Coverage Report

Created: 2023-09-25 07:08

/src/fftw3/rdft/scalar/r2cf/r2cfII_20.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Mon Sep 25 07:06:29 UTC 2023 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 20 -name r2cfII_20 -dft-II -include rdft/scalar/r2cfII.h */
29
30
/*
31
 * This function contains 102 FP additions, 63 FP multiplications,
32
 * (or, 39 additions, 0 multiplications, 63 fused multiply/add),
33
 * 53 stack variables, 10 constants, and 40 memory accesses
34
 */
35
#include "rdft/scalar/r2cfII.h"
36
37
static void r2cfII_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38
{
39
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
42
     DK(KP690983005, +0.690983005625052575897706582817180941139845410);
43
     DK(KP447213595, +0.447213595499957939281834733746255247088123672);
44
     DK(KP552786404, +0.552786404500042060718165266253744752911876328);
45
     DK(KP809016994, +0.809016994374947424102293417182819058860154590);
46
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
47
     DK(KP381966011, +0.381966011250105151795413165634361882279690820);
48
     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
49
     {
50
    INT i;
51
    for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) {
52
         E Ti, T1d, T1f, T1e, Tg, T1p, TS, T1g, T1, T6, T7, T1r, T1k, T8, To;
53
         E Tp, Tv, TX, Tr, TV, Tx, TF, TC, TD, T12, TG, TK, T10, Tc, Tf;
54
         Ti = R1[WS(rs, 2)];
55
         T1d = R0[WS(rs, 5)];
56
         {
57
        E Ta, Tb, Td, Te;
58
        Ta = R0[WS(rs, 9)];
59
        Tb = R0[WS(rs, 1)];
60
        Tc = Ta - Tb;
61
        T1f = Ta + Tb;
62
        Td = R0[WS(rs, 3)];
63
        Te = R0[WS(rs, 7)];
64
        Tf = Td - Te;
65
        T1e = Td + Te;
66
         }
67
         Tg = FNMS(KP618033988, Tf, Tc);
68
         T1p = FMA(KP381966011, T1e, T1f);
69
         TS = FMA(KP618033988, Tc, Tf);
70
         T1g = FMA(KP381966011, T1f, T1e);
71
         {
72
        E T2, T5, T3, T4, T1i, T1j;
73
        T1 = R0[0];
74
        T2 = R0[WS(rs, 4)];
75
        T5 = R0[WS(rs, 6)];
76
        T3 = R0[WS(rs, 8)];
77
        T4 = R0[WS(rs, 2)];
78
        T1i = T2 + T5;
79
        T1j = T3 + T4;
80
        T6 = T2 + T3 - T4 - T5;
81
        T7 = FNMS(KP250000000, T6, T1);
82
        T1r = FNMS(KP618033988, T1i, T1j);
83
        T1k = FMA(KP618033988, T1j, T1i);
84
        T8 = (T3 + T5 - T2) - T4;
85
         }
86
         {
87
        E Tn, Tu, Tt, Tq, TU;
88
        {
89
       E Tj, Tk, Tl, Tm;
90
       Tj = R1[WS(rs, 8)];
91
       To = R1[WS(rs, 6)];
92
       Tk = R1[0];
93
       Tl = R1[WS(rs, 4)];
94
       Tm = Tk + Tl;
95
       Tn = Tj - Tm;
96
       Tu = Tk - Tl;
97
       Tp = Tj + Tm;
98
       Tt = To + Tj;
99
        }
100
        Tv = FNMS(KP618033988, Tu, Tt);
101
        TX = FMA(KP618033988, Tt, Tu);
102
        Tq = FMA(KP809016994, Tp, To);
103
        Tr = FNMS(KP552786404, Tq, Tn);
104
        TU = FMA(KP447213595, Tp, Tn);
105
        TV = FNMS(KP690983005, TU, To);
106
         }
107
         {
108
        E TJ, TE, TI, TZ;
109
        Tx = R1[WS(rs, 7)];
110
        {
111
       E Ty, Tz, TA, TB;
112
       Ty = R1[WS(rs, 1)];
113
       TF = R1[WS(rs, 3)];
114
       Tz = R1[WS(rs, 5)];
115
       TA = R1[WS(rs, 9)];
116
       TB = Tz + TA;
117
       TC = Ty + TB;
118
       TJ = Tz - TA;
119
       TE = Ty - TB;
120
       TI = TF + Ty;
121
        }
122
