/src/fftw3/dft/scalar/codelets/n1_13.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Sun Sep 8 06:38:31 UTC 2024 */ |
23 | | |
24 | | #include "dft/codelet-dft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 13 -name n1_13 -include dft/scalar/n.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 176 FP additions, 114 FP multiplications, |
32 | | * (or, 62 additions, 0 multiplications, 114 fused multiply/add), |
33 | | * 76 stack variables, 25 constants, and 52 memory accesses |
34 | | */ |
35 | | #include "dft/scalar/n.h" |
36 | | |
37 | | static void n1_13(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
38 | | { |
39 | | DK(KP875502302, +0.875502302409147941146295545768755143177842006); |
40 | | DK(KP520028571, +0.520028571888864619117130500499232802493238139); |
41 | | DK(KP968287244, +0.968287244361984016049539446938120421179794516); |
42 | | DK(KP575140729, +0.575140729474003121368385547455453388461001608); |
43 | | DK(KP600477271, +0.600477271932665282925769253334763009352012849); |
44 | | DK(KP957805992, +0.957805992594665126462521754605754580515587217); |
45 | | DK(KP516520780, +0.516520780623489722840901288569017135705033622); |
46 | | DK(KP581704778, +0.581704778510515730456870384989698884939833902); |
47 | | DK(KP300462606, +0.300462606288665774426601772289207995520941381); |
48 | | DK(KP503537032, +0.503537032863766627246873853868466977093348562); |
49 | | DK(KP251768516, +0.251768516431883313623436926934233488546674281); |
50 | | DK(KP301479260, +0.301479260047709873958013540496673347309208464); |
51 | | DK(KP083333333, +0.083333333333333333333333333333333333333333333); |
52 | | DK(KP859542535, +0.859542535098774820163672132761689612766401925); |
53 | | DK(KP514918778, +0.514918778086315755491789696138117261566051239); |
54 | | DK(KP522026385, +0.522026385161275033714027226654165028300441940); |
55 | | DK(KP853480001, +0.853480001859823990758994934970528322872359049); |
56 | | DK(KP612264650, +0.612264650376756543746494474777125408779395514); |
57 | | DK(KP038632954, +0.038632954644348171955506895830342264440241080); |
58 | | DK(KP302775637, +0.302775637731994646559610633735247973125648287); |
59 | | DK(KP769338817, +0.769338817572980603471413688209101117038278899); |
60 | | DK(KP686558370, +0.686558370781754340655719594850823015421401653); |
61 | | DK(KP226109445, +0.226109445035782405468510155372505010481906348); |
62 | | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
63 | | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
64 | | { |
65 | | INT i; |
66 | | for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(52, is), MAKE_VOLATILE_STRIDE(52, os)) { |
67 | | E T1, T1P, T2n, T2o, To, TH, T2h, T2k, TB, TE, Tw, TF, T2c, T2j, T1j; |
68 | | E T1m, T12, T1f, T21, T24, T1U, T27, T1d, T1g, T1Y, T25; |
69 | | T1 = ri[0]; |
70 | | T1P = ii[0]; |
71 | | { |
72 | | E Tf, T2d, Tb, Ty, Tq, T6, Tx, Tr, Ti, Tt, Tl, Tu, Tm, T2e, Td; |
73 | | E Te, Tc, Tn; |
74 | | Td = ri[WS(is, 8)]; |
75 | | Te = ri[WS(is, 5)]; |
76 | | Tf = Td + Te; |
77 | | T2d = Td - Te; |
