Coverage Report

Created: 2023-09-25 07:08

/src/fftw3/rdft/scalar/r2cf/r2cfII_25.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Mon Sep 25 07:06:30 UTC 2023 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 25 -name r2cfII_25 -dft-II -include rdft/scalar/r2cfII.h */
29
30
/*
31
 * This function contains 212 FP additions, 177 FP multiplications,
32
 * (or, 47 additions, 12 multiplications, 165 fused multiply/add),
33
 * 131 stack variables, 67 constants, and 50 memory accesses
34
 */
35
#include "rdft/scalar/r2cfII.h"
36
37
static void r2cfII_25(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38
{
39
     DK(KP876091699, +0.876091699473550838204498029706869638173524346);
40
     DK(KP792626838, +0.792626838241819413632131824093538848057784557);
41
     DK(KP690668130, +0.690668130712929053565177988380887884042527623);
42
     DK(KP809385824, +0.809385824416008241660603814668679683846476688);
43
     DK(KP860541664, +0.860541664367944677098261680920518816412804187);
44
     DK(KP681693190, +0.681693190061530575150324149145440022633095390);
45
     DK(KP560319534, +0.560319534973832390111614715371676131169633784);
46
     DK(KP237294955, +0.237294955877110315393888866460840817927895961);
47
     DK(KP897376177, +0.897376177523557693138608077137219684419427330);
48
     DK(KP584303379, +0.584303379262766050358567120694562180043261496);
49
     DK(KP653711795, +0.653711795629256296299985401753308353544378892);
50
     DK(KP997675361, +0.997675361079556513670859573984492383596555031);
51
     DK(KP645989928, +0.645989928319777763844272876603899665178054552);
52
     DK(KP591287873, +0.591287873858343558732323717242372865934480959);
53
     DK(KP952936919, +0.952936919628306576880750665357914584765951388);
54
     DK(KP998026728, +0.998026728428271561952336806863450553336905220);
55
     DK(KP956723877, +0.956723877038460305821989399535483155872969262);
56
     DK(KP945422727, +0.945422727388575946270360266328811958657216298);
57
     DK(KP734762448, +0.734762448793050413546343770063151342619912334);
58
     DK(KP772036680, +0.772036680810363904029489473607579825330539880);
59
     DK(KP683113946, +0.683113946453479238701949862233725244439656928);
60
     DK(KP559154169, +0.559154169276087864842202529084232643714075927);
61
     DK(KP242145790, +0.242145790282157779872542093866183953459003101);
62
     DK(KP968583161, +0.968583161128631119490168375464735813836012403);
63
     DK(KP999754674, +0.999754674276473633366203429228112409535557487);
64
     DK(KP904730450, +0.904730450839922351881287709692877908104763647);
65
     DK(KP916574801, +0.916574801383451584742370439148878693530976769);
66
     DK(KP829049696, +0.829049696159252993975487806364305442437946767);
67
     DK(KP831864738, +0.831864738706457140726048799369896829771167132);
68
     DK(KP876306680, +0.876306680043863587308115903922062583399064238);
69
     DK(KP949179823, +0.949179823508441261575555465843363271711583843);
70
     DK(KP669429328, +0.669429328479476605641803240971985825917022098);
71
     DK(KP262346850, +0.262346850930607871785420028382979691334784273);
72
     DK(KP923225144, +0.923225144846402650453449441572664695995209956);
73
     DK(KP906616052, +0.906616052148196230441134447086066874408359177);
74
     DK(KP921078979, +0.921078979742360627699756128143719920817673854);
75
     DK(KP982009705, +0.982009705009746369461829878184175962711969869);
76
     DK(KP845997307, +0.845997307939530944175097360758058292389769300);
77
     DK(KP992114701, +0.992114701314477831049793042785778521453036709);
78
     DK(KP803003575, +0.803003575438660414833440593570376004635464850);
79
     DK(KP763583905, +0.763583905359130246362948588764067237776594106);
80
     DK(KP248028675, +0.248028675328619457762448260696444630363259177);
81
     DK(KP904508497, +0.904508497187473712051146708591409529430077295);
82
     DK(KP894834959, +0.894834959464455102997960030820114611498661386);
83
     DK(KP958953096, +0.958953096729998668045963838399037225970891871);
84
     DK(KP867381224, +0.867381224396525206773171885031575671309956167);
85
     DK(KP912575812, +0.912575812670962425556968549836277086778922727);
