/src/fftw3/dft/scalar/codelets/t2_8.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Sun Sep 8 06:38:42 UTC 2024 */ |
23 | | |
24 | | #include "dft/codelet-dft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 8 -name t2_8 -include dft/scalar/t.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 74 FP additions, 50 FP multiplications, |
32 | | * (or, 44 additions, 20 multiplications, 30 fused multiply/add), |
33 | | * 48 stack variables, 1 constants, and 32 memory accesses |
34 | | */ |
35 | | #include "dft/scalar/t.h" |
36 | | |
37 | | static void t2_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
40 | | { |
41 | | INT m; |
42 | | for (m = mb, W = W + (mb * 6); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) { |
43 | | E T2, T3, Tl, Tn, T5, T6, Tf, T7, Ts, Tb, To, Ti, TC, TG; |
44 | | { |
45 | | E T4, Tm, Tr, Ta, TB, TF; |
46 | | T2 = W[0]; |
47 | | T3 = W[2]; |
48 | | T4 = T2 * T3; |
49 | | Tl = W[4]; |
50 | | Tm = T2 * Tl; |
51 | | Tn = W[5]; |
52 | | Tr = T2 * Tn; |
53 | | T5 = W[1]; |
54 | | T6 = W[3]; |
55 | | Ta = T2 * T6; |
56 | | Tf = FMA(T5, T6, T4); |
57 | | T7 = FNMS(T5, T6, T4); |
58 | | Ts = FNMS(T5, Tl, Tr); |
59 | | Tb = FMA(T5, T3, Ta); |
60 | | To = FMA(T5, Tn, Tm); |
61 | | TB = Tf * Tl; |
62 | | TF = Tf * Tn; |
63 | | Ti = FNMS(T5, T3, Ta); |
64 | | TC = FMA(Ti, Tn, TB); |
65 | | TG = FNMS(Ti, Tl, TF); |
66 | | } |
67 | | { |
68 | | E T1, T1s, Td, T1r, Tu, TY, Tk, TW, TN, TR, T18, T1a, T1c, T1d, TA; |
69 | | E TI, T11, T13, T15, T16; |
70 | | T1 = ri[0]; |
71 | | T1s = ii[0]; |
72 | | { |
73 | | E T8, T9, Tc, T1q; |
74 | | T8 = ri[WS(rs, 4)]; |
75 | | T9 = T7 * T8; |
76 | | Tc = ii[WS(rs, 4)]; |
77 | | T1q = T7 * Tc; |
78 | | Td = FMA(Tb, Tc, T9); |
79 | | T1r = FNMS(Tb, T8, T1q); |
80 | | } |
81 | | { |
82 | | E Tp, Tq, Tt, TX; |
83 | | Tp = ri[WS(rs, 6)]; |
84 | | Tq = To * Tp; |
85 | | Tt = ii[WS(rs, 6)]; |
86 | | TX = To * Tt; |
87 | | Tu = FMA(Ts, Tt, Tq); |
88 | | TY = FNMS(Ts, Tp, TX); |
89 | | } |
90 | | { |
91 | | E Tg, Th, Tj, TV; |
92 | | Tg = ri[WS(rs, 2)]; |
93 | | Th = Tf * Tg; |
94 | | Tj = ii[WS(rs, 2)]; |
95 | | TV = Tf * Tj; |
96 | | Tk = FMA(Ti, Tj, Th); |
97 | | TW = FNMS(Ti, Tg, TV); |
98 | | } |
99 | | { |
100 | | E TK, TL, TM, T19, TO, TP, TQ, T1b; |
101 | | TK = ri[WS(rs, 7)]; |
102 | | TL = Tl * TK; |
103 | | TM = ii[WS(rs, 7)]; |
104 | | T19 = Tl * TM; |
105 | | TO = ri[WS(rs, 3)]; |
106 | | TP = T3 * TO; |
107 | | TQ = ii[WS(rs, 3)]; |
108 | | T1b = T3 * TQ; |
109 | | TN = FMA(Tn, TM, TL); |
110 | | TR = FMA(T6, TQ, TP); |
111 | | T18 = TN - TR; |
112 | | T1a = FNMS(Tn, TK, T19); |
113 | | T1c = FNMS(T6, TO, T1b); |
114 | | T1d = T1a - T1c; |
115 | | } |
116 | | { |
117 | | E Tx, Ty, Tz, T12, TD, TE, TH, T14; |
118 | | Tx = ri[WS(rs, 1)]; |
119 | | Ty = T2 * Tx; |