78 | | { |
79 | | E T7, T8, T9, Ta; |
80 | | T7 = ri[WS(is, 12)]; |
81 | | T8 = ri[WS(is, 10)]; |
82 | | T9 = ri[WS(is, 4)]; |
83 | | Ta = T8 + T9; |
84 | | Tb = T7 + Ta; |
85 | | Ty = FMS(KP500000000, Ta, T7); |
86 | | Tq = T8 - T9; |
87 | | } |
88 | | { |
89 | | E T2, T3, T4, T5; |
90 | | T2 = ri[WS(is, 1)]; |
91 | | T3 = ri[WS(is, 3)]; |
92 | | T4 = ri[WS(is, 9)]; |
93 | | T5 = T3 + T4; |
94 | | T6 = T2 + T5; |
95 | | Tx = FNMS(KP500000000, T5, T2); |
96 | | Tr = T4 - T3; |
97 | | } |
98 | | { |
99 | | E Tg, Th, Tj, Tk; |
100 | | Tg = ri[WS(is, 11)]; |
101 | | Th = ri[WS(is, 6)]; |
102 | | Ti = Tg + Th; |
103 | | Tt = Tg - Th; |
104 | | Tj = ri[WS(is, 7)]; |
105 | | Tk = ri[WS(is, 2)]; |
106 | | Tl = Tj + Tk; |
107 | | Tu = Tj - Tk; |
108 | | } |
109 | | Tm = Ti + Tl; |
110 | | T2e = Tt + Tu; |
111 | | T2n = T6 - Tb; |
112 | | T2o = T2d + T2e; |
113 | | Tc = T6 + Tb; |
114 | | Tn = Tf + Tm; |
115 | | To = Tc + Tn; |
116 | | TH = Tc - Tn; |
117 | | { |
118 | | E T2f, T2g, Tz, TA; |
119 | | T2f = FNMS(KP500000000, T2e, T2d); |
120 | | T2g = Tr + Tq; |
121 | | T2h = FMA(KP866025403, T2g, T2f); |
122 | | T2k = FNMS(KP866025403, T2g, T2f); |
123 | | Tz = Tx - Ty; |
124 | | TA = FNMS(KP500000000, Tm, Tf); |
125 | | TB = Tz + TA; |
126 | | TE = Tz - TA; |
127 | | } |
128 | | { |
129 | | E Ts, Tv, T2a, T2b; |
130 | | Ts = Tq - Tr; |
131 | | Tv = Tt - Tu; |
132 | | Tw = Ts + Tv; |
133 | | TF = Ts - Tv; |
134 | | T2a = Tx + Ty; |
135 | | T2b = Ti - Tl; |
136 | | T2c = FMA(KP866025403, T2b, T2a); |
137 | | T2j = FNMS(KP866025403, T2b, T2a); |
138 | | } |
139 | | } |
140 | | { |
141 | | E TM, T1R, T10, T1l, T18, TX, T1k, T15, TP, T1a, TS, T1b, TT, T1S, TK; |
142 | | E TL, TU, T11; |
143 | | TK = ii[WS(is, 8)]; |
144 | | TL = ii[WS(is, 5)]; |
145 | | TM = TK - TL; |
146 | | T1R = TK + TL; |
147 | | { |
148 | | E T16, TY, TZ, T17; |
149 | | T16 = ii[WS(is, 12)]; |
150 | | TY = ii[WS(is, 10)]; |
151 | | TZ = ii[WS(is, 4)]; |
152 | | T17 = TY + TZ; |
153 | | T10 = TY - TZ; |
154 | | T1l = T16 + T17; |
155 | | T18 = FMS(KP500000000, T17, T16); |
156 | | } |
157 | | { |
158 | | E T13, TV, TW, T14; |
159 | | T13 = ii[WS(is, 1)]; |
160 | | TV = ii[WS(is, 9)]; |
161 | | TW = ii[WS(is, 3)]; |
162 | | T14 = TW + TV; |
163 | | TX = TV - TW; |
164 | | T1k = T13 + T14; |
165 | | T15 = FNMS(KP500000000, T14, T13); |
166 | | } |
167 | | { |
168 | | E TN, TO, TQ, TR; |
169 | | TN = ii[WS(is, 11)]; |
170 | | TO = ii[WS(is, 6)]; |
171 | | TP = TN - TO; |
172 | | T1a = TN + TO; |
173 | | TQ = ii[WS(is, 7)]; |
174 | | TR = ii[WS(is, 2)]; |
175 | | TS = TQ - TR; |
176 | | T1b = TQ + TR; |
177 | | } |
178 | | TT = TP + TS; |
179 | | T1S = T1a + T1b; |
180 | | T1j = TM + TT; |
181 | | T1m = T1k - T1l; |
182 | | TU = FNMS(KP500000000, TT, TM); |
183 | | T11 = TX + T10; |
184 | | T12 = FMA(KP866025403, T11, TU); |
185 | | T1f = FNMS(KP866025403, T11, TU); |
186 | | { |
187 | | E T1Z, T20, T1Q, T1T; |
188 | | T1Z = T15 - T18; |
189 | | T20 = FNMS(KP500000000, T1S, T1R); |
190 | | T21 = T1Z + T20; |
191 | | T24 = T1Z - T20; |