86
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
87
     DK(KP869845200, +0.869845200362138853122720822420327157933056305);
88
     DK(KP120146378, +0.120146378570687701782758537356596213647956445);
89
     DK(KP132830569, +0.132830569247582714407653942074819768844536507);
90
     DK(KP786782374, +0.786782374965295178365099601674911834788448471);
91
     DK(KP893101515, +0.893101515366181661711202267938416198338079437);
92
     DK(KP987388751, +0.987388751065621252324603216482382109400433949);
93
     DK(KP244189809, +0.244189809627953270309879511234821255780225091);
94
     DK(KP269969613, +0.269969613759572083574752974412347470060951301);
95
     DK(KP494780565, +0.494780565770515410344588413655324772219443730);
96
     DK(KP066152395, +0.066152395967733048213034281011006031460903353);
97
     DK(KP059835404, +0.059835404262124915169548397419498386427871950);
98
     DK(KP447533225, +0.447533225982656890041886979663652563063114397);
99
     DK(KP522847744, +0.522847744331509716623755382187077770911012542);
100
     DK(KP667278218, +0.667278218140296670899089292254759909713898805);
101
     DK(KP603558818, +0.603558818296015001454675132653458027918768137);
102
     DK(KP578046249, +0.578046249379945007321754579646815604023525655);
103
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
104
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
105
     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
106
     {
107
    INT i;
108
    for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(100, rs), MAKE_VOLATILE_STRIDE(100, csr), MAKE_VOLATILE_STRIDE(100, csi)) {
109
         E T2v, TJ, T2A, T1K, T2y, T2z, TB, T15, T2d, T2l, T1g, T1s, T1N, T21, T1D;
110
         E T9, TQ, T2g, T2o, T1j, T1u, T1X, T25, T1z, Ti, TX, T2f, T2p, T1k, T1v;
111
         E T1U, T24, T1A, Ts, T1c, T2c, T2k, T1h, T1r, T1Q, T22, T1C, Tj, TC;
112
         {
113
        E TI, T2x, TF, T2w;
114
        T2v = R0[0];
115
        {
116
       E TG, TH, TD, TE;
117
       TG = R0[WS(rs, 10)];
118
       TH = R1[WS(rs, 2)];
119
       TI = TG + TH;
120
       T2x = TG - TH;
121
       TD = R0[WS(rs, 5)];
122
       TE = R1[WS(rs, 7)];
123
       TF = TD + TE;
124
       T2w = TD - TE;
125
        }
126
        TJ = FMA(KP618033988, TI, TF);
127
        T2A = T2w - T2x;
128
        T1K = FNMS(KP618033988, TF, TI);
129
        T2y = T2w + T2x;
130
        T2z = FNMS(KP250000000, T2y, T2v);
131
         }
132
         {
133
        E Tt, TA, T13, TZ, T10;
134
        Tt = R0[WS(rs, 2)];
135
        {
136
       E Tu, Tv, Tw, Tx, Ty, Tz;
137
       Tu = R0[WS(rs, 7)];
138
       Tv = R1[WS(rs, 9)];
139
       Tw = Tu - Tv;
140
       Tx = R0[WS(rs, 12)];
141
       Ty = R1[WS(rs, 4)];
142
       Tz = Tx - Ty;
143
       TA = Tw + Tz;
144
       T13 = Tz - Tw;
145
       TZ = Tu + Tv;
146
       T10 = Tx + Ty;
147
        }
148
        TB = Tt + TA;
149
        {
150
       E T11, T1M, T14, T1L, T12;
151
       T11 = FMA(KP618033988, T10, TZ);
152
       T1M = FNMS(KP618033988, TZ, T10);
153
       T12 = FNMS(KP250000000, TA, Tt);
154
       T14 = FNMS(KP559016994, T13, T12);
155
       T1L = FMA(KP559016994, T13, T12);
156
       T15 = FMA(KP578046249, T14, T11);
157
       T2d = FNMS(KP603558818, T1M, T1L);
158
       T2l = FMA(KP667278218, T1L, T1M);
159
       T1g = FNMS(KP522847744, T11, T14);
160
       T1s = FMA(KP447533225, T11, T14);
161
       T1N = FMA(KP059835404, T1M, T1L);
162
       T21 = FNMS(KP066152395, T1L, T1M);
163
       T1D = FNMS(KP494780565, T14, T11);
164
        }
165
         }
166
         {
167
        E T1, T8, TO, TK, TL;
168
        T1 = R0[WS(rs, 1)];
169
        {
170
       E T2, T3, T4, T5, T6, T7;
171
       T2 = R0[WS(rs, 6)];
172
       T3 = R1[WS(rs, 8)];
173
       T4 = T2 - T3;
174
       T5 = R0[WS(rs, 11)];
175
       T6 = R1[WS(rs, 3)];
176
       T7 = T5 - T6;
177
       T8 = T4 + T7;
178
       TO = T4 - T7;
179
       TK = T2 + T3;
180
       TL = T5 + T6;
181
        }
182
        T9 = T1 + T8;
183
        {
184
       E TM, T1V, TP, T1W, TN;
185
       TM = FMA(KP618033988, TL, TK);
186
