K * T1N); |
1047 | 0 | } |
1048 | 0 | { |
1049 | 0 | E T1A, T1C, T1z, T1B; |
1050 | 0 | T1A = cr[WS(rs, 17)]; |
1051 | 0 | T1C = ci[WS(rs, 17)]; |
1052 | 0 | T1z = W[32]; |
1053 | 0 | T1B = W[33]; |
1054 | 0 | T1D = FMA(T1z, T1A, T1B * T1C); |
1055 | 0 | T3Y = FNMS(T1B, T1A, T1z * T1C); |
1056 | 0 | } |
1057 | 0 | { |
1058 | 0 | E T1G, T1I, T1F, T1H; |
1059 | 0 | T1G = cr[WS(rs, 9)]; |
1060 | 0 | T1I = ci[WS(rs, 9)]; |
1061 | 0 | T1F = W[16]; |
1062 | 0 | T1H = W[17]; |
1063 | 0 | T1J = FMA(T1F, T1G, T1H * T1I); |
1064 | 0 | T3H = FNMS(T1H, T1G, T1F * T1I); |
1065 | 0 | } |
1066 | 0 | { |
1067 | 0 | E T1E, T1P, T5W, T5X; |
1068 | 0 | T1E = T1y + T1D; |
1069 | 0 | T1P = T1J + T1O; |
1070 | 0 | T1Q = T1E + T1P; |
1071 | 0 | T61 = T1E - T1P; |
1072 | 0 | T5W = T3X + T3Y; |
1073 | 0 | T5X = T3H + T3I; |
1074 | 0 | T5Y = T5W - T5X; |
1075 | 0 | T6J = T5W + T5X; |
1076 | 0 | } |
1077 | 0 | { |
1078 | 0 | E T3G, T3J, T3Z, T40; |
1079 | 0 | T3G = T1y - T1D; |
1080 | 0 | T3J = T3H - T3I; |
1081 | 0 | T3K = T3G + T3J; |
1082 | 0 | T56 = T3G - T3J; |
1083 | 0 | T3Z = T3X - T3Y; |
1084 | 0 | T40 = T1J - T1O; |
1085 | 0 | T41 = T3Z - T40; |
1086 | 0 | T59 = T3Z + T40; |
1087 | 0 | } |
1088 | 0 | } |
1089 | 0 | { |
1090 | 0 | E T2j, T47, T2z, T4q, T2o, T48, T2u, T4p; |
1091 | 0 | { |
1092 | 0 | E T2g, T2i, T2f, T2h; |
1093 | 0 | T2g = cr[WS(rs, 31)]; |
1094 | 0 | T2i = ci[WS(rs, 31)]; |
1095 | 0 | T2f = W[60]; |
1096 | 0 | T2h = W[61]; |
1097 | 0 | T2j = FMA(T2f, T2g, T2h * T2i); |
1098 | 0 | T47 = FNMS(T2h, T2g, T2f * T2i); |
1099 | 0 | } |
1100 | 0 | { |
1101 | 0 | E T2w, T2y, T2v, T2x; |
1102 | 0 | T2w = cr[WS(rs, 23)]; |
1103 | 0 | T2y = ci[WS(rs, 23)]; |
1104 | 0 | T2v = W[44]; |
1105 | 0 | T2x = W[45]; |
1106 | 0 | T2z = FMA(T2v, T2w, T2x * T2y); |
1107 | 0 | T4q = FNMS(T2x, T2w, T2v * T2y); |
1108 | 0 | } |
1109 | 0 | { |
1110 | 0 | E T2l, T2n, T2k, T2m; |
1111 | 0 | T2l = cr[WS(rs, 15)]; |
1112 | 0 | T2n = ci[WS(rs, 15)]; |
1113 | 0 | T2k = W[28]; |
1114 | 0 | T2m = W[29]; |
1115 | 0 | T2o = FMA(T2k, T2l, T2m * T2n); |
1116 | 0 | T48 = FNMS(T2m, T2l, T2k * T2n); |
1117 | 0 | } |
1118 | 0 | { |
1119 | 0 | E T2r, T2t, T2q, T2s; |
1120 | 0 | T2r = cr[WS(rs, 7)]; |
1121 | 0 | T2t = ci[WS(rs, 7)]; |
1122 | 0 | T2q = W[12]; |
1123 | 0 | T2s = W[13]; |
1124 | 0 | T2u = FMA(T2q, T2r, T2s * T2t); |
1125 | 0 | T4p = FNMS(T2s, T2r, T2q * T2t); |
1126 | 0 | } |
1127 | 0 | { |
1128 | 0 | E T2p, T2A, T6c, T6d; |
1129 | 0 | T2p = T2j + T2o; |
1130 | 0 | T2A = T2u + T2z; |
1131 | 0 | T2B = T2p + T2A; |
1132 | 0 | T67 = T2p - T2A; |
1133 | 0 | T6c = T47 + T48; |
1134 | 0 | T6d = T4p + T4q; |
1135 | 0 | T6e = T6c - T6d; |
1136 | 0 | T6O = T6c + T6d; |
1137 | 0 | } |
1138 | 0 | { |
1139 | 0 | E T49, T4a, T4o, T4r; |
1140 | 0 | T49 = T47 - T48; |
1141 | 0 | T4a = T2u - T2z; |
1142 | 0 | T4b = T49 - T4a; |
1143 | 0 | T5g = T49 + T4a; |
1144 | 0 | T4o = T2j - T2o; |
1145 | 0 | T4r = T4p - T4q; |
1146 | 0 | T4s = T4o + T4r; |
1147 | 0 | T5d = T4o - T4r; |
1148 | 0 | } |