192 | | T1Q = T1k + T1l; |
193 | | T1T = T1R + T1S; |
194 | | T1U = T1Q + T1T; |
195 | | T27 = T1Q - T1T; |
196 | | } |
197 | | { |
198 | | E T19, T1c, T1W, T1X; |
199 | | T19 = T15 + T18; |
200 | | T1c = T1a - T1b; |
201 | | T1d = FMA(KP866025403, T1c, T19); |
202 | | T1g = FNMS(KP866025403, T1c, T19); |
203 | | T1W = T10 - TX; |
204 | | T1X = TP - TS; |
205 | | T1Y = T1W + T1X; |
206 | | T25 = T1W - T1X; |
207 | | } |
208 | | } |
209 | | ro[0] = T1 + To; |
210 | | io[0] = T1P + T1U; |
211 | | { |
212 | | E T1z, T1J, T1G, T1H, T1w, T1I, T1n, T1i, T1s, T1E, TD, T1D, TI, T1r, T1e; |
213 | | E T1h; |
214 | | { |
215 | | E T1x, T1y, T1u, T1v; |
216 | | T1x = FNMS(KP226109445, Tw, TB); |
217 | | T1y = FMA(KP686558370, TE, TF); |
218 | | T1z = FNMS(KP769338817, T1y, T1x); |
219 | | T1J = FMA(KP769338817, T1y, T1x); |
220 | | T1G = FMA(KP302775637, T1j, T1m); |
221 | | T1u = FNMS(KP038632954, T12, T1d); |
222 | | T1v = FNMS(KP612264650, T1f, T1g); |
223 | | T1H = FNMS(KP853480001, T1v, T1u); |
224 | | T1w = FMA(KP853480001, T1v, T1u); |
225 | | T1I = FNMS(KP522026385, T1H, T1G); |
226 | | } |
227 | | T1n = FNMS(KP302775637, T1m, T1j); |
228 | | T1e = FMA(KP038632954, T1d, T12); |
229 | | T1h = FMA(KP612264650, T1g, T1f); |
230 | | T1i = FNMS(KP853480001, T1h, T1e); |
231 | | T1s = FNMS(KP522026385, T1i, T1n); |
232 | | T1E = FMA(KP853480001, T1h, T1e); |
233 | | { |
234 | | E TG, T1q, Tp, TC, T1p; |
235 | | TG = FNMS(KP514918778, TF, TE); |
236 | | T1q = FNMS(KP859542535, TG, TH); |
237 | | Tp = FNMS(KP083333333, To, T1); |
238 | | TC = FMA(KP301479260, TB, Tw); |
239 | | T1p = FNMS(KP251768516, TC, Tp); |
240 | | TD = FMA(KP503537032, TC, Tp); |
241 | | T1D = FNMS(KP300462606, T1q, T1p); |
242 | | TI = FMA(KP581704778, TH, TG); |
243 | | T1r = FMA(KP300462606, T1q, T1p); |
244 | | } |
245 | | { |
246 | | E TJ, T1o, T1L, T1M; |
247 | | TJ = FMA(KP516520780, TI, TD); |
248 | | T1o = FMA(KP957805992, T1n, T1i); |
249 | | ro[WS(os, 1)] = FNMS(KP600477271, T1o, TJ); |
250 | | ro[WS(os, 12)] = FMA(KP600477271, T1o, TJ); |
251 | | { |
252 | | E T1t, T1A, T1N, T1O; |
253 | | T1t = FNMS(KP575140729, T1s, T1r); |
254 | | T1A = FMA(KP968287244, T1z, T1w); |
255 | | ro[WS(os, 9)] = FNMS(KP520028571, T1A, T1t); |
256 | | ro[WS(os, 3)] = FMA(KP520028571, T1A, T1t); |
257 | | T1N = FNMS(KP516520780, TI, TD); |
258 | | T1O = FMA(KP957805992, T1G, T1H); |
259 | | ro[WS(os, 8)] = FNMS(KP600477271, T1O, T1N); |
260 | | ro[WS(os, 5)] = FMA(KP600477271, T1O, T1N); |
261 | | } |
262 | | T1L = FNMS(KP520028571, T1E, T1D); |
263 | | T1M = FNMS(KP875502302, T1J, T1I); |
264 | | ro[WS(os, 11)] = FNMS(KP575140729, T1M, T1L); |
265 | | ro[WS(os, 6)] = FMA(KP575140729, T1M, T1L); |
266 | | { |
267 | | E T1F, T1K, T1B, T1C; |
268 | | T1F = FMA(KP520028571, T1E, T1D); |
269 | | T1K = FMA(KP875502302, T1J, T1I); |
270 | | ro[WS(os, 7)] = FNMS(KP575140729, T1K, T1F); |
271 | | ro[WS(os, 2)] = FMA(KP575140729, T1K, T1F); |
272 | | T1B = FMA(KP575140729, T1s, T1r); |
273 | | T1C = FNMS(KP968287244, T1z, T1w); |