       T1V = FNMS(KP618033988, TK, TL);
187
       TN = FNMS(KP250000000, T8, T1);
188
       TP = FMA(KP559016994, TO, TN);
189
       T1W = FNMS(KP559016994, TO, TN);
190
       TQ = FMA(KP269969613, TP, TM);
191
       T2g = FNMS(KP578046249, T1W, T1V);
192
       T2o = FMA(KP522847744, T1V, T1W);
193
       T1j = FNMS(KP244189809, TM, TP);
194
       T1u = FNMS(KP603558818, TM, TP);
195
       T1X = FMA(KP987388751, T1W, T1V);
196
       T25 = FNMS(KP893101515, T1V, T1W);
197
       T1z = FMA(KP667278218, TP, TM);
198
        }
199
         }
200
         {
201
        E Th, Tg, TV, TS, TU;
202
        Th = R0[WS(rs, 4)];
203
        {
204
       E Ta, Tb, Tc, Td, Te, Tf;
205
       Ta = R0[WS(rs, 9)];
206
       Tb = R1[WS(rs, 11)];
207
       Tc = Ta - Tb;
208
       Td = R1[WS(rs, 6)];
209
       Te = R1[WS(rs, 1)];
210
       Tf = Td + Te;
211
       Tg = Tc - Tf;
212
       TV = Te - Td;
213
       TS = Tc + Tf;
214
       TU = Ta + Tb;
215
        }
216
        Ti = Tg + Th;
217
        {
218
       E TW, T1S, TT, T1T, TR;
219
       TW = FNMS(KP618033988, TV, TU);
220
       T1S = FMA(KP618033988, TU, TV);
221
       TR = FNMS(KP250000000, Tg, Th);
222
       TT = FMA(KP559016994, TS, TR);
223
       T1T = FNMS(KP559016994, TS, TR);
224
       TX = FMA(KP603558818, TW, TT);
225
       T2f = FNMS(KP447533225, T1S, T1T);
226
       T2p = FMA(KP494780565, T1T, T1S);
227
       T1k = FNMS(KP667278218, TT, TW);
228
       T1v = FNMS(KP786782374, TW, TT);
229
       T1U = FMA(KP132830569, T1T, T1S);
230
       T24 = FNMS(KP120146378, T1S, T1T);
231
       T1A = FMA(KP869845200, TT, TW);
232
        }
233
         }
234
         {
235
        E Tk, Tr, T1a, T16, T17;
236
        Tk = R0[WS(rs, 3)];
237
        {
238
       E Tl, Tm, Tn, To, Tp, Tq;
239
       Tl = R0[WS(rs, 8)];
240
       Tm = R1[WS(rs, 10)];
241
       Tn = Tl - Tm;
242
       To = R1[0];
243
       Tp = R1[WS(rs, 5)];
244
       Tq = To + Tp;
245
       Tr = Tn - Tq;
246
       T1a = Tn + Tq;
247
       T16 = Tl + Tm;
248
       T17 = Tp - To;
249
        }
250
        Ts = Tk + Tr;
251
        {
252
       E T18, T1P, T1b, T1O, T19;
253
       T18 = FMA(KP618033988, T17, T16);
254
       T1P = FNMS(KP618033988, T16, T17);
255
       T19 = FNMS(KP250000000, Tr, Tk);
256
       T1b = FMA(KP559016994, T1a, T19);
257
       T1O = FNMS(KP559016994, T1a, T19);
258
       T1c = FMA(KP987388751, T1b, T18);
259
       T2c = FNMS(KP059835404, T1P, T1O);
260
       T2k = FMA(KP066152395, T1O, T1P);
261
       T1h = FNMS(KP893101515, T18, T1b);
262
       T1r = FMA(KP132830569, T1b, T18);
263
       T1Q = FNMS(KP786782374, T1P, T1O);
264
       T22 = FMA(KP869845200, T1O, T1P);
265
       T1C = FNMS(KP120146378, T18, T1b);
266
        }
267
         }
268
         Tj = T9 - Ti;
269
         TC = Ts - TB;
270
         Ci[WS(csi, 2)] = -(KP951056516 * (FNMS(KP618033988, TC, Tj)));
271
         Ci[WS(csi, 7)] = KP951056516 * (FMA(KP618033988, Tj, TC));
272
         {
273
        E T3l, T3o, T3q, T3m, T3n, T3p;
274
        T3l = T2v + T2y;
275
        T3m = T9 + Ti;
276
        T3n = TB + Ts;
277
        T3o = T3m + T3n;
278
        T3q = T3m - T3n;
279
        Cr[WS(csr, 12)] = T3o + T3l;
280
        T3p = FNMS(KP250000000, T3o, T3l);
281
        Cr[WS(csr, 2)] = FMA(KP559016994, T3q, T3p);
282
        Cr[WS(csr, 7)] = FNMS(KP559016994, T3q, T3p);
283
         }
284
         {
285
        E T1B, T1E, T1x, T1I, T1G, T1t, T1w, T1F, T1y, T1J, T1H;
286
        T1B = FMA(KP912575812, T1A, T1z);
287
        T1E = FMA(KP867381224, T1D, T1C);
288
        T1t = FMA(KP958953096, T1s, T1r);
289
        T1w = FNMS(KP912575812, T1v, T1u);
290
        T1F = FNMS(KP894834959, T1w, T1t);
291
        T1x = FMA(KP894834959, T1w, T1t);
292
        T1I = FNMS(KP894834959, T1B, T1F);
293
        T1G = FNMS(KP904508497, T1F, T1E);
294
        T1y = FMA(KP248028675, T1x, TJ);
295
        T1J = FMA(KP559016994, T1I, T1E);
296
        T1H = FMA(KP763583905, T1G, T1B);
297
        Ci[WS(csi, 4)] = KP951056516 * (FNMS(KP803003575, T1H, T1y));
298
        Ci[WS(csi, 9)] = KP951056516 * (FNMS(KP992114701, T1J, T1y));
299