        TD = FMA(KP250000000, TC, Tx);
123
        T12 = FNMS(KP618033988, TI, TJ);
124
        TG = FNMS(KP552786404, TF, TE);
125
        TK = FMA(KP618033988, TJ, TI);
126
        TZ = FMA(KP447213595, TC, TE);
127
        T10 = FNMS(KP690983005, TZ, TF);
128
         }
129
         {
130
        E T19, T1w, T1c, T1x, T1a, T1b;
131
        T19 = T1 + T6;
132
        T1w = T1f + T1d - T1e;
133
        T1a = Ti + To - Tp;
134
        T1b = TC - TF - Tx;
135
        T1c = T1a + T1b;
136
        T1x = T1a - T1b;
137
        Cr[WS(csr, 2)] = FNMS(KP707106781, T1c, T19);
138
        Ci[WS(csi, 2)] = FMS(KP707106781, T1x, T1w);
139
        Cr[WS(csr, 7)] = FMA(KP707106781, T1c, T19);
140
        Ci[WS(csi, 7)] = FMA(KP707106781, T1x, T1w);
141
         }
142
         {
143
        E TT, T15, T1s, T1u, TY, T17, T13, T16;
144
        {
145
       E TR, T1q, TW, T11;
146
       TR = FMA(KP559016994, T8, T7);
147
       TT = FMA(KP951056516, TS, TR);
148
       T15 = FNMS(KP951056516, TS, TR);
149
       T1q = FNMS(KP809016994, T1p, T1d);
150
       T1s = FNMS(KP951056516, T1r, T1q);
151
       T1u = FMA(KP951056516, T1r, T1q);
152
       TW = FNMS(KP809016994, TV, Ti);
153
       TY = FMA(KP951056516, TX, TW);
154
       T17 = FNMS(KP951056516, TX, TW);
155
       T11 = FNMS(KP809016994, T10, Tx);
156
       T13 = FNMS(KP951056516, T12, T11);
157
       T16 = FMA(KP951056516, T12, T11);
158
        }
159
        {
160
       E T14, T1v, T18, T1t;
161
       T14 = TY - T13;
162
       Cr[WS(csr, 6)] = FNMS(KP707106781, T14, TT);
163
       Cr[WS(csr, 3)] = FMA(KP707106781, T14, TT);
164
       T1v = T17 + T16;
165
       Ci[WS(csi, 6)] = FMS(KP707106781, T1v, T1u);
166
       Ci[WS(csi, 3)] = FMA(KP707106781, T1v, T1u);
167
       T18 = T16 - T17;
168
       Cr[WS(csr, 8)] = FNMS(KP707106781, T18, T15);
169
       Cr[WS(csr, 1)] = FMA(KP707106781, T18, T15);
170
       T1t = TY + T13;
171
       Ci[WS(csi, 8)] = -(FMA(KP707106781, T1t, T1s));
172
       Ci[WS(csi, 1)] = FNMS(KP707106781, T1t, T1s);
173
        }
174
         }
175
         {
176
        E Th, TN, T1l, T1n, Tw, TO, TL, TP;
177
        {
178
       E T9, T1h, Ts, TH;
179
       T9 = FNMS(KP559016994, T8, T7);
180
       Th = FNMS(KP951056516, Tg, T9);
181
       TN = FMA(KP951056516, Tg, T9);
182
       T1h = FMA(KP809016994, T1g, T1d);
183
       T1l = FMA(KP951056516, T1k, T1h);
184
       T1n = FNMS(KP951056516, T1k, T1h);
185
       Ts = FNMS(KP559016994, Tr, Ti);
186
       Tw = FNMS(KP951056516, Tv, Ts);
187
       TO = FMA(KP951056516, Tv, Ts);
188
       TH = FNMS(KP559016994, TG, TD);
189
       TL = FNMS(KP951056516, TK, TH);
190
       TP = FMA(KP951056516, TK, TH);
191
        }
192
        {
193
       E TM, T1m, TQ, T1o;
194
       TM = Tw - TL;
195
       Cr[WS(csr, 9)] = FNMS(KP707106781, TM, Th);
196
       Cr[0] = FMA(KP707106781, TM, Th);
197
       T1m = TO + TP;
198
       Ci[0] = -(FMA(KP707106781, T1m, T1l));
199
       Ci[WS(csi, 9)] = FNMS(KP707106781, T1m, T1l);
200
       TQ = TO - TP;
201
       Cr[WS(csr, 5)] = FNMS(KP707106781, TQ, TN);
202
       Cr[WS(csr, 4)] = FMA(KP707106781, TQ, TN);
203
       T1o = Tw + TL;
204
       Ci[WS(csi, 4)] = -(FMA(KP707106781, T1o, T1n));
205
       Ci[WS(csi, 5)] = FNMS(KP707106781, T1o, T1n);
206
        }
207
         }
208
    }
209
     }
210
}
211
212
static const kr2c_desc desc = { 20, "r2cfII_20", { 39, 0, 63, 0 }, &GENUS };