274 | | ro[WS(os, 10)] = FNMS(KP520028571, T1C, T1B); |
275 | | ro[WS(os, 4)] = FMA(KP520028571, T1C, T1B); |
276 | | } |
277 | | } |
278 | | } |
279 | | { |
280 | | E T2F, T2N, T2v, T2u, T2A, T2K, T2p, T2m, T2C, T2M, T23, T2J, T28, T2z, T2i; |
281 | | E T2l; |
282 | | { |
283 | | E T2D, T2E, T2s, T2t; |
284 | | T2D = FNMS(KP226109445, T1Y, T21); |
285 | | T2E = FMA(KP686558370, T24, T25); |
286 | | T2F = FNMS(KP769338817, T2E, T2D); |
287 | | T2N = FMA(KP769338817, T2E, T2D); |
288 | | T2v = FNMS(KP302775637, T2n, T2o); |
289 | | T2s = FMA(KP038632954, T2c, T2h); |
290 | | T2t = FMA(KP612264650, T2j, T2k); |
291 | | T2u = FNMS(KP853480001, T2t, T2s); |
292 | | T2A = FNMS(KP522026385, T2u, T2v); |
293 | | T2K = FMA(KP853480001, T2t, T2s); |
294 | | } |
295 | | T2p = FMA(KP302775637, T2o, T2n); |
296 | | T2i = FNMS(KP038632954, T2h, T2c); |
297 | | T2l = FNMS(KP612264650, T2k, T2j); |
298 | | T2m = FNMS(KP853480001, T2l, T2i); |
299 | | T2C = FMA(KP853480001, T2l, T2i); |
300 | | T2M = FNMS(KP522026385, T2m, T2p); |
301 | | { |
302 | | E T26, T2y, T1V, T22, T2x; |
303 | | T26 = FNMS(KP514918778, T25, T24); |
304 | | T2y = FNMS(KP859542535, T26, T27); |
305 | | T1V = FNMS(KP083333333, T1U, T1P); |
306 | | T22 = FMA(KP301479260, T21, T1Y); |
307 | | T2x = FNMS(KP251768516, T22, T1V); |
308 | | T23 = FMA(KP503537032, T22, T1V); |
309 | | T2J = FNMS(KP300462606, T2y, T2x); |
310 | | T28 = FMA(KP581704778, T27, T26); |
311 | | T2z = FMA(KP300462606, T2y, T2x); |
312 | | } |
313 | | { |
314 | | E T29, T2q, T2L, T2O; |
315 | | T29 = FNMS(KP516520780, T28, T23); |
316 | | T2q = FMA(KP957805992, T2p, T2m); |
317 | | io[WS(os, 5)] = FNMS(KP600477271, T2q, T29); |
318 | | io[WS(os, 8)] = FMA(KP600477271, T2q, T29); |
319 | | { |
320 | | E T2r, T2w, T2P, T2Q; |
321 | | T2r = FMA(KP516520780, T28, T23); |
322 | | T2w = FMA(KP957805992, T2v, T2u); |
323 | | io[WS(os, 1)] = FMA(KP600477271, T2w, T2r); |
324 | | io[WS(os, 12)] = FNMS(KP600477271, T2w, T2r); |
325 | | T2P = FMA(KP520028571, T2K, T2J); |
326 | | T2Q = FMA(KP875502302, T2N, T2M); |
327 | | io[WS(os, 6)] = FNMS(KP575140729, T2Q, T2P); |
328 | | io[WS(os, 11)] = FMA(KP575140729, T2Q, T2P); |
329 | | } |
330 | | T2L = FNMS(KP520028571, T2K, T2J); |
331 | | T2O = FNMS(KP875502302, T2N, T2M); |
332 | | io[WS(os, 2)] = FNMS(KP575140729, T2O, T2L); |
333 | | io[WS(os, 7)] = FMA(KP575140729, T2O, T2L); |
334 | | { |
335 | | E T2H, T2I, T2B, T2G; |
336 | | T2H = FNMS(KP575140729, T2A, T2z); |
337 | | T2I = FMA(KP968287244, T2F, T2C); |
338 | | io[WS(os, 4)] = FNMS(KP520028571, T2I, T2H); |
339 | | io[WS(os, 10)] = FMA(KP520028571, T2I, T2H); |
340 | | T2B = FMA(KP575140729, T2A, T2z); |
341 | | T2G = FNMS(KP968287244, T2F, T2C); |
342 | | io[WS(os, 3)] = FNMS(KP520028571, T2G, T2B); |
343 | | io[WS(os, 9)] = FMA(KP520028571, T2G, T2B); |
344 | | } |
345 | | } |
346 | | } |
347 | | } |
348 | | } |
349 | | } |
350 | | |
351 | | static const kdft_desc desc = { 13, "n1_13", { 62, 0, 114, 0 }, &GENUS, 0, 0, 0, 0 }; |
352 | | |
353 | | void X(codelet_n1_13) (planner *p) { X(kdft_register) (p, n1_13, &desc); |
