/src/fftw3/dft/scalar/codelets/t1_5.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Sun Sep 8 06:38:34 UTC 2024 */ |
23 | | |
24 | | #include "dft/codelet-dft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 5 -name t1_5 -include dft/scalar/t.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 40 FP additions, 34 FP multiplications, |
32 | | * (or, 14 additions, 8 multiplications, 26 fused multiply/add), |
33 | | * 31 stack variables, 4 constants, and 20 memory accesses |
34 | | */ |
35 | | #include "dft/scalar/t.h" |
36 | | |
37 | | static void t1_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
40 | | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
41 | | DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
42 | | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
43 | | { |
44 | | INT m; |
45 | | for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) { |
46 | | E T1, TM, T7, Tx, Td, Tz, Te, TJ, Tk, TC, Tq, TE, Tr, TK; |
47 | | T1 = ri[0]; |
48 | | TM = ii[0]; |
49 | | { |
50 | | E T3, T6, T4, Tw, T9, Tc, Ta, Ty, T2, T8, T5, Tb; |
51 | | T3 = ri[WS(rs, 1)]; |
52 | | T6 = ii[WS(rs, 1)]; |
53 | | T2 = W[0]; |
54 | | T4 = T2 * T3; |
55 | | Tw = T2 * T6; |
56 | | T9 = ri[WS(rs, 4)]; |
57 | | Tc = ii[WS(rs, 4)]; |
58 | | T8 = W[6]; |
59 | | Ta = T8 * T9; |
60 | | Ty = T8 * Tc; |
61 | | T5 = W[1]; |
62 | | T7 = FMA(T5, T6, T4); |
63 | | Tx = FNMS(T5, T3, Tw); |
64 | | Tb = W[7]; |
65 | | Td = FMA(Tb, Tc, Ta); |
66 | | Tz = FNMS(Tb, T9, Ty); |
67 | | Te = T7 + Td; |
68 | | TJ = Tx + Tz; |
69 | | } |
70 | | { |
71 | | E Tg, Tj, Th, TB, Tm, Tp, Tn, TD, Tf, Tl, Ti, To; |
72 | | Tg = ri[WS(rs, 2)]; |
73 | | Tj = ii[WS(rs, 2)]; |
74 | | Tf = W[2]; |
75 | | Th = Tf * Tg; |
76 | | TB = Tf * Tj; |
77 | | Tm = ri[WS(rs, 3)]; |
78 | | Tp = ii[WS(rs, 3)]; |
79 | | Tl = W[4]; |
80 | | Tn = Tl * Tm; |
81 | | TD = Tl * Tp; |
82 | | Ti = W[3]; |
83 | | Tk = FMA(Ti, Tj, Th); |
84 | | TC = FNMS(Ti, Tg, TB); |
85 | | To = W[5]; |
86 | | Tq = FMA(To, Tp, Tn); |
87 | | TE = FNMS(To, Tm, TD); |
88 | | Tr = Tk + Tq; |
89 | | TK = TC + TE; |
90 | | } |
91 | | { |
92 | | E Tu, Ts, Tt, TG, TI, TA, TF, TH, Tv; |
93 | | Tu = Te - Tr; |
94 | | Ts = Te + Tr; |
95 | | Tt = FNMS(KP250000000, Ts, T1); |
96 | | TA = Tx - Tz; |
97 | | TF = TC - TE; |
98 | | TG = FMA(KP618033988, TF, TA); |
99 | | TI = FNMS(KP618033988, TA, TF); |
100 | | ri[0] = T1 + Ts; |
101 | | TH = FNMS(KP559016994, Tu, Tt); |
102 | | ri[WS(rs, 2)] = FNMS(KP951056516, TI, TH); |