120 | | Tz = ii[WS(rs, 1)]; |
121 | | T12 = T2 * Tz; |
122 | | TD = ri[WS(rs, 5)]; |
123 | | TE = TC * TD; |
124 | | TH = ii[WS(rs, 5)]; |
125 | | T14 = TC * TH; |
126 | | TA = FMA(T5, Tz, Ty); |
127 | | TI = FMA(TG, TH, TE); |
128 | | T11 = TA - TI; |
129 | | T13 = FNMS(T5, Tx, T12); |
130 | | T15 = FNMS(TG, TD, T14); |
131 | | T16 = T13 - T15; |
132 | | } |
133 | | { |
134 | | E T10, T1g, T1z, T1B, T1f, T1C, T1j, T1A; |
135 | | { |
136 | | E TU, TZ, T1x, T1y; |
137 | | TU = T1 - Td; |
138 | | TZ = TW - TY; |
139 | | T10 = TU + TZ; |
140 | | T1g = TU - TZ; |
141 | | T1x = T1s - T1r; |
142 | | T1y = Tk - Tu; |
143 | | T1z = T1x - T1y; |
144 | | T1B = T1y + T1x; |
145 | | } |
146 | | { |
147 | | E T17, T1e, T1h, T1i; |
148 | | T17 = T11 + T16; |
149 | | T1e = T18 - T1d; |
150 | | T1f = T17 + T1e; |
151 | | T1C = T1e - T17; |
152 | | T1h = T16 - T11; |
153 | | T1i = T18 + T1d; |
154 | | T1j = T1h - T1i; |
155 | | T1A = T1h + T1i; |
156 | | } |
157 | | ri[WS(rs, 5)] = FNMS(KP707106781, T1f, T10); |
158 | | ii[WS(rs, 5)] = FNMS(KP707106781, T1A, T1z); |
159 | | ri[WS(rs, 1)] = FMA(KP707106781, T1f, T10); |
160 | | ii[WS(rs, 1)] = FMA(KP707106781, T1A, T1z); |
161 | | ri[WS(rs, 7)] = FNMS(KP707106781, T1j, T1g); |
162 | | ii[WS(rs, 7)] = FNMS(KP707106781, T1C, T1B); |
163 | | ri[WS(rs, 3)] = FMA(KP707106781, T1j, T1g); |
164 | | ii[WS(rs, 3)] = FMA(KP707106781, T1C, T1B); |
165 | | } |
166 | | { |
167 | | E Tw, T1k, T1u, T1w, TT, T1v, T1n, T1o; |
168 | | { |
169 | | E Te, Tv, T1p, T1t; |
170 | | Te = T1 + Td; |
171 | | Tv = Tk + Tu; |
172 | | Tw = Te + Tv; |
173 | | T1k = Te - Tv; |
174 | | T1p = TW + TY; |
175 | | T1t = T1r + T1s; |
176 | | T1u = T1p + T1t; |
177 | | T1w = T1t - T1p; |
178 | | } |
179 | | { |
180 | | E TJ, TS, T1l, T1m; |
181 | | TJ = TA + TI; |
182 | | TS = TN + TR; |
183 | | TT = TJ + TS; |
184 | | T1v = TS - TJ; |
185 | | T1l = T13 + T15; |
186 | | T1m = T1a + T1c; |
187 | | T1n = T1l - T1m; |
188 | | T1o = T1l + T1m; |
189 | | } |
190 | | ri[WS(rs, 4)] = Tw - TT; |
191 | | ii[WS(rs, 4)] = T1u - T1o; |
192 | | ri[0] = Tw + TT; |
193 | | ii[0] = T1o + T1u; |
194 | | ri[WS(rs, 6)] = T1k - T1n; |
195 | | ii[WS(rs, 6)] = T1w - T1v; |
196 | | ri[WS(rs, 2)] = T1k + T1n; |
197 | | ii[WS(rs, 2)] = T1v + T1w; |
198 | | } |
199 | | } |
200 | | } |
201 | | } |
202 | | } |
203 | | |
204 | | static const tw_instr twinstr[] = { |
205 | | { TW_CEXP, 0, 1 }, |
206 | | { TW_CEXP, 0, 3 }, |
207 | | { TW_CEXP, 0, 7 }, |
208 | | { TW_NEXT, 1, 0 } |
209 | | }; |
210 | | |
211 | | static const ct_desc desc = { 8, "t2_8", twinstr, &GENUS, { 44, 20, 30, 0 }, 0, 0, 0 }; |
212 | | |
213 | | void X(codelet_t2_8) (planner *p) { |
214 | | X(kdft_dit_register) (p, t2_8, &desc); |
215 | | } |
216 | | #else |
217 | | |
