Coverage Report

Created: 2024-09-08 06:43

/src/fftw3/dft/scalar/codelets/t1_5.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Sun Sep  8 06:38:34 UTC 2024 */
23
24
#include "dft/codelet-dft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 5 -name t1_5 -include dft/scalar/t.h */
29
30
/*
31
 * This function contains 40 FP additions, 34 FP multiplications,
32
 * (or, 14 additions, 8 multiplications, 26 fused multiply/add),
33
 * 31 stack variables, 4 constants, and 20 memory accesses
34
 */
35
#include "dft/scalar/t.h"
36
37
static void t1_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41
     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
42
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
43
     {
44
    INT m;
45
    for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
46
         E T1, TM, T7, Tx, Td, Tz, Te, TJ, Tk, TC, Tq, TE, Tr, TK;
47
         T1 = ri[0];
48
         TM = ii[0];
49
         {
50
        E T3, T6, T4, Tw, T9, Tc, Ta, Ty, T2, T8, T5, Tb;
51
        T3 = ri[WS(rs, 1)];
52
        T6 = ii[WS(rs, 1)];
53
        T2 = W[0];
54
        T4 = T2 * T3;
55
        Tw = T2 * T6;
56
        T9 = ri[WS(rs, 4)];
57
        Tc = ii[WS(rs, 4)];
58
        T8 = W[6];
59
        Ta = T8 * T9;
60
        Ty = T8 * Tc;
61
        T5 = W[1];
62
        T7 = FMA(T5, T6, T4);
63
        Tx = FNMS(T5, T3, Tw);
64
        Tb = W[7];
65
        Td = FMA(Tb, Tc, Ta);
66
        Tz = FNMS(Tb, T9, Ty);
67
        Te = T7 + Td;
68
        TJ = Tx + Tz;
69
         }
70
         {
71
        E Tg, Tj, Th, TB, Tm, Tp, Tn, TD, Tf, Tl, Ti, To;
72
        Tg = ri[WS(rs, 2)];
73
        Tj = ii[WS(rs, 2)];
74
        Tf = W[2];
75
        Th = Tf * Tg;
76
        TB = Tf * Tj;
77
        Tm = ri[WS(rs, 3)];
78
        Tp = ii[WS(rs, 3)];
79
        Tl = W[4];
80
        Tn = Tl * Tm;
81
        TD = Tl * Tp;
82
        Ti = W[3];
83
        Tk = FMA(Ti, Tj, Th);
84
        TC = FNMS(Ti, Tg, TB);
85
        To = W[5];
86
        Tq = FMA(To, Tp, Tn);
87
        TE = FNMS(To, Tm, TD);
88
        Tr = Tk + Tq;
89
        TK = TC + TE;
90
         }
91
         {
92
        E Tu, Ts, Tt, TG, TI, TA, TF, TH, Tv;
93
        Tu = Te - Tr;
94
        Ts = Te + Tr;
95
        Tt = FNMS(KP250000000, Ts, T1);
96
        TA = Tx - Tz;
97
        TF = TC - TE;
98
        TG = FMA(KP618033988, TF, TA);
99
        TI = FNMS(KP618033988, TA, TF);
100
        ri[0] = T1 + Ts;
101
        TH = FNMS(KP559016994, Tu, Tt);
102
        ri[WS(rs, 2)] = FNMS(KP951056516, TI, TH);
103
        ri[WS(rs, 3)] = FMA(KP951056516, TI, TH);
104
        Tv = FMA(KP559016994, Tu, Tt);
105
        ri[WS(rs, 4)] = FNMS(KP951056516, TG, Tv);
106
        ri[WS(rs, 1)] = FMA(KP951056516, TG, Tv);
107
         }
108
         {
109
        E TO, TL, TN, TS, TU, TQ, TR, TT, TP;
110
        TO = TJ - TK;
111
        TL = TJ + TK;
112
        TN = FNMS(KP250000000, TL, TM);
113
        TQ = T7 - Td;
114
        TR = Tk - Tq;
115
        TS = FMA(KP618033988, TR, TQ);
116
        TU = FNMS(KP618033988, TQ, TR);
117
        ii[0] = TL + TM;
118
        TT = FNMS(KP559016994, TO, TN);
119
        ii[WS(rs, 2)] = FMA(KP951056516, TU, TT);
120
        ii[WS(rs, 3)] = FNMS(KP951056516, TU, TT);
121
        TP = FMA(KP559016994, TO, TN);
122
        ii[WS(rs, 1)] = FNMS(KP951056516, TS, TP);
123
        ii[WS(rs, 4)] = FMA(KP951056516, TS, TP);
124
         }
125
    }
126
     }
127
}
128
129
static const tw_instr twinstr[] = {
130
     { TW_FULL, 0, 5 },
131
     { TW_NEXT, 1, 0 }
132
};
133
134
static const ct_desc desc = { 5, "t1_5", twinstr, &GENUS, { 14, 8, 26, 0 }, 0, 0, 0 };
135
136
void X(codelet_t1_5) (planner *p) {
137
     X(kdft_dit_register) (p, t1_5, &desc);
138
}