         }
300
         {
301
        E T2m, T2q, T2i, T2t, T2r, T2e, T2h, T2n, T2j, T2u, T2s;
302
        T2m = FNMS(KP845997307, T2l, T2k);
303
        T2q = FMA(KP982009705, T2p, T2o);
304
        T2e = FMA(KP845997307, T2d, T2c);
305
        T2h = FNMS(KP921078979, T2g, T2f);
306
        T2n = FNMS(KP906616052, T2h, T2e);
307
        T2i = FMA(KP906616052, T2h, T2e);
308
        T2t = T2m + T2n;
309
        T2r = FNMS(KP923225144, T2q, T2n);
310
        T2j = FMA(KP262346850, T2i, T1K);
311
        T2u = FNMS(KP669429328, T2t, T2q);
312
        T2s = FNMS(KP618033988, T2r, T2m);
313
        Ci[WS(csi, 8)] = KP951056516 * (FMA(KP949179823, T2s, T2j));
314
        Ci[WS(csi, 3)] = KP951056516 * (FNMS(KP876306680, T2u, T2j));
315
         }
316
         {
317
        E T1i, T1l, T1e, T1p, T1n, TY, T1d, T1m, T1f, T1q, T1o;
318
        T1i = FNMS(KP831864738, T1h, T1g);
319
        T1l = FMA(KP829049696, T1k, T1j);
320
        TY = FMA(KP916574801, TX, TQ);
321
        T1d = FMA(KP831864738, T1c, T15);
322
        T1m = FNMS(KP904730450, T1d, TY);
323
        T1e = FMA(KP904730450, T1d, TY);
324
        T1p = FNMS(KP999754674, T1m, T1i);
325
        T1n = FNMS(KP904508497, T1m, T1l);
326
        Ci[0] = -(KP951056516 * (FMA(KP968583161, T1e, TJ)));
327
        T1f = FNMS(KP242145790, T1e, TJ);
328
        T1q = FMA(KP559154169, T1p, T1l);
329
        T1o = FNMS(KP683113946, T1n, T1i);
330
        Ci[WS(csi, 5)] = -(KP951056516 * (FNMS(KP876306680, T1o, T1f)));
331
        Ci[WS(csi, 10)] = -(KP951056516 * (FNMS(KP968583161, T1q, T1f)));
332
         }
333
         {
334
        E T23, T26, T1Z, T2a, T28, T1R, T1Y, T27, T20, T2b, T29;
335
        T23 = FNMS(KP772036680, T22, T21);
336
        T26 = FMA(KP734762448, T25, T24);
337
        T1R = FMA(KP772036680, T1Q, T1N);
338
        T1Y = FMA(KP734762448, T1X, T1U);
339
        T27 = FNMS(KP945422727, T1Y, T1R);
340
        T1Z = FMA(KP945422727, T1Y, T1R);
341
        T2a = T27 - T23;
342
        T28 = FMA(KP956723877, T27, T26);
343
        Ci[WS(csi, 1)] = -(KP998026728 * (FMA(KP952936919, T1K, T1Z)));
344
        T20 = FNMS(KP262346850, T1Z, T1K);
345
        T2b = FMA(KP591287873, T2a, T26);
346
        T29 = FMA(KP645989928, T28, T23);
347
        Ci[WS(csi, 6)] = -(KP951056516 * (FMA(KP949179823, T29, T20)));
348
        Ci[WS(csi, 11)] = -(KP951056516 * (FNMS(KP992114701, T2b, T20)));
349
         }
350
         {
351
        E T2Y, T33, T31, T38, T36, T3e, T3f, T3c, T3j, T3h, T3a, T3b, T3g;
352
        T2Y = FNMS(KP559016994, T2A, T2z);
353
        T33 = FNMS(KP772036680, T1Q, T1N);
354
        {
355
       E T34, T2Z, T30, T35;
356
       T34 = FNMS(KP734762448, T1X, T1U);
357
       T2Z = FNMS(KP734762448, T25, T24);
358
       T30 = FMA(KP772036680, T22, T21);
359
       T35 = FNMS(KP956723877, T30, T2Z);
360
       T31 = FMA(KP956723877, T30, T2Z);
361
       T38 = FMA(KP618033988, T35, T34);
362
       T36 = T34 + T35;
363
        }
364
        T3e = FMA(KP921078979, T2g, T2f);
365
        T3f = FNMS(KP845997307, T2d, T2c);
366
        T3a = FMA(KP845997307, T2l, T2k);
367
        T3b = FNMS(KP982009705, T2p, T2o);
368
        T3g = FNMS(KP923225144, T3b, T3a);
369
        T3c = FMA(KP923225144, T3b, T3a);
370
        T3j = FNMS(KP997675361, T3g, T3e);
371
        T3h = FNMS(KP904508497, T3g, T3f);
372
        Cr[WS(csr, 1)] = FNMS(KP992114701, T31, T2Y);
373
        {
374
       E T32, T39, T37, T3d, T3k, T3i;
375
       T32 = FMA(KP248028675, T31, T2Y);
376
       T39 = FNMS(KP653711795, T33, T38);
377
       T37 = FMA(KP584303379, T36, T33);
378
       Cr[WS(csr, 6)] = FMA(KP949179823, T37, T32);
379
       Cr[WS(csr, 11)] = FNMS(KP897376177, T39, T32);
380
       T3d = FNMS(KP237294955, T3c, T2Y);
381
       T3k = FNMS(KP560319534, T3j, T3f);
382
       T3i = FMA(KP681693190, T3h, T3e);
383
       Cr[WS(csr, 3)] = FMA(KP860541664, T3i, T3d);
384
       Cr[WS(csr, 8)] = FMA(KP949179823, T3k, T3d);
385
        }
386
         }
387
         {
388
        E T2B, T2R, T2T, T2P, T2W, T2U, T2G, T2H, T2E, T2L, T2J;
389
        T2B = FMA(KP559016994, T2A, T2z);
390
        {
391