1149 | 0 | } |
1150 | 0 | { |
1151 | 0 | E To, T37, TE, T3d, Tt, T38, Tz, T3c; |
1152 | 0 | { |
1153 | 0 | E Tl, Tn, Tk, Tm; |
1154 | 0 | Tl = cr[WS(rs, 4)]; |
1155 | 0 | Tn = ci[WS(rs, 4)]; |
1156 | 0 | Tk = W[6]; |
1157 | 0 | Tm = W[7]; |
1158 | 0 | To = FMA(Tk, Tl, Tm * Tn); |
1159 | 0 | T37 = FNMS(Tm, Tl, Tk * Tn); |
1160 | 0 | } |
1161 | 0 | { |
1162 | 0 | E TB, TD, TA, TC; |
1163 | 0 | TB = cr[WS(rs, 12)]; |
1164 | 0 | TD = ci[WS(rs, 12)]; |
1165 | 0 | TA = W[22]; |
1166 | 0 | TC = W[23]; |
1167 | 0 | TE = FMA(TA, TB, TC * TD); |
1168 | 0 | T3d = FNMS(TC, TB, TA * TD); |
1169 | 0 | } |
1170 | 0 | { |
1171 | 0 | E Tq, Ts, Tp, Tr; |
1172 | 0 | Tq = cr[WS(rs, 20)]; |
1173 | 0 | Ts = ci[WS(rs, 20)]; |
1174 | 0 | Tp = W[38]; |
1175 | 0 | Tr = W[39]; |
1176 | 0 | Tt = FMA(Tp, Tq, Tr * Ts); |
1177 | 0 | T38 = FNMS(Tr, Tq, Tp * Ts); |
1178 | 0 | } |
1179 | 0 | { |
1180 | 0 | E Tw, Ty, Tv, Tx; |
1181 | 0 | Tw = cr[WS(rs, 28)]; |
1182 | 0 | Ty = ci[WS(rs, 28)]; |
1183 | 0 | Tv = W[54]; |
1184 | 0 | Tx = W[55]; |
1185 | 0 | Tz = FMA(Tv, Tw, Tx * Ty); |
1186 | 0 | T3c = FNMS(Tx, Tw, Tv * Ty); |
1187 | 0 | } |
1188 | 0 | { |
1189 | 0 | E Tu, TF, T5G, T5H; |
1190 | 0 | Tu = To + Tt; |
1191 | 0 | TF = Tz + TE; |
1192 | 0 | TG = Tu + TF; |
1193 | 0 | T7l = Tu - TF; |
1194 | 0 | T5G = T3c + T3d; |
1195 | 0 | T5H = T37 + T38; |
1196 | 0 | T5I = T5G - T5H; |
1197 | 0 | T73 = T5H + T5G; |
1198 | 0 | } |
1199 | 0 | { |
1200 | 0 | E T36, T39, T3b, T3e; |
1201 | 0 | T36 = To - Tt; |
1202 | 0 | T39 = T37 - T38; |
1203 | 0 | T3a = T36 + T39; |
1204 | 0 | T4U = T36 - T39; |
1205 | 0 | T3b = Tz - TE; |
1206 | 0 | T3e = T3c - T3d; |
1207 | 0 | T3f = T3b - T3e; |
1208 | 0 | T4V = T3b + T3e; |
1209 | 0 | } |
1210 | 0 | } |
1211 | 0 | { |
1212 | 0 | E TM, T3n, T12, T3k, TR, T3o, TX, T3j; |
1213 | 0 | { |
1214 | 0 | E TJ, TL, TI, TK; |
1215 | 0 | TJ = cr[WS(rs, 2)]; |
1216 | 0 | TL = ci[WS(rs, 2)]; |
1217 | 0 | TI = W[2]; |
1218 | 0 | TK = W[3]; |
1219 | 0 | TM = FMA(TI, TJ, TK * TL); |
1220 | 0 | T3n = FNMS(TK, TJ, TI * TL); |
1221 | 0 | } |
1222 | 0 | { |
1223 | 0 | E TZ, T11, TY, T10; |
1224 | 0 | TZ = cr[WS(rs, 26)]; |
1225 | 0 | T11 = ci[WS(rs, 26)]; |
1226 | 0 | TY = W[50]; |
1227 | 0 | T10 = W[51]; |
1228 | 0 | T12 = FMA(TY, TZ, T10 * T11); |
1229 | 0 | T3k = FNMS(T10, TZ, TY * T11); |
1230 | 0 | } |
1231 | 0 | { |
1232 | 0 | E TO, TQ, TN, TP; |
1233 | 0 | TO = cr[WS(rs, 18)]; |
1234 | 0 | TQ = ci[WS(rs, 18)]; |
1235 | 0 | TN = W[34]; |
1236 | 0 | TP = W[35]; |
1237 | 0 | TR = FMA(TN, TO, TP * TQ); |
1238 | 0 | T3o = FNMS(TP, TO, TN * TQ); |
1239 | 0 | } |
1240 | 0 | { |
1241 | 0 | E TU, TW, TT, TV; |
1242 | 0 | TU = cr[WS(rs, 10)]; |
1243 | 0 | TW = ci[WS(rs, 10)]; |
1244 | 0 | TT = W[18]; |
1245 | 0 | TV = W[19]; |
1246 | 0 | TX = FMA(TT, TU, TV * TW); |
1247 | 0 | T3j = FNMS(TV, TU, TT * TW); |
1248 | 0 | } |
1249 | 0 | { |
1250 | 0 | E TS, T13, T5L, T5M; |
1251 | 0 | TS = TM + TR; |
1252 | 0 | T13 = TX + T12; |
1253 | 0 | T14 = TS + T13; |