139
#else
140
141
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 5 -name t1_5 -include dft/scalar/t.h */
142
143
/*
144
 * This function contains 40 FP additions, 28 FP multiplications,
145
 * (or, 26 additions, 14 multiplications, 14 fused multiply/add),
146
 * 29 stack variables, 4 constants, and 20 memory accesses
147
 */
148
#include "dft/scalar/t.h"
149
150
static void t1_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
151
0
{
152
0
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
153
0
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
154
0
     DK(KP587785252, +0.587785252292473129168705954639072768597652438);
155
0
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
156
0
     {
157
0
    INT m;
158
0
    for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
159
0
         E T1, TE, Tu, Tx, TJ, TI, TB, TC, TD, Tc, Tn, To;
160
0
         T1 = ri[0];
161
0
         TE = ii[0];
162
0
         {
163
0
        E T6, Ts, Tm, Tw, Tb, Tt, Th, Tv;
164
0
        {
165
0
       E T3, T5, T2, T4;
166
0
       T3 = ri[WS(rs, 1)];
167
0
       T5 = ii[WS(rs, 1)];
168
0
       T2 = W[0];
169
0
       T4 = W[1];
170
0
       T6 = FMA(T2, T3, T4 * T5);
171
0
       Ts = FNMS(T4, T3, T2 * T5);
172
0
        }
173
0
        {
174
0
       E Tj, Tl, Ti, Tk;
175
0
       Tj = ri[WS(rs, 3)];
176
0
       Tl = ii[WS(rs, 3)];
177
0
       Ti = W[4];
178
0
       Tk = W[5];
179
0
       Tm = FMA(Ti, Tj, Tk * Tl);
180
0
       Tw = FNMS(Tk, Tj, Ti * Tl);
181
0
        }
182
0
        {
183
0
       E T8, Ta, T7, T9;
184
0
       T8 = ri[WS(rs, 4)];
185
0
       Ta = ii[WS(rs, 4)];
186
0
       T7 = W[6];
187
0
       T9 = W[7];
188
0
       Tb = FMA(T7, T8, T9 * Ta);
189
0
       Tt = FNMS(T9, T8, T7 * Ta);
190
0
        }
191
0
        {
192
0
       E Te, Tg, Td, Tf;
193
0
       Te = ri[WS(rs, 2)];
194
0
       Tg = ii[WS(rs, 2)];
195
0
       Td = W[2];
196
0
       Tf = W[3];
197
0
       Th = FMA(Td, Te, Tf * Tg);
198
0
       Tv = FNMS(Tf, Te, Td * Tg);
199
0
        }
200
0
        Tu = Ts - Tt;
201
0
        Tx = Tv - Tw;
202
0
        TJ = Th - Tm;
203
0
        TI = T6 - Tb;
204
0
        TB = Ts + Tt;
205
0
        TC = Tv + Tw;
206
0
        TD = TB + TC;
207
0
        Tc = T6 + Tb;
208
0
        Tn = Th + Tm;
209
0
        To = Tc + Tn;
210
0
         }
211
0
         ri[0] = T1 + To;
212
0
         ii[0] = TD + TE;
213
0
         {
214
0
        E Ty, TA, Tr, Tz, Tp, Tq;
215
0
        Ty = FMA(KP951056516, Tu, KP587785252 * Tx);
216
0
        TA = FNMS(KP587785252, Tu, KP951056516 * Tx);
217
0
        Tp = KP559016994 * (Tc - Tn);
218
0
        Tq = FNMS(KP250000000, To, T1);
219
0
        Tr = Tp + Tq;
220
0
        Tz = Tq - Tp;
221
0
        ri[WS(rs, 4)] = Tr - Ty;
222
0
        ri[WS(rs, 3)] = Tz + TA;
223
0
        ri[WS(rs, 1)] = Tr + Ty;
224
0
        ri[WS(rs, 2)] = Tz - TA;
225
0
         }
226
0
         {
227
0
        E TK, TL, TH, TM, TF, TG;
228
0
        TK = FMA(KP951056516, TI, KP587785252 * TJ);
229
0
        TL = FNMS(KP587785252, TI, KP951056516 * TJ);
230
0
        TF = KP559016994 * (TB - TC);
231
0
        TG = FNMS(KP250000000, TD, TE);
232
0
        TH = TF + TG;
233
0
        TM = TG - TF;
234
0
        ii[WS(rs, 1)] = TH - TK;
235
0
        ii[WS(rs, 3)] = TM - TL;
236
0
        ii[WS(rs, 4)] = TK + TH;
237
0
        ii[WS(rs, 2)] = TL + TM;
238
0
         }
239
0
    }
240
0
     }
241
0
}
242
243
static const tw_instr twinstr[] = {
244
     { TW_FULL, 0, 5 },
245
     { TW_NEXT, 1, 0 }
246
};
247
248
static const ct_desc desc = { 5, "t1_5", twinstr, &GENUS, { 26, 14, 14, 0 }, 0, 0, 0 };
249
250
1
void X(codelet_t1_5) (planner *p) {
251
1
     X(kdft_dit_register) (p, t1_5, &desc);
252
1
}
253
#endif