       E T2N, T2O, T2S, T2C, T2D, T2I;
392
       T2R = FNMS(KP958953096, T1s, T1r);
393
       T2T = FMA(KP912575812, T1v, T1u);
394
       T2N = FNMS(KP867381224, T1D, T1C);
395
       T2O = FNMS(KP912575812, T1A, T1z);
396
       T2S = FMA(KP809385824, T2O, T2N);
397
       T2P = FNMS(KP809385824, T2O, T2N);
398
       T2W = T2R + T2S;
399
       T2U = FNMS(KP894834959, T2T, T2S);
400
       T2G = FNMS(KP831864738, T1c, T15);
401
       T2H = FNMS(KP916574801, TX, TQ);
402
       T2C = FNMS(KP829049696, T1k, T1j);
403
       T2D = FMA(KP831864738, T1h, T1g);
404
       T2I = FNMS(KP904730450, T2D, T2C);
405
       T2E = FMA(KP904730450, T2D, T2C);
406
       T2L = FMA(KP904730450, T2G, T2I);
407
       T2J = T2H + T2I;
408
        }
409
        Cr[0] = FMA(KP968583161, T2E, T2B);
410
        {
411
       E T2Q, T2X, T2V, T2F, T2M, T2K;
412
       T2Q = FMA(KP248028675, T2P, T2B);
413
       T2X = FNMS(KP690668130, T2W, T2T);
414
       T2V = FNMS(KP618033988, T2U, T2R);
415
       Cr[WS(csr, 9)] = FMA(KP897376177, T2V, T2Q);
416
       Cr[WS(csr, 4)] = FNMS(KP803003575, T2X, T2Q);
417
       T2F = FNMS(KP242145790, T2E, T2B);
418
       T2M = FMA(KP618033988, T2L, T2H);
419
       T2K = FNMS(KP683113946, T2J, T2G);
420
       Cr[WS(csr, 5)] = FMA(KP792626838, T2K, T2F);
421
       Cr[WS(csr, 10)] = FMA(KP876091699, T2M, T2F);
422
        }
423
         }
424
    }
425
     }
426
}
427
428
static const kr2c_desc desc = { 25, "r2cfII_25", { 47, 12, 165, 0 }, &GENUS };
429
430
void X(codelet_r2cfII_25) (planner *p) { X(kr2c_register) (p, r2cfII_25, &desc);
431
}
432
433
#else
434
435
/* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 25 -name r2cfII_25 -dft-II -include rdft/scalar/r2cfII.h */
436
437
/*
438
 * This function contains 213 FP additions, 148 FP multiplications,
439
 * (or, 126 additions, 61 multiplications, 87 fused multiply/add),
440
 * 94 stack variables, 38 constants, and 50 memory accesses
441
 */
442
#include "rdft/scalar/r2cfII.h"
443
444
static void r2cfII_25(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
445
0
{
446
0
     DK(KP1_996053456, +1.996053456856543123904673613726901106673810439);
447
0
     DK(KP062790519, +0.062790519529313376076178224565631133122484832);
448
0
     DK(KP125581039, +0.125581039058626752152356449131262266244969664);
449
0
     DK(KP998026728, +0.998026728428271561952336806863450553336905220);
450
0
     DK(KP1_369094211, +1.369094211857377347464566715242418539779038465);
451
0
     DK(KP728968627, +0.728968627421411523146730319055259111372571664);
452
0
     DK(KP963507348, +0.963507348203430549974383005744259307057084020);
453
0
     DK(KP876306680, +0.876306680043863587308115903922062583399064238);
454
0
     DK(KP497379774, +0.497379774329709576484567492012895936835134813);
455
0
     DK(KP968583161, +0.968583161128631119490168375464735813836012403);
456
0
     DK(KP1_457937254, +1.457937254842823046293460638110518222745143328);
457
0
     DK(KP684547105, +0.684547105928688673732283357621209269889519233);
458
0
     DK(KP1_752613360, +1.752613360087727174616231807844125166798128477);
459
0
     DK(KP481753674, +0.481753674101715274987191502872129653528542010);
460
0
     DK(KP1_937166322, +1.937166322257262238980336750929471627672024806);
461
0
     DK(KP248689887, +0.248689887164854788242283746006447968417567406);
462
0
     DK(KP992114701, +0.992114701314477831049793042785778521453036709);
463
0
     DK(KP250666467, +0.250666467128608490746237519633017587885836494);
464
0
     DK(KP1_809654104, +1.809654104932039055427337295865395187940827822);
465
0
     DK(KP425779291, +0.425779291565072648862502445744251703979973042);
466
0
     DK(KP1_541026485, +1.541026485551578461606019272792355694543335344);
467
0
     DK(KP637423989, +0.637423989748689710176712811676016195434917298);
468
0
     DK(KP1_688655851, +1.688655851004030157097116127933363010763318483);
469
0
     DK(KP535826794, +0.535826794978996618271308767867639978063575346);
470
0
     DK(KP851558583, +0.851558583130145297725004891488503407959946084);
471
0
     DK(KP904827052, +0.904827052466019527713668647932697593970413911);
472
0