1254 | 0 | T5K = TS - T13; |
1255 | 0 | T5L = T3n + T3o; |
1256 | 0 | T5M = T3j + T3k; |
1257 | 0 | T5N = T5L - T5M; |
1258 | 0 | T6F = T5L + T5M; |
1259 | 0 | } |
1260 | 0 | { |
1261 | 0 | E T3i, T3l, T3p, T3q; |
1262 | 0 | T3i = TM - TR; |
1263 | 0 | T3l = T3j - T3k; |
1264 | 0 | T3m = T3i + T3l; |
1265 | 0 | T4Z = T3i - T3l; |
1266 | 0 | T3p = T3n - T3o; |
1267 | 0 | T3q = TX - T12; |
1268 | 0 | T3r = T3p - T3q; |
1269 | 0 | T4Y = T3p + T3q; |
1270 | 0 | } |
1271 | 0 | } |
1272 | 0 | { |
1273 | 0 | E T19, T3t, T1p, T3A, T1e, T3u, T1k, T3z; |
1274 | 0 | { |
1275 | 0 | E T16, T18, T15, T17; |
1276 | 0 | T16 = cr[WS(rs, 30)]; |
1277 | 0 | T18 = ci[WS(rs, 30)]; |
1278 | 0 | T15 = W[58]; |
1279 | 0 | T17 = W[59]; |
1280 | 0 | T19 = FMA(T15, T16, T17 * T18); |
1281 | 0 | T3t = FNMS(T17, T16, T15 * T18); |
1282 | 0 | } |
1283 | 0 | { |
1284 | 0 | E T1m, T1o, T1l, T1n; |
1285 | 0 | T1m = cr[WS(rs, 22)]; |
1286 | 0 | T1o = ci[WS(rs, 22)]; |
1287 | 0 | T1l = W[42]; |
1288 | 0 | T1n = W[43]; |
1289 | 0 | T1p = FMA(T1l, T1m, T1n * T1o); |
1290 | 0 | T3A = FNMS(T1n, T1m, T1l * T1o); |
1291 | 0 | } |
1292 | 0 | { |
1293 | 0 | E T1b, T1d, T1a, T1c; |
1294 | 0 | T1b = cr[WS(rs, 14)]; |
1295 | 0 | T1d = ci[WS(rs, 14)]; |
1296 | 0 | T1a = W[26]; |
1297 | 0 | T1c = W[27]; |
1298 | 0 | T1e = FMA(T1a, T1b, T1c * T1d); |
1299 | 0 | T3u = FNMS(T1c, T1b, T1a * T1d); |
1300 | 0 | } |
1301 | 0 | { |
1302 | 0 | E T1h, T1j, T1g, T1i; |
1303 | 0 | T1h = cr[WS(rs, 6)]; |
1304 | 0 | T1j = ci[WS(rs, 6)]; |
1305 | 0 | T1g = W[10]; |
1306 | 0 | T1i = W[11]; |
1307 | 0 | T1k = FMA(T1g, T1h, T1i * T1j); |
1308 | 0 | T3z = FNMS(T1i, T1h, T1g * T1j); |
1309 | 0 | } |
1310 | 0 | { |
1311 | 0 | E T1f, T1q, T5Q, T5R; |
1312 | 0 | T1f = T19 + T1e; |
1313 | 0 | T1q = T1k + T1p; |
1314 | 0 | T1r = T1f + T1q; |
1315 | 0 | T5P = T1f - T1q; |
1316 | 0 | T5Q = T3t + T3u; |
1317 | 0 | T5R = T3z + T3A; |
1318 | 0 | T5S = T5Q - T5R; |
1319 | 0 | T6E = T5Q + T5R; |
1320 | 0 | } |
1321 | 0 | { |
1322 | 0 | E T3v, T3w, T3y, T3B; |
1323 | 0 | T3v = T3t - T3u; |
1324 | 0 | T3w = T1k - T1p; |
1325 | 0 | T3x = T3v - T3w; |
1326 | 0 | T52 = T3v + T3w; |
1327 | 0 | T3y = T19 - T1e; |
1328 | 0 | T3B = T3z - T3A; |
1329 | 0 | T3C = T3y + T3B; |
1330 | 0 | T51 = T3y - T3B; |
1331 | 0 | } |
1332 | 0 | } |
1333 | 0 | { |
1334 | 0 | E T1V, T3M, T20, T3N, T3L, T3O, T26, T3Q, T2b, T3R, T3S, T3T; |
1335 | 0 | { |
1336 | 0 | E T1S, T1U, T1R, T1T; |
1337 | 0 | T1S = cr[WS(rs, 5)]; |
1338 | 0 | T1U = ci[WS(rs, 5)]; |
1339 | 0 | T1R = W[8]; |
1340 | 0 | T1T = W[9]; |
1341 | 0 | T1V = FMA(T1R, T1S, T1T * T1U); |
1342 | 0 | T3M = FNMS(T1T, T1S, T1R * T1U); |
1343 | 0 | } |
1344 | 0 | { |
1345 | 0 | E T1X, T1Z, T1W, T1Y; |
1346 | 0 | T1X = cr[WS(rs, 21)]; |
1347 | 0 | T1Z = ci[WS(rs, 21)]; |
1348 | 0 | T1W = W[40]; |
1349 | 0 | T1Y = W[41]; |
1350 | 0 | T20 = FMA(T1W, T1X, T1Y * T1Z); |
1351 | 0 | T3N = FNMS(T1Y, T1X, T1W * T1Z); |
1352 | 0 | } |
1353 | 0 | T3L = T1V - T20; |
1354 | 0 | T3O = T3M - T3N; |
1355 | 0 | { |