354 | | } |
355 | | |
356 | | #else |
357 | | |
358 | | /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 13 -name n1_13 -include dft/scalar/n.h */ |
359 | | |
360 | | /* |
361 | | * This function contains 176 FP additions, 68 FP multiplications, |
362 | | * (or, 138 additions, 30 multiplications, 38 fused multiply/add), |
363 | | * 71 stack variables, 20 constants, and 52 memory accesses |
364 | | */ |
365 | | #include "dft/scalar/n.h" |
366 | | |
367 | | static void n1_13(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
368 | 29 | { |
369 | 29 | DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); |
370 | 29 | DK(KP083333333, +0.083333333333333333333333333333333333333333333); |
371 | 29 | DK(KP251768516, +0.251768516431883313623436926934233488546674281); |
372 | 29 | DK(KP075902986, +0.075902986037193865983102897245103540356428373); |
373 | 29 | DK(KP132983124, +0.132983124607418643793760531921092974399165133); |
374 | 29 | DK(KP258260390, +0.258260390311744861420450644284508567852516811); |
375 | 29 | DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); |
376 | 29 | DK(KP300238635, +0.300238635966332641462884626667381504676006424); |
377 | 29 | DK(KP011599105, +0.011599105605768290721655456654083252189827041); |
378 | 29 | DK(KP156891391, +0.156891391051584611046832726756003269660212636); |
379 | 29 | DK(KP256247671, +0.256247671582936600958684654061725059144125175); |
380 | 29 | DK(KP174138601, +0.174138601152135905005660794929264742616964676); |
381 | 29 | DK(KP575140729, +0.575140729474003121368385547455453388461001608); |
382 | 29 | DK(KP503537032, +0.503537032863766627246873853868466977093348562); |
383 | 29 | DK(KP113854479, +0.113854479055790798974654345867655310534642560); |
384 | 29 | DK(KP265966249, +0.265966249214837287587521063842185948798330267); |
385 | 29 | DK(KP387390585, +0.387390585467617292130675966426762851778775217); |
386 | 29 | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
387 | 29 | DK(KP300462606, +0.300462606288665774426601772289207995520941381); |
388 | 29 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
389 | 29 | { |
390 | 29 | INT i; |
391 | 162 | for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(52, is), MAKE_VOLATILE_STRIDE(52, os)) { |
392 | 133 | E T1, T1q, Tt, Tu, To, T22, T20, T24, TF, TH, TA, TI, T1X, T25, T2a; |
393 | 133 | E T2d, T18, T1n, T2k, T2n, T1l, T1r, T1f, T1o, T2h, T2m; |
394 | 133 | T1 = ri[0]; |
395 | 133 | T1q = ii[0]; |
396 | 133 | { |
397 | 133 | E Tf, Tp, Tb, TC, Tx, T6, TB, Tw, Ti, Tq, Tl, Tr, Tm, Ts, Td; |
398 | 133 | E Te, Tc, Tn; |
399 | 133 | Td = ri[WS(is, 8)]; |
400 | 133 | Te = ri[WS(is, 5)]; |
401 | 133 | Tf = Td + Te; |
402 | 133 | Tp = Td - Te; |
403 | 133 | { |
404 | 133 | E T7, T8, T9, Ta; |
405 | 133 | T7 = ri[WS(is, 12)]; |
406 | 133 | T8 = ri[WS(is, 10)]; |
407 | 133 | T9 = ri[WS(is, 4)]; |
408 | 133 | Ta = T8 + T9; |
409 | 133 | Tb = T7 + Ta; |
410 | 133 | TC = T8 - T9; |
411 | 133 | Tx = FNMS(KP500000000, Ta, T7); |
412 | 133 | } |
413 | 133 | { |