     DK(KP1_984229402, +1.984229402628955662099586085571557042906073418);
473
0
     DK(KP125333233, +0.125333233564304245373118759816508793942918247);
474
0
     DK(KP1_274847979, +1.274847979497379420353425623352032390869834596);
475
0
     DK(KP770513242, +0.770513242775789230803009636396177847271667672);
476
0
     DK(KP844327925, +0.844327925502015078548558063966681505381659241);
477
0
     DK(KP1_071653589, +1.071653589957993236542617535735279956127150691);
478
0
     DK(KP293892626, +0.293892626146236564584352977319536384298826219);
479
0
     DK(KP475528258, +0.475528258147576786058219666689691071702849317);
480
0
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
481
0
     DK(KP587785252, +0.587785252292473129168705954639072768597652438);
482
0
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
483
0
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
484
0
     {
485
0
    INT i;
486
0
    for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(100, rs), MAKE_VOLATILE_STRIDE(100, csr), MAKE_VOLATILE_STRIDE(100, csi)) {
487
0
         E TE, TR, T2i, T1z, TL, TS, TB, T2d, T1l, T1i, T2c, T9, T23, TZ, TW;
488
0
         E T22, Ti, T26, T16, T13, T25, Ts, T2a, T1e, T1b, T29, TP, TQ;
489
0
         {
490
0
        E TK, T1y, TH, T1x;
491
0
        TE = R0[0];
492
0
        {
493
0
       E TI, TJ, TF, TG;
494
0
       TI = R0[WS(rs, 10)];
495
0
       TJ = R1[WS(rs, 2)];
496
0
       TK = TI - TJ;
497
0
       T1y = TI + TJ;
498
0
       TF = R0[WS(rs, 5)];
499
0
       TG = R1[WS(rs, 7)];
500
0
       TH = TF - TG;
501
0
       T1x = TF + TG;
502
0
        }
503
0
        TR = KP559016994 * (TH - TK);
504
0
        T2i = FNMS(KP587785252, T1x, KP951056516 * T1y);
505
0
        T1z = FMA(KP951056516, T1x, KP587785252 * T1y);
506
0
        TL = TH + TK;
507
0
        TS = FNMS(KP250000000, TL, TE);
508
0
         }
509
0
         {
510
0
        E Tt, Tw, Tz, TA, T1k, T1j, T1g, T1h;
511
0
        Tt = R0[WS(rs, 3)];
512
0
        {
513
0
       E Tu, Tv, Tx, Ty;
514
0
       Tu = R0[WS(rs, 8)];
515
0
       Tv = R1[WS(rs, 10)];
516
0
       Tw = Tu - Tv;
517
0
       Tx = R1[0];
518
0
       Ty = R1[WS(rs, 5)];
519
0
       Tz = Tx + Ty;
520
0
       TA = Tw - Tz;
521
0
       T1k = Ty - Tx;
522
0
       T1j = Tu + Tv;
523
0
        }
524
0
        TB = Tt + TA;
525
0
        T2d = FNMS(KP293892626, T1j, KP475528258 * T1k);
526
0
        T1l = FMA(KP475528258, T1j, KP293892626 * T1k);
527
0
        T1g = FNMS(KP250000000, TA, Tt);
528
0
        T1h = KP559016994 * (Tw + Tz);
529
0
        T1i = T1g + T1h;
530
0
        T2c = T1g - T1h;
531
0
         }
532
0
         {
533
0
        E T1, T4, T7, T8, TY, TX, TU, TV;
534
0
        T1 = R0[WS(rs, 1)];
535
0
        {
536
0
       E T2, T3, T5, T6;
537
0
       T2 = R0[WS(rs, 6)];
538
0
       T3 = R1[WS(rs, 8)];
539
0
       T4 = T2 - T3;
540
0
       T5 = R0[WS(rs, 11)];
541
0
       T6 = R1[WS(rs, 3)];
542
0
       T7 = T5 - T6;
543
0
       T8 = T4 + T7;
544
0
       TY = T5 + T6;
545
0
       TX = T2 + T3;
546
0
        }
547
0
        T9 = T1 + T8;
548
0
        T23 = FNMS(KP293892626, TX, KP475528258 * TY);
549
0
        TZ = FMA(KP475528258, TX, KP293892626 * TY);
550
0
        TU = KP559016994 * (T4 - T7);
551
0
        TV = FNMS(KP250000000, T8, T1);
552
0
        TW = TU + TV;
553
0
        T22 = TV - TU;
554
0
         }
555
0
         {
556
0
        E Ta, Td, Tg, Th, T15, T14, T11, T12;
557
0
        Ta = R0[WS(rs, 4)];
558
0
        {
559
0
       E Tb, Tc, Te, Tf;
560
0
       Tb = R0[WS(rs, 9)];
561
0
       Tc = R1[WS(rs, 11)];
562
0
       Td = Tb - Tc;
563
0
       Te = R1[WS(rs, 1)];
564
0
       Tf = R1[WS(rs, 6)];
565
0
       Tg = Te + Tf;
566
0
       Th = Td - Tg;
567
0
       T15 = Tf - Te;
568
0
       T14 = Tb + Tc;
569
0
        }
570
0
        Ti = Ta + Th;
571
0
        T26 = FNMS(KP293892626, T14, KP475528258 * T15);
572
0
        T16 = FMA(KP475528258, T14, KP293892626 * T15);
573
0
        T11 = FNMS(KP250000000, Th, Ta);
574
0
        T12 = KP559016994 * (Td + Tg);
575
0
        T13 = T11 + T12;
576
0
        T25 = T11 - T12;
577
0
         }
578
0
         {