1356 | 0 | E T23, T25, T22, T24; |
1357 | 0 | T23 = cr[WS(rs, 29)]; |
1358 | 0 | T25 = ci[WS(rs, 29)]; |
1359 | 0 | T22 = W[56]; |
1360 | 0 | T24 = W[57]; |
1361 | 0 | T26 = FMA(T22, T23, T24 * T25); |
1362 | 0 | T3Q = FNMS(T24, T23, T22 * T25); |
1363 | 0 | } |
1364 | 0 | { |
1365 | 0 | E T28, T2a, T27, T29; |
1366 | 0 | T28 = cr[WS(rs, 13)]; |
1367 | 0 | T2a = ci[WS(rs, 13)]; |
1368 | 0 | T27 = W[24]; |
1369 | 0 | T29 = W[25]; |
1370 | 0 | T2b = FMA(T27, T28, T29 * T2a); |
1371 | 0 | T3R = FNMS(T29, T28, T27 * T2a); |
1372 | 0 | } |
1373 | 0 | T3S = T3Q - T3R; |
1374 | 0 | T3T = T26 - T2b; |
1375 | 0 | { |
1376 | 0 | E T21, T2c, T62, T63; |
1377 | 0 | T21 = T1V + T20; |
1378 | 0 | T2c = T26 + T2b; |
1379 | 0 | T2d = T21 + T2c; |
1380 | 0 | T5Z = T21 - T2c; |
1381 | 0 | T62 = T3Q + T3R; |
1382 | 0 | T63 = T3M + T3N; |
1383 | 0 | T64 = T62 - T63; |
1384 | 0 | T6K = T63 + T62; |
1385 | 0 | } |
1386 | 0 | { |
1387 | 0 | E T3P, T3U, T42, T43; |
1388 | 0 | T3P = T3L + T3O; |
1389 | 0 | T3U = T3S - T3T; |
1390 | 0 | T3V = KP707106781 * (T3P - T3U); |
1391 | 0 | T5a = KP707106781 * (T3P + T3U); |
1392 | 0 | T42 = T3T + T3S; |
1393 | 0 | T43 = T3L - T3O; |
1394 | 0 | T44 = KP707106781 * (T42 - T43); |
1395 | 0 | T57 = KP707106781 * (T43 + T42); |
1396 | 0 | } |
1397 | 0 | } |
1398 | 0 | { |
1399 | 0 | E T2G, T4i, T2L, T4j, T4h, T4k, T2R, T4d, T2W, T4e, T4c, T4f; |
1400 | 0 | { |
1401 | 0 | E T2D, T2F, T2C, T2E; |
1402 | 0 | T2D = cr[WS(rs, 3)]; |
1403 | 0 | T2F = ci[WS(rs, 3)]; |
1404 | 0 | T2C = W[4]; |
1405 | 0 | T2E = W[5]; |
1406 | 0 | T2G = FMA(T2C, T2D, T2E * T2F); |
1407 | 0 | T4i = FNMS(T2E, T2D, T2C * T2F); |
1408 | 0 | } |
1409 | 0 | { |
1410 | 0 | E T2I, T2K, T2H, T2J; |
1411 | 0 | T2I = cr[WS(rs, 19)]; |
1412 | 0 | T2K = ci[WS(rs, 19)]; |
1413 | 0 | T2H = W[36]; |
1414 | 0 | T2J = W[37]; |
1415 | 0 | T2L = FMA(T2H, T2I, T2J * T2K); |
1416 | 0 | T4j = FNMS(T2J, T2I, T2H * T2K); |
1417 | 0 | } |
1418 | 0 | T4h = T2G - T2L; |
1419 | 0 | T4k = T4i - T4j; |
1420 | 0 | { |
1421 | 0 | E T2O, T2Q, T2N, T2P; |
1422 | 0 | T2O = cr[WS(rs, 27)]; |
1423 | 0 | T2Q = ci[WS(rs, 27)]; |
1424 | 0 | T2N = W[52]; |
1425 | 0 | T2P = W[53]; |
1426 | 0 | T2R = FMA(T2N, T2O, T2P * T2Q); |
1427 | 0 | T4d = FNMS(T2P, T2O, T2N * T2Q); |
1428 | 0 | } |
1429 | 0 | { |
1430 | 0 | E T2T, T2V, T2S, T2U; |
1431 | 0 | T2T = cr[WS(rs, 11)]; |
1432 | 0 | T2V = ci[WS(rs, 11)]; |
1433 | 0 | T2S = W[20]; |
1434 | 0 | T2U = W[21]; |
1435 | 0 | T2W = FMA(T2S, T2T, T2U * T2V); |
1436 | 0 | T4e = FNMS(T2U, T2T, T2S * T2V); |
1437 | 0 | } |
1438 | 0 | T4c = T2R - T2W; |
1439 | 0 | T4f = T4d - T4e; |
1440 | 0 | { |
1441 | 0 | E T2M, T2X, T68, T69; |
1442 | 0 | T2M = T2G + T2L; |
1443 | 0 | T2X = T2R + T2W; |
1444 | 0 | T2Y = T2M + T2X; |
1445 | 0 | T6f = T2M - T2X; |
1446 | 0 | T68 = T4d + T4e; |
1447 | 0 | T69 = T4i + T4j; |
1448 | 0 | T6a = T68 - T69; |
1449 | 0 | T6P = T69 + T68; |
1450 | 0 | } |
1451 | 0 | { |
1452 | 0 | E T4g, T4l, T4t, T4u; |
1453 | 0 | T4g = T4c + T4f; |