103 | | ri[WS(rs, 3)] = FMA(KP951056516, TI, TH); |
104 | | Tv = FMA(KP559016994, Tu, Tt); |
105 | | ri[WS(rs, 4)] = FNMS(KP951056516, TG, Tv); |
106 | | ri[WS(rs, 1)] = FMA(KP951056516, TG, Tv); |
107 | | } |
108 | | { |
109 | | E TO, TL, TN, TS, TU, TQ, TR, TT, TP; |
110 | | TO = TJ - TK; |
111 | | TL = TJ + TK; |
112 | | TN = FNMS(KP250000000, TL, TM); |
113 | | TQ = T7 - Td; |
114 | | TR = Tk - Tq; |
115 | | TS = FMA(KP618033988, TR, TQ); |
116 | | TU = FNMS(KP618033988, TQ, TR); |
117 | | ii[0] = TL + TM; |
118 | | TT = FNMS(KP559016994, TO, TN); |
119 | | ii[WS(rs, 2)] = FMA(KP951056516, TU, TT); |
120 | | ii[WS(rs, 3)] = FNMS(KP951056516, TU, TT); |
121 | | TP = FMA(KP559016994, TO, TN); |
122 | | ii[WS(rs, 1)] = FNMS(KP951056516, TS, TP); |
123 | | ii[WS(rs, 4)] = FMA(KP951056516, TS, TP); |
124 | | } |
125 | | } |
126 | | } |
127 | | } |
128 | | |
129 | | static const tw_instr twinstr[] = { |
130 | | { TW_FULL, 0, 5 }, |
131 | | { TW_NEXT, 1, 0 } |
132 | | }; |
133 | | |
134 | | static const ct_desc desc = { 5, "t1_5", twinstr, &GENUS, { 14, 8, 26, 0 }, 0, 0, 0 }; |
135 | | |
136 | | void X(codelet_t1_5) (planner *p) { |
137 | | X(kdft_dit_register) (p, t1_5, &desc); |
138 | | } |
139 | | #else |
140 | | |
141 | | /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 5 -name t1_5 -include dft/scalar/t.h */ |
142 | | |
143 | | /* |
144 | | * This function contains 40 FP additions, 28 FP multiplications, |
145 | | * (or, 26 additions, 14 multiplications, 14 fused multiply/add), |
146 | | * 29 stack variables, 4 constants, and 20 memory accesses |
147 | | */ |
148 | | #include "dft/scalar/t.h" |
149 | | |
150 | | static void t1_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
151 | 0 | { |
152 | 0 | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
153 | 0 | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
154 | 0 | DK(KP587785252, +0.587785252292473129168705954639072768597652438); |
155 | 0 | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
156 | 0 | { |
157 | 0 | INT m; |
158 | 0 | for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) { |
159 | 0 | E T1, TE, Tu, Tx, TJ, TI, TB, TC, TD, Tc, Tn, To; |
160 | 0 | T1 = ri[0]; |
161 | 0 | TE = ii[0]; |
162 | 0 | { |
163 | 0 | E T6, Ts, Tm, Tw, Tb, Tt, Th, Tv; |
164 | 0 | { |
165 | 0 | E T3, T5, T2, T4; |
166 | 0 | T3 = ri[WS(rs, 1)]; |
167 | 0 | T5 = ii[WS(rs, 1)]; |
168 | 0 | T2 = W[0]; |
169 | 0 | T4 = W[1]; |
170 | 0 | T6 = FMA(T2, T3, T4 * T5); |