579
0
        E Tk, Tn, Tq, Tr, T1d, T1c, T19, T1a;
580
0
        Tk = R0[WS(rs, 2)];
581
0
        {
582
0
       E Tl, Tm, To, Tp;
583
0
       Tl = R0[WS(rs, 7)];
584
0
       Tm = R1[WS(rs, 9)];
585
0
       Tn = Tl - Tm;
586
0
       To = R0[WS(rs, 12)];
587
0
       Tp = R1[WS(rs, 4)];
588
0
       Tq = To - Tp;
589
0
       Tr = Tn + Tq;
590
0
       T1d = To + Tp;
591
0
       T1c = Tl + Tm;
592
0
        }
593
0
        Ts = Tk + Tr;
594
0
        T2a = FNMS(KP293892626, T1c, KP475528258 * T1d);
595
0
        T1e = FMA(KP475528258, T1c, KP293892626 * T1d);
596
0
        T19 = KP559016994 * (Tn - Tq);
597
0
        T1a = FNMS(KP250000000, Tr, Tk);
598
0
        T1b = T19 + T1a;
599
0
        T29 = T1a - T19;
600
0
         }
601
0
         TP = TB - Ts;
602
0
         TQ = T9 - Ti;
603
0
         Ci[WS(csi, 2)] = FNMS(KP951056516, TQ, KP587785252 * TP);
604
0
         Ci[WS(csi, 7)] = FMA(KP587785252, TQ, KP951056516 * TP);
605
0
         {
606
0
        E TM, TD, TN, Tj, TC, TO;
607
0
        TM = TE + TL;
608
0
        Tj = T9 + Ti;
609
0
        TC = Ts + TB;
610
0
        TD = KP559016994 * (Tj - TC);
611
0
        TN = Tj + TC;
612
0
        Cr[WS(csr, 12)] = TM + TN;
613
0
        TO = FNMS(KP250000000, TN, TM);
614
0
        Cr[WS(csr, 2)] = TD + TO;
615
0
        Cr[WS(csr, 7)] = TO - TD;
616
0
         }
617
0
         {
618
0
        E TT, T1J, T1Y, T1U, T1X, T1P, T1V, T1M, T1W, T1A, T1B, T1r, T1C, T1v, T18;
619
0
        E T1n, T1o, T1G, T1D;
620
0
        TT = TR + TS;
621
0
        {
622
0
       E T1H, T1I, T1S, T1T;
623
0
       T1H = FNMS(KP844327925, TW, KP1_071653589 * TZ);
624
0
       T1I = FNMS(KP1_274847979, T16, KP770513242 * T13);
625
0
       T1J = T1H - T1I;
626
0
       T1Y = T1H + T1I;
627
0
       T1S = FMA(KP125333233, T1i, KP1_984229402 * T1l);
628
0
       T1T = FMA(KP904827052, T1b, KP851558583 * T1e);
629
0
       T1U = T1S - T1T;
630
0
       T1X = T1T + T1S;
631
0
        }
632
0
        {
633
0
       E T1N, T1O, T1K, T1L;
634
0
       T1N = FMA(KP535826794, TW, KP1_688655851 * TZ);
635
0
       T1O = FMA(KP637423989, T13, KP1_541026485 * T16);
636
0
       T1P = T1N - T1O;
637
0
       T1V = T1N + T1O;
638
0
       T1K = FNMS(KP1_809654104, T1e, KP425779291 * T1b);
639
0
       T1L = FNMS(KP992114701, T1i, KP250666467 * T1l);
640
0
       T1M = T1K - T1L;
641
0
       T1W = T1K + T1L;
642
0
        }
643
0
        {
644
0
       E T1p, T1q, T1t, T1u;
645
0
       T1p = FMA(KP844327925, T13, KP1_071653589 * T16);
646
0
       T1q = FMA(KP248689887, TW, KP1_937166322 * TZ);
647
0
       T1A = T1q + T1p;
648
0
       T1t = FMA(KP481753674, T1b, KP1_752613360 * T1e);
649
0
       T1u = FMA(KP684547105, T1i, KP1_457937254 * T1l);
650
0
       T1B = T1t + T1u;
651
0
       T1r = T1p - T1q;
652
0
       T1C = T1A + T1B;
653
0
       T1v = T1t - T1u;
654
0
        }
655
0
        {
656
0
       E T10, T17, T1f, T1m;
657
0
       T10 = FNMS(KP497379774, TZ, KP968583161 * TW);
658
0
       T17 = FNMS(KP1_688655851, T16, KP535826794 * T13);
659
0
       T18 = T10 + T17;
660
0
       T1f = FNMS(KP963507348, T1e, KP876306680 * T1b);
661
0
       T1m = FNMS(KP1_369094211, T1l, KP728968627 * T1i);
662
0
       T1n = T1f + T1m;
663
0
       T1o = T18 + T1n;
664
0
       T1G = T10 - T17;
665
0
       T1D = T1f - T1m;
666
0
        }
667
0
        {
668
0
       E T1R, T1Q, T20, T1Z;
669
0
       Cr[0] = TT + T1o;
670
0
       Ci[0] = -(T1z + T1C);
671
0
       T1R = KP559016994 * (T1P + T1M);
672
0
       T1Q = FMA(KP250000000, T1M - T1P, TT);
673
0
       Cr[WS(csr, 4)] = FMA(KP951056516, T1J, T1Q) + FMA(KP587785252, T1U, T1R);
674
0
       Cr[WS(csr, 9)] = FMA(KP951056516, T1U, T1Q) + FNMA(KP587785252, T1J, T1R);
675
0
       T20 = KP559016994 * (T1Y + T1X);
676
0
       T1Z = FMA(KP250000000, T1X - T1Y, T1z);
677
0
       Ci[WS(csi, 9)] = FMA(KP587785252, T1V, KP951056516 * T1W) + T1Z - T20;
678
0
       Ci[WS(csi, 4)] = FMA(KP587785252, T1W, T1Z) + FNMS(KP951056516, T1V, T20);
679
0
       {
680
0
            E T1E, T1F, T1s, T1w;
681
0
            T1E = FMS(KP250000000, T1C, T1z);
682
0