1454 | 0 | T4l = T4h - T4k; |
1455 | 0 | T4m = KP707106781 * (T4g - T4l); |
1456 | 0 | T5e = KP707106781 * (T4l + T4g); |
1457 | 0 | T4t = T4h + T4k; |
1458 | 0 | T4u = T4f - T4c; |
1459 | 0 | T4v = KP707106781 * (T4t - T4u); |
1460 | 0 | T5h = KP707106781 * (T4t + T4u); |
1461 | 0 | } |
1462 | 0 | } |
1463 | 0 | { |
1464 | 0 | E T1t, T6X, T7a, T7c, T30, T7b, T70, T71; |
1465 | 0 | { |
1466 | 0 | E TH, T1s, T72, T79; |
1467 | 0 | TH = Tj + TG; |
1468 | 0 | T1s = T14 + T1r; |
1469 | 0 | T1t = TH + T1s; |
1470 | 0 | T6X = TH - T1s; |
1471 | 0 | T72 = T6F + T6E; |
1472 | 0 | T79 = T73 + T78; |
1473 | 0 | T7a = T72 + T79; |
1474 | 0 | T7c = T79 - T72; |
1475 | 0 | } |
1476 | 0 | { |
1477 | 0 | E T2e, T2Z, T6Y, T6Z; |
1478 | 0 | T2e = T1Q + T2d; |
1479 | 0 | T2Z = T2B + T2Y; |
1480 | 0 | T30 = T2e + T2Z; |
1481 | 0 | T7b = T2Z - T2e; |
1482 | 0 | T6Y = T6O + T6P; |
1483 | 0 | T6Z = T6J + T6K; |
1484 | 0 | T70 = T6Y - T6Z; |
1485 | 0 | T71 = T6Z + T6Y; |
1486 | 0 | } |
1487 | 0 | ci[WS(rs, 15)] = T1t - T30; |
1488 | 0 | cr[WS(rs, 24)] = T7b - T7c; |
1489 | 0 | ci[WS(rs, 23)] = T7b + T7c; |
1490 | 0 | cr[0] = T1t + T30; |
1491 | 0 | cr[WS(rs, 8)] = T6X - T70; |
1492 | 0 | cr[WS(rs, 16)] = T71 - T7a; |
1493 | 0 | ci[WS(rs, 31)] = T71 + T7a; |
1494 | 0 | ci[WS(rs, 7)] = T6X + T70; |
1495 | 0 | } |
1496 | 0 | { |
1497 | 0 | E T4X, T5p, T7D, T7J, T54, T7y, T5z, T5D, T5c, T5m, T5s, T7I, T5w, T5C, T5j; |
1498 | 0 | E T5n, T4W, T7z; |
1499 | 0 | T4W = KP707106781 * (T4U + T4V); |
1500 | 0 | T4X = T4T - T4W; |
1501 | 0 | T5p = T4T + T4W; |
1502 | 0 | T7z = KP707106781 * (T3a - T3f); |
1503 | 0 | T7D = T7z + T7C; |
1504 | 0 | T7J = T7C - T7z; |
1505 | 0 | { |
1506 | 0 | E T50, T53, T5x, T5y; |
1507 | 0 | T50 = FMA(KP923879532, T4Y, KP382683432 * T4Z); |
1508 | 0 | T53 = FNMS(KP923879532, T52, KP382683432 * T51); |
1509 | 0 | T54 = T50 + T53; |
1510 | 0 | T7y = T50 - T53; |
1511 | 0 | T5x = T5d + T5e; |
1512 | 0 | T5y = T5g + T5h; |
1513 | 0 | T5z = FNMS(KP980785280, T5y, KP195090322 * T5x); |
1514 | 0 | T5D = FMA(KP980785280, T5x, KP195090322 * T5y); |
1515 | 0 | } |
1516 | 0 | { |
1517 | 0 | E T58, T5b, T5q, T5r; |
1518 | 0 | T58 = T56 - T57; |
1519 | 0 | T5b = T59 - T5a; |
1520 | 0 | T5c = FMA(KP831469612, T58, KP555570233 * T5b); |
1521 | 0 | T5m = FNMS(KP831469612, T5b, KP555570233 * T58); |
1522 | 0 | T5q = FNMS(KP382683432, T4Y, KP923879532 * T4Z); |
1523 | 0 | T5r = FMA(KP382683432, T52, KP923879532 * T51); |
1524 | 0 | T5s = T5q + T5r; |
1525 | 0 | T7I = T5r - T5q; |
1526 | 0 | } |
1527 | 0 | { |
1528 | 0 | E T5u, T5v, T5f, T5i; |
1529 | 0 | T5u = T56 + T57; |
1530 | 0 | T5v = T59 + T5a; |
1531 | 0 | T5w = FMA(KP195090322, T5u, KP980785280 * T5v); |
1532 | 0 | T5C = FNMS(KP195090322, T5v, KP980785280 * T5u); |
1533 | 0 | T5f = T5d - T5e; |
1534 | 0 | T5i = T5g - T5h; |
1535 | 0 | T5j = FNMS(KP555570233, T5i, KP831469612 * T5f); |
1536 | 0 | T5n = FMA(KP555570233, T5f, KP831469612 * T5i); |
1537 | 0 | } |
1538 | 0 | { |
1539 | 0 | E T55, T5k, T7H, T7K; |