218 | | /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 8 -name t2_8 -include dft/scalar/t.h */ |
219 | | |
220 | | /* |
221 | | * This function contains 74 FP additions, 44 FP multiplications, |
222 | | * (or, 56 additions, 26 multiplications, 18 fused multiply/add), |
223 | | * 42 stack variables, 1 constants, and 32 memory accesses |
224 | | */ |
225 | | #include "dft/scalar/t.h" |
226 | | |
227 | | static void t2_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
228 | 41 | { |
229 | 41 | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
230 | 41 | { |
231 | 41 | INT m; |
232 | 716 | for (m = mb, W = W + (mb * 6); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) { |
233 | 675 | E T2, T5, T3, T6, T8, Tc, Tg, Ti, Tl, Tm, Tn, Tz, Tp, Tx; |
234 | 675 | { |
235 | 675 | E T4, Tb, T7, Ta; |
236 | 675 | T2 = W[0]; |
237 | 675 | T5 = W[1]; |
238 | 675 | T3 = W[2]; |
239 | 675 | T6 = W[3]; |
240 | 675 | T4 = T2 * T3; |
241 | 675 | Tb = T5 * T3; |
242 | 675 | T7 = T5 * T6; |
243 | 675 | Ta = T2 * T6; |
244 | 675 | T8 = T4 - T7; |
245 | 675 | Tc = Ta + Tb; |
246 | 675 | Tg = T4 + T7; |
247 | 675 | Ti = Ta - Tb; |
248 | 675 | Tl = W[4]; |
249 | 675 | Tm = W[5]; |
250 | 675 | Tn = FMA(T2, Tl, T5 * Tm); |
251 | 675 | Tz = FNMS(Ti, Tl, Tg * Tm); |
252 | 675 | Tp = FNMS(T5, Tl, T2 * Tm); |
253 | 675 | Tx = FMA(Tg, Tl, Ti * Tm); |
254 | 675 | } |
255 | 675 | { |
256 | 675 | E Tf, T1i, TL, T1d, TJ, T17, TV, TY, Ts, T1j, TO, T1a, TC, T16, TQ; |
257 | 675 | E TT; |
258 | 675 | { |
259 | 675 | E T1, T1c, Te, T1b, T9, Td; |
260 | 675 | T1 = ri[0]; |
261 | 675 | T1c = ii[0]; |
262 | 675 | T9 = ri[WS(rs, 4)]; |
263 | 675 | Td = ii[WS(rs, 4)]; |
264 | 675 | Te = FMA(T8, T9, Tc * Td); |
265 | 675 | T1b = FNMS(Tc, T9, T8 * Td); |
266 | 675 | Tf = T1 + Te; |
267 | 675 | T1i = T1c - T1b; |
268 | 675 | TL = T1 - Te; |
269 | 675 | T1d = T1b + T1c; |
270 | 675 | } |
271 | 675 | { |
272 | 675 | E TF, TW, TI, TX; |
273 | 675 | { |
274 | 675 | E TD, TE, TG, TH; |
275 | 675 | TD = ri[WS(rs, 7)]; |
276 | 675 | TE = ii[WS(rs, 7)]; |
277 | 675 | TF = FMA(Tl, TD, Tm * TE); |
278 | 675 | TW = FNMS(Tm, TD, Tl * TE); |
279 | 675 | TG = ri[WS(rs, 3)]; |
280 | 675 | TH = ii[WS(rs, 3)]; |
281 | 675 | TI = FMA(T3, TG, T6 * TH); |
282 | 675 | TX = FNMS(T6, TG, T3 * TH); |
283 | 675 | } |
284 | 675 | TJ = TF + TI; |
285 | 675 | T17 = TW + TX; |
286 | 675 | TV = TF - TI; |
287 | 675 | TY = TW - TX; |
288 | 675 | } |
289 | 675 | { |
290 | 675 | E Tk, TM, Tr, TN; |
291 | 675 | { |
292 | 675 | E Th, Tj, To, Tq; |
293 | 675 | Th = ri[WS(rs, 2)]; |
294 | 675 | Tj = ii[WS(rs, 2)]; |
295 | 675 | Tk = FMA(Tg, Th, Ti * Tj); |
296 | 675 | TM = FNMS(Ti, Th, Tg * Tj); |
297 | 675 | To = ri[WS(rs, 6)]; |
298 | 675 | Tq = ii[WS(rs, 6)]; |
299 | 675 | Tr = FMA(Tn, To, Tp * Tq); |