            T1F = KP559016994 * (T1B - T1A);
683
0
            Ci[WS(csi, 5)] = FMA(KP951056516, T1D, T1E) + FNMA(KP587785252, T1G, T1F);
684
0
            Ci[WS(csi, 10)] = FMA(KP951056516, T1G, KP587785252 * T1D) + T1E + T1F;
685
0
            T1s = FNMS(KP250000000, T1o, TT);
686
0
            T1w = KP559016994 * (T18 - T1n);
687
0
            Cr[WS(csr, 5)] = FMA(KP587785252, T1r, T1s) + FMS(KP951056516, T1v, T1w);
688
0
            Cr[WS(csr, 10)] = T1w + FMA(KP587785252, T1v, T1s) - (KP951056516 * T1r);
689
0
       }
690
0
        }
691
0
         }
692
0
         {
693
0
        E T21, T2z, T2L, T2K, T2M, T2F, T2P, T2C, T2Q, T2l, T2o, T2p, T2w, T2u, T28;
694
0
        E T2f, T2g, T2s, T2h;
695
0
        T21 = TS - TR;
696
0
        {
697
0
       E T2x, T2y, T2I, T2J;
698
0
       T2x = FNMS(KP844327925, T29, KP1_071653589 * T2a);
699
0
       T2y = FNMS(KP125581039, T2d, KP998026728 * T2c);
700
0
       T2z = T2x + T2y;
701
0
       T2L = T2y - T2x;
702
0
       T2I = FNMS(KP481753674, T22, KP1_752613360 * T23);
703
0
       T2J = FMA(KP904827052, T25, KP851558583 * T26);
704
0
       T2K = T2I + T2J;
705
0
       T2M = T2I - T2J;
706
0
        }
707
0
        {
708
0
       E T2D, T2E, T2A, T2B;
709
0
       T2D = FMA(KP535826794, T29, KP1_688655851 * T2a);
710
0
       T2E = FMA(KP062790519, T2c, KP1_996053456 * T2d);
711
0
       T2F = T2D + T2E;
712
0
       T2P = T2E - T2D;
713
0
       T2A = FMA(KP876306680, T22, KP963507348 * T23);
714
0
       T2B = FNMS(KP425779291, T25, KP1_809654104 * T26);
715
0
       T2C = T2A + T2B;
716
0
       T2Q = T2A - T2B;
717
0
        }
718
0
        {
719
0
       E T2j, T2k, T2m, T2n;
720
0
       T2j = FNMS(KP125333233, T25, KP1_984229402 * T26);
721
0
       T2k = FMA(KP684547105, T22, KP1_457937254 * T23);
722
0
       T2l = T2j - T2k;
723
0
       T2m = FNMS(KP770513242, T2c, KP1_274847979 * T2d);
724
0
       T2n = FMA(KP998026728, T29, KP125581039 * T2a);
725
0
       T2o = T2m - T2n;
726
0
       T2p = T2l + T2o;
727
0
       T2w = T2k + T2j;
728
0
       T2u = T2n + T2m;
729
0
        }
730
0
        {
731
0
       E T24, T27, T2b, T2e;
732
0
       T24 = FNMS(KP1_369094211, T23, KP728968627 * T22);
733
0
       T27 = FMA(KP992114701, T25, KP250666467 * T26);
734
0
       T28 = T24 - T27;
735
0
       T2b = FNMS(KP1_996053456, T2a, KP062790519 * T29);
736
0
       T2e = FMA(KP637423989, T2c, KP1_541026485 * T2d);
737
0
       T2f = T2b - T2e;
738
0
       T2g = T28 + T2f;
739
0
       T2s = T24 + T27;
740
0
       T2h = T2b + T2e;
741
0
        }
742
0
        {
743
0
       E T2H, T2G, T2O, T2N;
744
0
       Cr[WS(csr, 1)] = T21 + T2g;
745
0
       Ci[WS(csi, 1)] = T2p - T2i;
746
0
       T2H = KP559016994 * (T2C - T2F);
747
0
       T2G = FNMS(KP250000000, T2C + T2F, T21);
748
0
       Cr[WS(csr, 8)] = FMA(KP951056516, T2z, T2G) + FNMA(KP587785252, T2K, T2H);
749
0
       Cr[WS(csr, 3)] = FMA(KP951056516, T2K, KP587785252 * T2z) + T2G + T2H;
750
0
       T2O = KP559016994 * (T2M + T2L);
751
0
       T2N = FMA(KP250000000, T2L - T2M, T2i);
752
0
       Ci[WS(csi, 3)] = T2N + FMA(KP587785252, T2P, T2O) - (KP951056516 * T2Q);
753
0
       Ci[WS(csi, 8)] = FMA(KP587785252, T2Q, T2N) + FMS(KP951056516, T2P, T2O);
754
0
       {
755
0
            E T2t, T2v, T2q, T2r;
756
0
            T2t = FNMS(KP250000000, T2g, T21);
757
0
            T2v = KP559016994 * (T28 - T2f);
758
0
            Cr[WS(csr, 6)] = FMA(KP951056516, T2u, T2t) + FNMA(KP587785252, T2w, T2v);
759
0
            Cr[WS(csr, 11)] = FMA(KP951056516, T2w, T2v) + FMA(KP587785252, T2u, T2t);
760
0
            T2q = KP250000000 * T2p;
761
0
            T2r = KP559016994 * (T2l - T2o);
762
0
            Ci[WS(csi, 6)] = FMS(KP951056516, T2h, T2i + T2q) + FNMA(KP587785252, T2s, T2r);
763
0
            Ci[WS(csi, 11)] = FMA(KP951056516, T2s, KP587785252 * T2h) + T2r - (T2i + T2q);
764
0
       }
765
0
        }
766
0
         }
767
0
    }
768
0
     }
769
0
}
770
771
static const kr2c_desc desc = { 25, "r2cfII_25", { 126, 61, 87, 0 }, &GENUS };
772
773
1
void X(codelet_r2cfII_25) (planner *p) { X(kr2c_register) (p, r2cfII_25, &desc);
774
1
}
775
776
#endif