1540 | 0 | T55 = T4X + T54; |
1541 | 0 | T5k = T5c + T5j; |
1542 | 0 | ci[WS(rs, 12)] = T55 - T5k; |
1543 | 0 | cr[WS(rs, 3)] = T55 + T5k; |
1544 | 0 | T7H = T5n - T5m; |
1545 | 0 | T7K = T7I + T7J; |
1546 | 0 | cr[WS(rs, 19)] = T7H - T7K; |
1547 | 0 | ci[WS(rs, 28)] = T7H + T7K; |
1548 | 0 | } |
1549 | 0 | { |
1550 | 0 | E T7L, T7M, T5l, T5o; |
1551 | 0 | T7L = T5j - T5c; |
1552 | 0 | T7M = T7J - T7I; |
1553 | 0 | cr[WS(rs, 27)] = T7L - T7M; |
1554 | 0 | ci[WS(rs, 20)] = T7L + T7M; |
1555 | 0 | T5l = T4X - T54; |
1556 | 0 | T5o = T5m + T5n; |
1557 | 0 | cr[WS(rs, 11)] = T5l - T5o; |
1558 | 0 | ci[WS(rs, 4)] = T5l + T5o; |
1559 | 0 | } |
1560 | 0 | { |
1561 | 0 | E T5t, T5A, T7x, T7E; |
1562 | 0 | T5t = T5p - T5s; |
1563 | 0 | T5A = T5w + T5z; |
1564 | 0 | ci[WS(rs, 8)] = T5t - T5A; |
1565 | 0 | cr[WS(rs, 7)] = T5t + T5A; |
1566 | 0 | T7x = T5z - T5w; |
1567 | 0 | T7E = T7y + T7D; |
1568 | 0 | cr[WS(rs, 31)] = T7x - T7E; |
1569 | 0 | ci[WS(rs, 16)] = T7x + T7E; |
1570 | 0 | } |
1571 | 0 | { |
1572 | 0 | E T7F, T7G, T5B, T5E; |
1573 | 0 | T7F = T5D - T5C; |
1574 | 0 | T7G = T7D - T7y; |
1575 | 0 | cr[WS(rs, 23)] = T7F - T7G; |
1576 | 0 | ci[WS(rs, 24)] = T7F + T7G; |
1577 | 0 | T5B = T5p + T5s; |
1578 | 0 | T5E = T5C + T5D; |
1579 | 0 | cr[WS(rs, 15)] = T5B - T5E; |
1580 | 0 | ci[0] = T5B + T5E; |
1581 | 0 | } |
1582 | 0 | } |
1583 | 0 | { |
1584 | 0 | E T6H, T6T, T7g, T7i, T6M, T6U, T6R, T6V; |
1585 | 0 | { |
1586 | 0 | E T6D, T6G, T7e, T7f; |
1587 | 0 | T6D = Tj - TG; |
1588 | 0 | T6G = T6E - T6F; |
1589 | 0 | T6H = T6D - T6G; |
1590 | 0 | T6T = T6D + T6G; |
1591 | 0 | T7e = T14 - T1r; |
1592 | 0 | T7f = T78 - T73; |
1593 | 0 | T7g = T7e + T7f; |
1594 | 0 | T7i = T7f - T7e; |
1595 | 0 | } |
1596 | 0 | { |
1597 | 0 | E T6I, T6L, T6N, T6Q; |
1598 | 0 | T6I = T1Q - T2d; |
1599 | 0 | T6L = T6J - T6K; |
1600 | 0 | T6M = T6I + T6L; |
1601 | 0 | T6U = T6I - T6L; |
1602 | 0 | T6N = T2B - T2Y; |
1603 | 0 | T6Q = T6O - T6P; |
1604 | 0 | T6R = T6N - T6Q; |
1605 | 0 | T6V = T6N + T6Q; |
1606 | 0 | } |
1607 | 0 | { |
1608 | 0 | E T6S, T7h, T6W, T7d; |
1609 | 0 | T6S = KP707106781 * (T6M + T6R); |
1610 | 0 | ci[WS(rs, 11)] = T6H - T6S; |
1611 | 0 | cr[WS(rs, 4)] = T6H + T6S; |
1612 | 0 | T7h = KP707106781 * (T6V - T6U); |
1613 | 0 | cr[WS(rs, 20)] = T7h - T7i; |
1614 | 0 | ci[WS(rs, 27)] = T7h + T7i; |
1615 | 0 | T6W = KP707106781 * (T6U + T6V); |
1616 | 0 | cr[WS(rs, 12)] = T6T - T6W; |
1617 | 0 | ci[WS(rs, 3)] = T6T + T6W; |
1618 | 0 | T7d = KP707106781 * (T6R - T6M); |
1619 | 0 | cr[WS(rs, 28)] = T7d - T7g; |
1620 | 0 | ci[WS(rs, 19)] = T7d + T7g; |
1621 | 0 | } |
1622 | 0 | } |
1623 | 0 | { |
1624 | 0 | E T5J, T7n, T7t, T6n, T5U, T7k, T6x, T6B, T6q, T7s, T66, T6k, T6u, T6A, T6h; |
1625 | 0 | E T6l; |
1626 | 0 | { |
1627 | 0 | E T5O, T5T, T60, T65; |
1628 | 0 | T5J = T5F - T5I; |
1629 | 0 | T7n = T7l + T7m; |
1630 | 0 | T7t = T7m - T7l; |
1631 | 0 | T6n = T5F + T5I; |
1632 | 0 | T5O = T5K + T5N; |
1633 | 0 | T5T = T5P - T5S; |