414 | 133 | E T2, T3, T4, T5; |
415 | 133 | T2 = ri[WS(is, 1)]; |
416 | 133 | T3 = ri[WS(is, 3)]; |
417 | 133 | T4 = ri[WS(is, 9)]; |
418 | 133 | T5 = T3 + T4; |
419 | 133 | T6 = T2 + T5; |
420 | 133 | TB = T3 - T4; |
421 | 133 | Tw = FNMS(KP500000000, T5, T2); |
422 | 133 | } |
423 | 133 | { |
424 | 133 | E Tg, Th, Tj, Tk; |
425 | 133 | Tg = ri[WS(is, 11)]; |
426 | 133 | Th = ri[WS(is, 6)]; |
427 | 133 | Ti = Tg + Th; |
428 | 133 | Tq = Tg - Th; |
429 | 133 | Tj = ri[WS(is, 7)]; |
430 | 133 | Tk = ri[WS(is, 2)]; |
431 | 133 | Tl = Tj + Tk; |
432 | 133 | Tr = Tj - Tk; |
433 | 133 | } |
434 | 133 | Tm = Ti + Tl; |
435 | 133 | Ts = Tq + Tr; |
436 | 133 | Tt = Tp + Ts; |
437 | 133 | Tu = T6 - Tb; |
438 | 133 | Tc = T6 + Tb; |
439 | 133 | Tn = Tf + Tm; |
440 | 133 | To = Tc + Tn; |
441 | 133 | T22 = KP300462606 * (Tc - Tn); |
442 | 133 | { |
443 | 133 | E T1Y, T1Z, TD, TE; |
444 | 133 | T1Y = TB + TC; |
445 | 133 | T1Z = Tq - Tr; |
446 | 133 | T20 = T1Y - T1Z; |
447 | 133 | T24 = T1Y + T1Z; |
448 | 133 | TD = KP866025403 * (TB - TC); |
449 | 133 | TE = FNMS(KP500000000, Ts, Tp); |
450 | 133 | TF = TD - TE; |
451 | 133 | TH = TD + TE; |
452 | 133 | } |
453 | 133 | { |
454 | 133 | E Ty, Tz, T1V, T1W; |
455 | 133 | Ty = Tw - Tx; |
456 | 133 | Tz = KP866025403 * (Ti - Tl); |
457 | 133 | TA = Ty + Tz; |
458 | 133 | TI = Ty - Tz; |
459 | 133 | T1V = Tw + Tx; |
460 | 133 | T1W = FNMS(KP500000000, Tm, Tf); |
461 | 133 | T1X = T1V - T1W; |
462 | 133 | T25 = T1V + T1W; |
463 | 133 | } |
464 | 133 | } |
465 | 133 | { |
466 | 133 | E TZ, T2b, TV, T1i, T1a, TQ, T1h, T19, T12, T1d, T15, T1c, T16, T2c, TX; |
467 | 133 | E TY, TW, T17; |
468 | 133 | TX = ii[WS(is, 8)]; |
469 | 133 | TY = ii[WS(is, 5)]; |
470 | 133 | TZ = TX + TY; |
471 | 133 | T2b = TX - TY; |
472 | 133 | { |
473 | 133 | E TR, TS, TT, TU; |
474 | 133 | TR = ii[WS(is, 12)]; |
475 | 133 | TS = ii[WS(is, 10)]; |
476 | 133 | TT = ii[WS(is, 4)]; |
477 | 133 | TU = TS + TT; |
478 | 133 | TV = FNMS(KP500000000, TU, TR); |
479 | 133 | T1i = TR + TU; |
480 | 133 | T1a = TS - TT; |
481 | 133 | } |
482 | 133 | { |
483 | 133 | E TM, TN, TO, TP; |
484 | 133 | TM = ii[WS(is, 1)]; |
485 | 133 | TN = ii[WS(is, 3)]; |
486 | 133 | TO = ii[WS(is, 9)]; |
487 | 133 | TP = TN + TO; |
488 | 133 | TQ = FNMS(KP500000000, TP, TM); |
489 | 133 | T1h = TM + TP; |
490 | 133 | T19 = TN - TO; |
491 | 133 | } |
492 | 133 | { |
493 | 133 | E T10, T11, T13, T14; |
494 | 133 | T10 = ii[WS(is, 11)]; |
495 | 133 | T11 = ii[WS(is, 6)]; |
496 | 133 | T12 = T10 + T11; |
497 | 133 | T1d = T10 - T11; |
498 | 133 | T13 = ii[WS(is, 7)]; |
499 | 133 | T14 = ii[WS(is, 2)]; |
500 | 133 | T15 = T13 + T14; |
501 | 133 | T1c = T13 - T14; |
502 | 133 | } |
503 | 133 | T16 = T12 + T15; |
504 | 133 | T2c = T1d + T1c; |
505 | 133 | T2a = T1h - T1i; |
506 | 133 | T2d = T2b + T2c; |
507 | 133 | TW = TQ + TV; |
508 | 133 | T17 = FNMS(KP500000000, T16, TZ); |
509 | 133 | T18 = TW - T17; |
510 | 133 | T1n = TW + T17; |
511 | 133 | { |
512 | 133 | E T2i, T2j, T1j, T1k; |
513 | 133 | T2i = TQ - TV; |
