/src/fftw3/rdft/scalar/r2cb/hb_15.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Sun Sep 8 06:42:11 UTC 2024 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 15 -dif -name hb_15 -include rdft/scalar/hb.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 184 FP additions, 140 FP multiplications, |
32 | | * (or, 72 additions, 28 multiplications, 112 fused multiply/add), |
33 | | * 78 stack variables, 6 constants, and 60 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hb.h" |
36 | | |
37 | | static void hb_15(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
40 | | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
41 | | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
42 | | DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
43 | | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
44 | | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
45 | | { |
46 | | INT m; |
47 | | for (m = mb, W = W + ((mb - 1) * 28); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 28, MAKE_VOLATILE_STRIDE(30, rs)) { |
48 | | E T5, T11, T1C, T2U, T2f, T3f, TH, T19, T18, TS, T12, T13, T14, T3a, T3g; |
49 | | E Ts, Tv, T37, T3h, T28, T2h, T21, T2g, T2V, T2W, T2X, T2Y, T2Z, T30, T31; |
50 | | E T1F, T1I, T1J, T1M, T1P, T1Q, T1R; |
51 | | { |
52 | | E T1, TX, T4, T2e, T10, T1B, T1A, T2d; |
53 | | T1 = cr[0]; |
54 | | TX = ci[WS(rs, 14)]; |
55 | | { |
56 | | E T2, T3, TY, TZ; |
57 | | T2 = cr[WS(rs, 5)]; |
58 | | T3 = ci[WS(rs, 4)]; |
59 | | T4 = T2 + T3; |
60 | | T2e = T2 - T3; |
61 | | TY = ci[WS(rs, 9)]; |
62 | | TZ = cr[WS(rs, 10)]; |
63 | | T10 = TY - TZ; |
64 | | T1B = TY + TZ; |
65 | | } |
66 | | T5 = T1 + T4; |
67 | | T11 = TX + T10; |
68 | | T1A = FNMS(KP500000000, T4, T1); |
69 | | T1C = FNMS(KP866025403, T1B, T1A); |
70 | | T2U = FMA(KP866025403, T1B, T1A); |
71 | | T2d = FNMS(KP500000000, T10, TX); |
72 | | T2f = FMA(KP866025403, T2e, T2d); |
73 | | T3f = FNMS(KP866025403, T2e, T2d); |
74 | | } |
75 | | { |
76 | | E Ta, T1W, T1D, Tl, T23, T1K, Tf, T1Z, T1G, TR, T1Y, T1H, Tq, T26, T1N; |
77 | | E TG, T25, T1O, TM, T1V, T1E, TB, T22, T1L, T38, T39; |
78 | | { |
79 | | E T6, T7, T8, T9; |
80 | | T6 = cr[WS(rs, 3)]; |
81 | | T7 = ci[WS(rs, 6)]; |
82 | | T8 = ci[WS(rs, 1)]; |
83 | | T9 = T7 + T8; |
84 | | Ta = T6 + T9; |
85 | | T1W = T7 - T8; |
86 | | T1D = FNMS(KP500000000, T9, T6); |
87 | | } |
88 | | { |
89 | | E Th, Ti, Tj, Tk; |
90 | | Th = cr[WS(rs, 6)]; |
91 | | Ti = ci[WS(rs, 3)]; |
92 | | Tj = cr[WS(rs, 1)]; |
93 | | Tk = Ti + Tj; |
94 | | Tl = Th + Tk; |
95 | | T23 = Ti - Tj; |
96 | | T1K = FNMS(KP500000000, Tk, Th); |
97 | | } |
98 | | { |
99 | | E Tb, Tc, Td, Te; |
100 | | Tb = ci[WS(rs, 2)]; |
101 | | Tc = cr[WS(rs, 2)]; |
102 | | Td = cr[WS(rs, 7)]; |
103 | | Te = Tc + Td; |
104 | | Tf = Tb + Te; |
105 | | T1Z = Tc - Td; |
106 | | T1G = FNMS(KP500000000, Te, Tb); |
107 | | } |
108 | | { |
109 | | E TQ, TN, TO, TP; |
110 | | TQ = cr[WS(rs, 12)]; |
111 | | TN = ci[WS(rs, 12)]; |
112 | | TO = ci[WS(rs, 7)]; |
113 | | TP = TN + TO; |