1634 | 0 | T5U = KP707106781 * (T5O + T5T); |
1635 | 0 | T7k = KP707106781 * (T5O - T5T); |
1636 | 0 | { |
1637 | 0 | E T6v, T6w, T6o, T6p; |
1638 | 0 | T6v = T6e + T6f; |
1639 | 0 | T6w = T67 + T6a; |
1640 | 0 | T6x = FMA(KP382683432, T6v, KP923879532 * T6w); |
1641 | 0 | T6B = FNMS(KP923879532, T6v, KP382683432 * T6w); |
1642 | 0 | T6o = T5K - T5N; |
1643 | 0 | T6p = T5P + T5S; |
1644 | 0 | T6q = KP707106781 * (T6o + T6p); |
1645 | 0 | T7s = KP707106781 * (T6p - T6o); |
1646 | 0 | } |
1647 | 0 | T60 = T5Y - T5Z; |
1648 | 0 | T65 = T61 - T64; |
1649 | 0 | T66 = FMA(KP382683432, T60, KP923879532 * T65); |
1650 | 0 | T6k = FNMS(KP923879532, T60, KP382683432 * T65); |
1651 | 0 | { |
1652 | 0 | E T6s, T6t, T6b, T6g; |
1653 | 0 | T6s = T61 + T64; |
1654 | 0 | T6t = T5Y + T5Z; |
1655 | 0 | T6u = FNMS(KP382683432, T6t, KP923879532 * T6s); |
1656 | 0 | T6A = FMA(KP923879532, T6t, KP382683432 * T6s); |
1657 | 0 | T6b = T67 - T6a; |
1658 | 0 | T6g = T6e - T6f; |
1659 | 0 | T6h = FNMS(KP382683432, T6g, KP923879532 * T6b); |
1660 | 0 | T6l = FMA(KP923879532, T6g, KP382683432 * T6b); |
1661 | 0 | } |
1662 | 0 | } |
1663 | 0 | { |
1664 | 0 | E T5V, T6i, T7r, T7u; |
1665 | 0 | T5V = T5J + T5U; |
1666 | 0 | T6i = T66 + T6h; |
1667 | 0 | ci[WS(rs, 13)] = T5V - T6i; |
1668 | 0 | cr[WS(rs, 2)] = T5V + T6i; |
1669 | 0 | T7r = T6l - T6k; |
1670 | 0 | T7u = T7s + T7t; |
1671 | 0 | cr[WS(rs, 18)] = T7r - T7u; |
1672 | 0 | ci[WS(rs, 29)] = T7r + T7u; |
1673 | 0 | } |
1674 | 0 | { |
1675 | 0 | E T7v, T7w, T6j, T6m; |
1676 | 0 | T7v = T6h - T66; |
1677 | 0 | T7w = T7t - T7s; |
1678 | 0 | cr[WS(rs, 26)] = T7v - T7w; |
1679 | 0 | ci[WS(rs, 21)] = T7v + T7w; |
1680 | 0 | T6j = T5J - T5U; |
1681 | 0 | T6m = T6k + T6l; |
1682 | 0 | cr[WS(rs, 10)] = T6j - T6m; |
1683 | 0 | ci[WS(rs, 5)] = T6j + T6m; |
1684 | 0 | } |
1685 | 0 | { |
1686 | 0 | E T6r, T6y, T7j, T7o; |
1687 | 0 | T6r = T6n + T6q; |
1688 | 0 | T6y = T6u + T6x; |
1689 | 0 | cr[WS(rs, 14)] = T6r - T6y; |
1690 | 0 | ci[WS(rs, 1)] = T6r + T6y; |
1691 | 0 | T7j = T6B - T6A; |
1692 | 0 | T7o = T7k + T7n; |
1693 | 0 | cr[WS(rs, 30)] = T7j - T7o; |
1694 | 0 | ci[WS(rs, 17)] = T7j + T7o; |
1695 | 0 | } |
1696 | 0 | { |
1697 | 0 | E T7p, T7q, T6z, T6C; |
1698 | 0 | T7p = T6x - T6u; |
1699 | 0 | T7q = T7n - T7k; |
1700 | 0 | cr[WS(rs, 22)] = T7p - T7q; |
1701 | 0 | ci[WS(rs, 25)] = T7p + T7q; |
1702 | 0 | T6z = T6n - T6q; |
1703 | 0 | T6C = T6A + T6B; |
1704 | 0 | ci[WS(rs, 9)] = T6z - T6C; |
1705 | 0 | cr[WS(rs, 6)] = T6z + T6C; |
1706 | 0 | } |
1707 | 0 | } |
1708 | 0 | { |
1709 | 0 | E T3h, T4D, T7R, T7X, T3E, T7O, T4N, T4R, T46, T4A, T4G, T7W, T4K, T4Q, T4x; |
1710 | 0 | E T4B, T3g, T7P; |
1711 | 0 | T3g = KP707106781 * (T3a + T3f); |
1712 | 0 | T3h = T35 - T3g; |
1713 | 0 | T4D = T35 + T3g; |
1714 | 0 | T7P = KP707106781 * (T4V - T4U); |
1715 | 0 | T7R = T7P + T7Q; |
1716 | 0 | T7X = T7Q - T7P; |
1717 | 0 | { |
1718 | 0 | E T3s, T3D, T4L, T4M; |
1719 | 0 | T3s = FNMS(KP923879532, T3r, KP382683432 * T3m); |