213
214
void X(codelet_r2cfII_20) (planner *p) { X(kr2c_register) (p, r2cfII_20, &desc);
215
}
216
217
#else
218
219
/* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 20 -name r2cfII_20 -dft-II -include rdft/scalar/r2cfII.h */
220
221
/*
222
 * This function contains 102 FP additions, 34 FP multiplications,
223
 * (or, 86 additions, 18 multiplications, 16 fused multiply/add),
224
 * 60 stack variables, 13 constants, and 40 memory accesses
225
 */
226
#include "rdft/scalar/r2cfII.h"
227
228
static void r2cfII_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
229
0
{
230
0
     DK(KP572061402, +0.572061402817684297600072783580302076536153377);
231
0
     DK(KP218508012, +0.218508012224410535399650602527877556893735408);
232
0
     DK(KP309016994, +0.309016994374947424102293417182819058860154590);
233
0
     DK(KP809016994, +0.809016994374947424102293417182819058860154590);
234
0
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
235
0
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
236
0
     DK(KP587785252, +0.587785252292473129168705954639072768597652438);
237
0
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
238
0
     DK(KP176776695, +0.176776695296636881100211090526212259821208984);
239
0
     DK(KP395284707, +0.395284707521047416499861693054089816714944392);
240
0
     DK(KP672498511, +0.672498511963957326960058968885748755876783111);
241
0
     DK(KP415626937, +0.415626937777453428589967464113135184222253485);
242
0
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
243
0
     {
244
0
    INT i;
245
0
    for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) {
246
0
         E T8, TD, Tm, TN, T9, TC, TY, TE, Te, TF, Tl, TK, T12, TL, Tk;
247
0
         E TM, T1, T6, Tq, T1l, T1c, Tp, T1f, T1e, T1d, Ty, TW, T1g, T1m, Tx;
248
0
         E Tu;
249
0
         T8 = R1[WS(rs, 2)];
250
0
         TD = KP707106781 * T8;
251
0
         Tm = R1[WS(rs, 7)];
252
0
         TN = KP707106781 * Tm;
253
0
         {
254
0
        E Ta, TA, Td, TB, Tb, Tc;
255
0
        T9 = R1[WS(rs, 6)];
256
0
        Ta = R1[WS(rs, 8)];
257
0
        TA = T9 + Ta;
258
0
        Tb = R1[0];
259
0
        Tc = R1[WS(rs, 4)];
260
0
        Td = Tb + Tc;
261
0
        TB = Tb - Tc;
262
0
        TC = FMA(KP415626937, TA, KP672498511 * TB);
263
0
        TY = FNMS(KP415626937, TB, KP672498511 * TA);
264
0
        TE = KP395284707 * (Ta - Td);
265
0
        Te = Ta + Td;
266
0
        TF = KP176776695 * Te;
267
0
         }
268
0
         {
269
0
        E Tg, TJ, Tj, TI, Th, Ti;
270
0
        Tg = R1[WS(rs, 1)];
271
0
        Tl = R1[WS(rs, 3)];
272
0
        TJ = Tg + Tl;
273
0
        Th = R1[WS(rs, 5)];
274
0
        Ti = R1[WS(rs, 9)];
275
0
        Tj = Th + Ti;
276
0
        TI = Th - Ti;
277
0
        TK = FNMS(KP415626937, TJ, KP672498511 * TI);
278
0
        T12 = FMA(KP415626937, TI, KP672498511 * TJ);
279
0
        TL = KP395284707 * (Tg - Tj);
280
0
        Tk = Tg + Tj;
281
0
        TM = KP176776695 * Tk;
282
0
         }
283
0
         {
284
0
        E T2, T5, T3, T4, T1a, T1b;
285
0
        T1 = R0[0];
286
0
        T2 = R0[WS(rs, 6)];
287
0
        T5 = R0[WS(rs, 8)];
288
0
        T3 = R0[WS(rs, 2)];
289
0
        T4 = R0[WS(rs, 4)];
290
0
        T1a = T4 + T2;
291
0
        T1b = T5 + T3;
292
0
        T6 = T2 + T3 - (T4 + T5);
293
0
        Tq = FMA(KP250000000, T6, T1);
294
0
        T1l = FNMS(KP951056516, T1b, KP587785252 * T1a);