171 | 0 | Ts = FNMS(T4, T3, T2 * T5); |
172 | 0 | } |
173 | 0 | { |
174 | 0 | E Tj, Tl, Ti, Tk; |
175 | 0 | Tj = ri[WS(rs, 3)]; |
176 | 0 | Tl = ii[WS(rs, 3)]; |
177 | 0 | Ti = W[4]; |
178 | 0 | Tk = W[5]; |
179 | 0 | Tm = FMA(Ti, Tj, Tk * Tl); |
180 | 0 | Tw = FNMS(Tk, Tj, Ti * Tl); |
181 | 0 | } |
182 | 0 | { |
183 | 0 | E T8, Ta, T7, T9; |
184 | 0 | T8 = ri[WS(rs, 4)]; |
185 | 0 | Ta = ii[WS(rs, 4)]; |
186 | 0 | T7 = W[6]; |
187 | 0 | T9 = W[7]; |
188 | 0 | Tb = FMA(T7, T8, T9 * Ta); |
189 | 0 | Tt = FNMS(T9, T8, T7 * Ta); |
190 | 0 | } |
191 | 0 | { |
192 | 0 | E Te, Tg, Td, Tf; |
193 | 0 | Te = ri[WS(rs, 2)]; |
194 | 0 | Tg = ii[WS(rs, 2)]; |
195 | 0 | Td = W[2]; |
196 | 0 | Tf = W[3]; |
197 | 0 | Th = FMA(Td, Te, Tf * Tg); |
198 | 0 | Tv = FNMS(Tf, Te, Td * Tg); |
199 | 0 | } |
200 | 0 | Tu = Ts - Tt; |
201 | 0 | Tx = Tv - Tw; |
202 | 0 | TJ = Th - Tm; |
203 | 0 | TI = T6 - Tb; |
204 | 0 | TB = Ts + Tt; |
205 | 0 | TC = Tv + Tw; |
206 | 0 | TD = TB + TC; |
207 | 0 | Tc = T6 + Tb; |
208 | 0 | Tn = Th + Tm; |
209 | 0 | To = Tc + Tn; |
210 | 0 | } |
211 | 0 | ri[0] = T1 + To; |
212 | 0 | ii[0] = TD + TE; |
213 | 0 | { |
214 | 0 | E Ty, TA, Tr, Tz, Tp, Tq; |
215 | 0 | Ty = FMA(KP951056516, Tu, KP587785252 * Tx); |
216 | 0 | TA = FNMS(KP587785252, Tu, KP951056516 * Tx); |
217 | 0 | Tp = KP559016994 * (Tc - Tn); |
218 | 0 | Tq = FNMS(KP250000000, To, T1); |
219 | 0 | Tr = Tp + Tq; |
220 | 0 | Tz = Tq - Tp; |
221 | 0 | ri[WS(rs, 4)] = Tr - Ty; |
222 | 0 | ri[WS(rs, 3)] = Tz + TA; |
223 | 0 | ri[WS(rs, 1)] = Tr + Ty; |
224 | 0 | ri[WS(rs, 2)] = Tz - TA; |
225 | 0 | } |
226 | 0 | { |
227 | 0 | E TK, TL, TH, TM, TF, TG; |
228 | 0 | TK = FMA(KP951056516, TI, KP587785252 * TJ); |
229 | 0 | TL = FNMS(KP587785252, TI, KP951056516 * TJ); |
230 | 0 | TF = KP559016994 * (TB - TC); |
231 | 0 | TG = FNMS(KP250000000, TD, TE); |
232 | 0 | TH = TF + TG; |
233 | 0 | TM = TG - TF; |
234 | 0 | ii[WS(rs, 1)] = TH - TK; |
235 | 0 | ii[WS(rs, 3)] = TM - TL; |
236 | 0 | ii[WS(rs, 4)] = TK + TH; |
237 | 0 | ii[WS(rs, 2)] = TL + TM; |
238 | 0 | } |
239 | 0 | } |
240 | 0 | } |
241 | 0 | } |
242 | | |
243 | | static const tw_instr twinstr[] = { |
244 | | { TW_FULL, 0, 5 }, |
245 | | { TW_NEXT, 1, 0 } |
246 | | }; |
247 | | |
248 | | static const ct_desc desc = { 5, "t1_5", twinstr, &GENUS, { 26, 14, 14, 0 }, 0, 0, 0 }; |
249 | | |
250 | 1 | void X(codelet_t1_5) (planner *p) { |
251 | 1 | X(kdft_dit_register) (p, t1_5, &desc); |
252 | 1 | } |
253 | | #endif |