300 | 675 | TN = FNMS(Tp, To, Tn * Tq); |
301 | 675 | } |
302 | 675 | Ts = Tk + Tr; |
303 | 675 | T1j = Tk - Tr; |
304 | 675 | TO = TM - TN; |
305 | 675 | T1a = TM + TN; |
306 | 675 | } |
307 | 675 | { |
308 | 675 | E Tw, TR, TB, TS; |
309 | 675 | { |
310 | 675 | E Tu, Tv, Ty, TA; |
311 | 675 | Tu = ri[WS(rs, 1)]; |
312 | 675 | Tv = ii[WS(rs, 1)]; |
313 | 675 | Tw = FMA(T2, Tu, T5 * Tv); |
314 | 675 | TR = FNMS(T5, Tu, T2 * Tv); |
315 | 675 | Ty = ri[WS(rs, 5)]; |
316 | 675 | TA = ii[WS(rs, 5)]; |
317 | 675 | TB = FMA(Tx, Ty, Tz * TA); |
318 | 675 | TS = FNMS(Tz, Ty, Tx * TA); |
319 | 675 | } |
320 | 675 | TC = Tw + TB; |
321 | 675 | T16 = TR + TS; |
322 | 675 | TQ = Tw - TB; |
323 | 675 | TT = TR - TS; |
324 | 675 | } |
325 | 675 | { |
326 | 675 | E Tt, TK, T1f, T1g; |
327 | 675 | Tt = Tf + Ts; |
328 | 675 | TK = TC + TJ; |
329 | 675 | ri[WS(rs, 4)] = Tt - TK; |
330 | 675 | ri[0] = Tt + TK; |
331 | 675 | { |
332 | 675 | E T19, T1e, T15, T18; |
333 | 675 | T19 = T16 + T17; |
334 | 675 | T1e = T1a + T1d; |
335 | 675 | ii[0] = T19 + T1e; |
336 | 675 | ii[WS(rs, 4)] = T1e - T19; |
337 | 675 | T15 = Tf - Ts; |
338 | 675 | T18 = T16 - T17; |
339 | 675 | ri[WS(rs, 6)] = T15 - T18; |
340 | 675 | ri[WS(rs, 2)] = T15 + T18; |
341 | 675 | } |
342 | 675 | T1f = TJ - TC; |
343 | 675 | T1g = T1d - T1a; |
344 | 675 | ii[WS(rs, 2)] = T1f + T1g; |
345 | 675 | ii[WS(rs, 6)] = T1g - T1f; |
346 | 675 | { |
347 | 675 | E T11, T1k, T14, T1h, T12, T13; |
348 | 675 | T11 = TL - TO; |
349 | 675 | T1k = T1i - T1j; |
350 | 675 | T12 = TT - TQ; |
351 | 675 | T13 = TV + TY; |
352 | 675 | T14 = KP707106781 * (T12 - T13); |
353 | 675 | T1h = KP707106781 * (T12 + T13); |
354 | 675 | ri[WS(rs, 7)] = T11 - T14; |
355 | 675 | ii[WS(rs, 5)] = T1k - T1h; |
356 | 675 | ri[WS(rs, 3)] = T11 + T14; |
357 | 675 | ii[WS(rs, 1)] = T1h + T1k; |
358 | 675 | } |
359 | 675 | { |
360 | 675 | E TP, T1m, T10, T1l, TU, TZ; |
361 | 675 | TP = TL + TO; |
362 | 675 | T1m = T1j + T1i; |
363 | 675 | TU = TQ + TT; |
364 | 675 | TZ = TV - TY; |
365 | 675 | T10 = KP707106781 * (TU + TZ); |
366 | 675 | T1l = KP707106781 * (TZ - TU); |
367 | 675 | ri[WS(rs, 5)] = TP - T10; |
368 | 675 | ii[WS(rs, 7)] = T1m - T1l; |
369 | 675 | ri[WS(rs, 1)] = TP + T10; |
370 | 675 | ii[WS(rs, 3)] = T1l + T1m; |
371 | 675 | } |
372 | 675 | } |
373 | 675 | } |
374 | 675 | } |
375 | 41 | } |
376 | 41 | } |
377 | | |
378 | | static const tw_instr twinstr[] = { |
379 | | { TW_CEXP, 0, 1 }, |
380 | | { TW_CEXP, 0, 3 }, |
381 | | { TW_CEXP, 0, 7 }, |
382 | | { TW_NEXT, 1, 0 } |
383 | | }; |
384 | | |
385 | | static const ct_desc desc = { 8, "t2_8", twinstr, &GENUS, { 56, 26, 18, 0 }, 0, 0, 0 }; |
386 | | |
387 | 1 | void X(codelet_t2_8) (planner *p) { |
388 | 1 | X(kdft_dit_register) (p, t2_8, &desc); |
389 | 1 | } |
390 | | #endif |