1720 | 0 | T3D = FMA(KP923879532, T3x, KP382683432 * T3C); |
1721 | 0 | T3E = T3s + T3D; |
1722 | 0 | T7O = T3D - T3s; |
1723 | 0 | T4L = T4s + T4v; |
1724 | 0 | T4M = T4b + T4m; |
1725 | 0 | T4N = FNMS(KP195090322, T4M, KP980785280 * T4L); |
1726 | 0 | T4R = FMA(KP980785280, T4M, KP195090322 * T4L); |
1727 | 0 | } |
1728 | 0 | { |
1729 | 0 | E T3W, T45, T4E, T4F; |
1730 | 0 | T3W = T3K - T3V; |
1731 | 0 | T45 = T41 - T44; |
1732 | 0 | T46 = FNMS(KP555570233, T45, KP831469612 * T3W); |
1733 | 0 | T4A = FMA(KP831469612, T45, KP555570233 * T3W); |
1734 | 0 | T4E = FMA(KP382683432, T3r, KP923879532 * T3m); |
1735 | 0 | T4F = FNMS(KP382683432, T3x, KP923879532 * T3C); |
1736 | 0 | T4G = T4E + T4F; |
1737 | 0 | T7W = T4E - T4F; |
1738 | 0 | } |
1739 | 0 | { |
1740 | 0 | E T4I, T4J, T4n, T4w; |
1741 | 0 | T4I = T41 + T44; |
1742 | 0 | T4J = T3K + T3V; |
1743 | 0 | T4K = FMA(KP195090322, T4I, KP980785280 * T4J); |
1744 | 0 | T4Q = FNMS(KP980785280, T4I, KP195090322 * T4J); |
1745 | 0 | T4n = T4b - T4m; |
1746 | 0 | T4w = T4s - T4v; |
1747 | 0 | T4x = FMA(KP555570233, T4n, KP831469612 * T4w); |
1748 | 0 | T4B = FNMS(KP831469612, T4n, KP555570233 * T4w); |
1749 | 0 | } |
1750 | 0 | { |
1751 | 0 | E T3F, T4y, T7V, T7Y; |
1752 | 0 | T3F = T3h + T3E; |
1753 | 0 | T4y = T46 + T4x; |
1754 | 0 | cr[WS(rs, 13)] = T3F - T4y; |
1755 | 0 | ci[WS(rs, 2)] = T3F + T4y; |
1756 | 0 | T7V = T4B - T4A; |
1757 | 0 | T7Y = T7W + T7X; |
1758 | 0 | cr[WS(rs, 29)] = T7V - T7Y; |
1759 | 0 | ci[WS(rs, 18)] = T7V + T7Y; |
1760 | 0 | } |
1761 | 0 | { |
1762 | 0 | E T7Z, T80, T4z, T4C; |
1763 | 0 | T7Z = T4x - T46; |
1764 | 0 | T80 = T7X - T7W; |
1765 | 0 | cr[WS(rs, 21)] = T7Z - T80; |
1766 | 0 | ci[WS(rs, 26)] = T7Z + T80; |
1767 | 0 | T4z = T3h - T3E; |
1768 | 0 | T4C = T4A + T4B; |
1769 | 0 | ci[WS(rs, 10)] = T4z - T4C; |
1770 | 0 | cr[WS(rs, 5)] = T4z + T4C; |
1771 | 0 | } |
1772 | 0 | { |
1773 | 0 | E T4H, T4O, T7N, T7S; |
1774 | 0 | T4H = T4D + T4G; |
1775 | 0 | T4O = T4K + T4N; |
1776 | 0 | ci[WS(rs, 14)] = T4H - T4O; |
1777 | 0 | cr[WS(rs, 1)] = T4H + T4O; |
1778 | 0 | T7N = T4R - T4Q; |
1779 | 0 | T7S = T7O + T7R; |
1780 | 0 | cr[WS(rs, 17)] = T7N - T7S; |
1781 | 0 | ci[WS(rs, 30)] = T7N + T7S; |
1782 | 0 | } |
1783 | 0 | { |
1784 | 0 | E T7T, T7U, T4P, T4S; |
1785 | 0 | T7T = T4N - T4K; |
1786 | 0 | T7U = T7R - T7O; |
1787 | 0 | cr[WS(rs, 25)] = T7T - T7U; |
1788 | 0 | ci[WS(rs, 22)] = T7T + T7U; |
1789 | 0 | T4P = T4D - T4G; |
1790 | 0 | T4S = T4Q + T4R; |
1791 | 0 | cr[WS(rs, 9)] = T4P - T4S; |
1792 | 0 | ci[WS(rs, 6)] = T4P + T4S; |
1793 | 0 | } |
1794 | 0 | } |
1795 | 0 | } |
1796 | 0 | } |
1797 | 0 | } |
1798 | | |
1799 | | static const tw_instr twinstr[] = { |
1800 | | { TW_FULL, 1, 32 }, |
1801 | | { TW_NEXT, 1, 0 } |
1802 | | }; |
1803 | | |
1804 | | static const hc2hc_desc desc = { 32, "hf_32", twinstr, &GENUS, { 340, 114, 94, 0 } }; |
1805 | | |
1806 | 1 | void X(codelet_hf_32) (planner *p) { |
1807 | 1 | X(khc2hc_register) (p, hf_32, &desc); |
1808 | 1 | } |
1809 | | #endif |