514 | 133 | T2j = KP866025403 * (T15 - T12); |
515 | 133 | T2k = T2i + T2j; |
516 | 133 | T2n = T2i - T2j; |
517 | 133 | T1j = T1h + T1i; |
518 | 133 | T1k = TZ + T16; |
519 | 133 | T1l = KP300462606 * (T1j - T1k); |
520 | 133 | T1r = T1j + T1k; |
521 | 133 | } |
522 | 133 | { |
523 | 133 | E T1b, T1e, T2f, T2g; |
524 | 133 | T1b = T19 + T1a; |
525 | 133 | T1e = T1c - T1d; |
526 | 133 | T1f = T1b + T1e; |
527 | 133 | T1o = T1e - T1b; |
528 | 133 | T2f = FNMS(KP500000000, T2c, T2b); |
529 | 133 | T2g = KP866025403 * (T1a - T19); |
530 | 133 | T2h = T2f - T2g; |
531 | 133 | T2m = T2g + T2f; |
532 | 133 | } |
533 | 133 | } |
534 | 133 | ro[0] = T1 + To; |
535 | 133 | io[0] = T1q + T1r; |
536 | 133 | { |
537 | 133 | E T1D, T1N, T1y, T1x, T1E, T1O, Tv, TK, T1J, T1Q, T1m, T1R, T1t, T1I, TG; |
538 | 133 | E TJ; |
539 | 133 | { |
540 | 133 | E T1B, T1C, T1v, T1w; |
541 | 133 | T1B = FMA(KP387390585, T1f, KP265966249 * T18); |
542 | 133 | T1C = FMA(KP113854479, T1o, KP503537032 * T1n); |
543 | 133 | T1D = T1B + T1C; |
544 | 133 | T1N = T1C - T1B; |
545 | 133 | T1y = FMA(KP575140729, Tu, KP174138601 * Tt); |
546 | 133 | T1v = FNMS(KP156891391, TH, KP256247671 * TI); |
547 | 133 | T1w = FMA(KP011599105, TF, KP300238635 * TA); |
548 | 133 | T1x = T1v - T1w; |
549 | 133 | T1E = T1y + T1x; |
550 | 133 | T1O = KP1_732050807 * (T1v + T1w); |
551 | 133 | } |
552 | 133 | Tv = FNMS(KP174138601, Tu, KP575140729 * Tt); |
553 | 133 | TG = FNMS(KP300238635, TF, KP011599105 * TA); |
554 | 133 | TJ = FMA(KP256247671, TH, KP156891391 * TI); |
555 | 133 | TK = TG - TJ; |
556 | 133 | T1J = KP1_732050807 * (TJ + TG); |
557 | 133 | T1Q = Tv - TK; |
558 | 133 | { |
559 | 133 | E T1g, T1H, T1p, T1s, T1G; |
560 | 133 | T1g = FNMS(KP132983124, T1f, KP258260390 * T18); |
561 | 133 | T1H = T1l - T1g; |
562 | 133 | T1p = FNMS(KP251768516, T1o, KP075902986 * T1n); |
563 | 133 | T1s = FNMS(KP083333333, T1r, T1q); |
564 | 133 | T1G = T1s - T1p; |
565 | 133 | T1m = FMA(KP2_000000000, T1g, T1l); |
566 | 133 | T1R = T1H + T1G; |
567 | 133 | T1t = FMA(KP2_000000000, T1p, T1s); |
568 | 133 | T1I = T1G - T1H; |
569 | 133 | } |
570 | 133 | { |
571 | 133 | E TL, T1u, T1P, T1S; |
572 | 133 | TL = FMA(KP2_000000000, TK, Tv); |
573 | 133 | T1u = T1m + T1t; |
574 | 133 | io[WS(os, 1)] = TL + T1u; |
575 | 133 | io[WS(os, 12)] = T1u - TL; |
576 | 133 | { |
577 | 133 | E T1z, T1A, T1T, T1U; |
578 | 133 | T1z = FMS(KP2_000000000, T1x, T1y); |
579 | 133 | T1A = T1t - T1m; |
580 | 133 | io[WS(os, 5)] = T1z + T1A; |
581 | 133 | io[WS(os, 8)] = T1A - T1z; |
582 | 133 | T1T = T1R - T1Q; |
583 | 133 | T1U = T1O + T1N; |
584 | 133 | io[WS(os, 4)] = T1T - T1U; |
585 | 133 | io[WS(os, 10)] = T1U + T1T; |
586 | 133 | } |
587 | 133 | T1P = T1N - T1O; |
588 | 133 | T1S = T1Q + T1R; |
589 | 133 | io[WS(os, 3)] = T1P + T1S; |
590 | 133 | io[WS(os, 9)] = T1S - T1P; |
591 | 133 | { |
592 | 133 | E T1L, T1M, T1F, T1K; |
593 | 133 | T1L = T1J + T1I; |
594 | 133 | T1M = T1E + T1D; |
595 | 133 | io[WS(os, 6)] = T1L - T1M; |
596 | 133 | io[WS(os, 11)] = T1M + T1L; |