295
0
        T1c = FMA(KP951056516, T1a, KP587785252 * T1b);
296
0
        Tp = KP559016994 * (T5 + T2 - (T4 + T3));
297
0
         }
298
0
         T1f = R0[WS(rs, 5)];
299
0
         {
300
0
        E Tv, Tw, Ts, Tt;
301
0
        Tv = R0[WS(rs, 9)];
302
0
        Tw = R0[WS(rs, 1)];
303
0
        Tx = Tv - Tw;
304
0
        T1e = Tv + Tw;
305
0
        Ts = R0[WS(rs, 3)];
306
0
        Tt = R0[WS(rs, 7)];
307
0
        Tu = Ts - Tt;
308
0
        T1d = Ts + Tt;
309
0
         }
310
0
         Ty = FMA(KP951056516, Tu, KP587785252 * Tx);
311
0
         TW = FNMS(KP951056516, Tx, KP587785252 * Tu);
312
0
         T1g = FMA(KP809016994, T1d, KP309016994 * T1e) + T1f;
313
0
         T1m = FNMS(KP809016994, T1e, T1f) - (KP309016994 * T1d);
314
0
         {
315
0
        E T7, T1r, To, T1q, Tf, Tn;
316
0
        T7 = T1 - T6;
317
0
        T1r = T1e + T1f - T1d;
318
0
        Tf = T8 + (T9 - Te);
319
0
        Tn = (Tk - Tl) - Tm;
320
0
        To = KP707106781 * (Tf + Tn);
321
0
        T1q = KP707106781 * (Tf - Tn);
322
0
        Cr[WS(csr, 2)] = T7 - To;
323
0
        Ci[WS(csi, 2)] = T1q - T1r;
324
0
        Cr[WS(csr, 7)] = T7 + To;
325
0
        Ci[WS(csi, 7)] = T1q + T1r;
326
0
         }
327
0
         {
328
0
        E T1h, T1j, TX, T15, T10, T16, T13, T17, TV, TZ, T11;
329
0
        T1h = T1c - T1g;
330
0
        T1j = T1c + T1g;
331
0
        TV = Tq - Tp;
332
0
        TX = TV - TW;
333
0
        T15 = TV + TW;
334
0
        TZ = FMA(KP218508012, T9, TD) + TF - TE;
335
0
        T10 = TY + TZ;
336
0
        T16 = TZ - TY;
337
0
        T11 = FNMS(KP218508012, Tl, TL) - (TM + TN);
338
0
        T13 = T11 - T12;
339
0
        T17 = T11 + T12;
340
0
        {
341
0
       E T14, T19, T18, T1i;
342
0
       T14 = T10 + T13;
343
0
       Cr[WS(csr, 5)] = TX - T14;
344
0
       Cr[WS(csr, 4)] = TX + T14;
345
0
       T19 = T17 - T16;
346
0
       Ci[WS(csi, 5)] = T19 - T1h;
347
0
       Ci[WS(csi, 4)] = T19 + T1h;
348
0
       T18 = T16 + T17;
349
0
       Cr[WS(csr, 9)] = T15 - T18;
350
0
       Cr[0] = T15 + T18;
351
0
       T1i = T13 - T10;
352
0
       Ci[0] = T1i - T1j;
353
0
       Ci[WS(csi, 9)] = T1i + T1j;
354
0
        }
355
0
         }
356
0
         {
357
0
        E T1n, T1p, Tz, TR, TH, TS, TP, TT, Tr, TG, TO;
358
0
        T1n = T1l + T1m;
359
0
        T1p = T1m - T1l;
360
0
        Tr = Tp + Tq;
361
0
        Tz = Tr + Ty;
362
0
        TR = Tr - Ty;
363
0
        TG = TD + TE + FNMS(KP572061402, T9, TF);
364
0
        TH = TC + TG;
365
0
        TS = TC - TG;
366
0
        TO = TL + TM + FNMS(KP572061402, Tl, TN);
367
0
        TP = TK - TO;
368
0
        TT = TK + TO;
369
0
        {
370
0
       E TQ, T1o, TU, T1k;
371
0
       TQ = TH + TP;
372
0
       Cr[WS(csr, 6)] = Tz - TQ;
373
0
       Cr[WS(csr, 3)] = Tz + TQ;
374
0
       T1o = TT - TS;
375
0
       Ci[WS(csi, 6)] = T1o - T1p;
376
0
       Ci[WS(csi, 3)] = T1o + T1p;
377
0
       TU = TS + TT;
378
0
       Cr[WS(csr, 8)] = TR - TU;
379
0
       Cr[WS(csr, 1)] = TR + TU;
380
0
       T1k = TP - TH;
381
0
       Ci[WS(csi, 8)] = T1k - T1n;
382
0
       Ci[WS(csi, 1)] = T1k + T1n;
383
0
        }
384
0
         }
385
0
    }
386
0
     }
387
0
}
388
389
static const kr2c_desc desc = { 20, "r2cfII_20", { 86, 18, 16, 0 }, &GENUS };
390
391
1
void X(codelet_r2cfII_20) (planner *p) { X(kr2c_register) (p, r2cfII_20, &desc);
392
1
}
393
394
#endif