597 | 133 | T1F = T1D - T1E; |
598 | 133 | T1K = T1I - T1J; |
599 | 133 | io[WS(os, 2)] = T1F + T1K; |
600 | 133 | io[WS(os, 7)] = T1K - T1F; |
601 | 133 | } |
602 | 133 | } |
603 | 133 | } |
604 | 133 | { |
605 | 133 | E T2y, T2I, T2J, T2K, T2B, T2L, T2e, T2p, T2u, T2G, T23, T2F, T28, T2t, T2l; |
606 | 133 | E T2o; |
607 | 133 | { |
608 | 133 | E T2w, T2x, T2z, T2A; |
609 | 133 | T2w = FMA(KP387390585, T20, KP265966249 * T1X); |
610 | 133 | T2x = FNMS(KP503537032, T25, KP113854479 * T24); |
611 | 133 | T2y = T2w + T2x; |
612 | 133 | T2I = T2w - T2x; |
613 | 133 | T2J = FMA(KP575140729, T2a, KP174138601 * T2d); |
614 | 133 | T2z = FNMS(KP300238635, T2n, KP011599105 * T2m); |
615 | 133 | T2A = FNMS(KP156891391, T2h, KP256247671 * T2k); |
616 | 133 | T2K = T2z + T2A; |
617 | 133 | T2B = KP1_732050807 * (T2z - T2A); |
618 | 133 | T2L = T2J + T2K; |
619 | 133 | } |
620 | 133 | T2e = FNMS(KP575140729, T2d, KP174138601 * T2a); |
621 | 133 | T2l = FMA(KP256247671, T2h, KP156891391 * T2k); |
622 | 133 | T2o = FMA(KP300238635, T2m, KP011599105 * T2n); |
623 | 133 | T2p = T2l - T2o; |
624 | 133 | T2u = T2e - T2p; |
625 | 133 | T2G = KP1_732050807 * (T2o + T2l); |
626 | 133 | { |
627 | 133 | E T21, T2r, T26, T27, T2s; |
628 | 133 | T21 = FNMS(KP132983124, T20, KP258260390 * T1X); |
629 | 133 | T2r = T22 - T21; |
630 | 133 | T26 = FMA(KP251768516, T24, KP075902986 * T25); |
631 | 133 | T27 = FNMS(KP083333333, To, T1); |
632 | 133 | T2s = T27 - T26; |
633 | 133 | T23 = FMA(KP2_000000000, T21, T22); |
634 | 133 | T2F = T2s - T2r; |
635 | 133 | T28 = FMA(KP2_000000000, T26, T27); |
636 | 133 | T2t = T2r + T2s; |
637 | 133 | } |
638 | 133 | { |
639 | 133 | E T29, T2q, T2N, T2O; |
640 | 133 | T29 = T23 + T28; |
641 | 133 | T2q = FMA(KP2_000000000, T2p, T2e); |
642 | 133 | ro[WS(os, 12)] = T29 - T2q; |
643 | 133 | ro[WS(os, 1)] = T29 + T2q; |
644 | 133 | { |
645 | 133 | E T2v, T2C, T2P, T2Q; |
646 | 133 | T2v = T2t - T2u; |
647 | 133 | T2C = T2y - T2B; |
648 | 133 | ro[WS(os, 10)] = T2v - T2C; |
649 | 133 | ro[WS(os, 4)] = T2v + T2C; |
650 | 133 | T2P = T28 - T23; |
651 | 133 | T2Q = FMS(KP2_000000000, T2K, T2J); |
652 | 133 | ro[WS(os, 5)] = T2P - T2Q; |
653 | 133 | ro[WS(os, 8)] = T2P + T2Q; |
654 | 133 | } |
655 | 133 | T2N = T2F - T2G; |
656 | 133 | T2O = T2L - T2I; |
657 | 133 | ro[WS(os, 11)] = T2N - T2O; |
658 | 133 | ro[WS(os, 6)] = T2N + T2O; |
659 | 133 | { |
660 | 133 | E T2H, T2M, T2D, T2E; |
661 | 133 | T2H = T2F + T2G; |
662 | 133 | T2M = T2I + T2L; |
663 | 133 | ro[WS(os, 7)] = T2H - T2M; |
664 | 133 | ro[WS(os, 2)] = T2H + T2M; |
665 | 133 | T2D = T2t + T2u; |
666 | 133 | T2E = T2y + T2B; |
667 | 133 | ro[WS(os, 3)] = T2D - T2E; |
668 | 133 | ro[WS(os, 9)] = T2D + T2E; |
669 | 133 | } |
670 | 133 | } |
671 | 133 | } |
672 | 133 | } |
673 | 29 | } |
674 | 29 | } |
675 | | |
676 | | static const kdft_desc desc = { 13, "n1_13", { 138, 30, 38, 0 }, &GENUS, 0, 0, 0, 0 }; |
677 | | |
678 | 1 | void X(codelet_n1_13) (planner *p) { X(kdft_register) (p, n1_13, &desc); |
679 | 1 | } |
680 | | |
681 | | #endif |