114 | | TR = TP - TQ; |
115 | | T1Y = FMA(KP500000000, TP, TQ); |
116 | | T1H = TO - TN; |
117 | | } |
118 | | { |
119 | | E Tm, Tn, To, Tp; |
120 | | Tm = ci[WS(rs, 5)]; |
121 | | Tn = ci[0]; |
122 | | To = cr[WS(rs, 4)]; |
123 | | Tp = Tn + To; |
124 | | Tq = Tm + Tp; |
125 | | T26 = Tn - To; |
126 | | T1N = FNMS(KP500000000, Tp, Tm); |
127 | | } |
128 | | { |
129 | | E TF, TC, TD, TE; |
130 | | TF = cr[WS(rs, 9)]; |
131 | | TC = ci[WS(rs, 10)]; |
132 | | TD = cr[WS(rs, 14)]; |
133 | | TE = TC - TD; |
134 | | TG = TE - TF; |
135 | | T25 = FMA(KP500000000, TE, TF); |
136 | | T1O = TC + TD; |
137 | | } |
138 | | { |
139 | | E TI, TJ, TK, TL; |
140 | | TI = ci[WS(rs, 11)]; |
141 | | TJ = cr[WS(rs, 8)]; |
142 | | TK = cr[WS(rs, 13)]; |
143 | | TL = TJ + TK; |
144 | | TM = TI - TL; |
145 | | T1V = FMA(KP500000000, TL, TI); |
146 | | T1E = TJ - TK; |
147 | | } |
148 | | { |
149 | | E Tx, Ty, Tz, TA; |
150 | | Tx = ci[WS(rs, 8)]; |
151 | | Ty = ci[WS(rs, 13)]; |
152 | | Tz = cr[WS(rs, 11)]; |
153 | | TA = Ty - Tz; |
154 | | TB = Tx + TA; |
155 | | T22 = FNMS(KP500000000, TA, Tx); |
156 | | T1L = Ty + Tz; |
157 | | } |
158 | | TH = TB - TG; |
159 | | T19 = Ta - Tf; |
160 | | T18 = Tl - Tq; |
161 | | TS = TM - TR; |
162 | | T12 = TM + TR; |
163 | | T13 = TB + TG; |
164 | | T14 = T12 + T13; |
165 | | T38 = FNMS(KP866025403, T1W, T1V); |
166 | | T39 = FMA(KP866025403, T1Z, T1Y); |
167 | | T3a = T38 + T39; |
168 | | T3g = T38 - T39; |
169 | | { |
170 | | E Tg, Tr, T1X, T20; |
171 | | Tg = Ta + Tf; |
172 | | Tr = Tl + Tq; |
173 | | Ts = Tg + Tr; |
174 | | Tv = Tg - Tr; |
175 | | { |
176 | | E T35, T36, T24, T27; |
177 | | T35 = FNMS(KP866025403, T23, T22); |
178 | | T36 = FMA(KP866025403, T26, T25); |
179 | | T37 = T35 + T36; |
180 | | T3h = T35 - T36; |
181 | | T24 = FMA(KP866025403, T23, T22); |
182 | | T27 = FNMS(KP866025403, T26, T25); |
183 | | T28 = T24 + T27; |
184 | | T2h = T24 - T27; |
185 | | } |
186 | | T1X = FMA(KP866025403, T1W, T1V); |
187 | | T20 = FNMS(KP866025403, T1Z, T1Y); |
188 | | T21 = T1X + T20; |
189 | | T2g = T1X - T20; |
190 | | T2V = FNMS(KP866025403, T1E, T1D); |
191 | | T2W = FNMS(KP866025403, T1H, T1G); |
192 | | T2X = T2V + T2W; |
193 | | T2Y = FNMS(KP866025403, T1L, T1K); |
194 | | T2Z = FNMS(KP866025403, T1O, T1N); |
195 | | T30 = T2Y + T2Z; |
196 | | T31 = T2X + T30; |
197 | | T1F = FMA(KP866025403, T1E, T1D); |
198 | | T1I = FMA(KP866025403, T1H, T1G); |
199 | | T1J = T1F + T1I; |
200 | | T1M = FMA(KP866025403, T1L, T1K); |
201 | | T1P = FMA(KP866025403, T1O, T1N); |
202 | | T1Q = T1M + T1P; |
203 | | T1R = T1J + T1Q; |
204 | | } |
205 | | } |
206 | | cr[0] = T5 + Ts; |
207 | | ci[0] = T11 + T14; |
208 | | { |
209 | | E T1a, T1q, T17, T1p, TU, T1u, T1e, T1m, T15, T16; |
210 | | T1a = FNMS(KP618033988, T19, T18); |
211 | | T1q = FMA(KP618033988, T18, T19); |
212 | | T15 = FNMS(KP250000000, T14, T11); |
213 | | T16 = T12 - T13; |
214 | | T17 = FNMS(KP559016994, T16, T15); |
215 | | T1p = FMA(KP559016994, T16, T15); |
216 | | { |
217 | | E TT, T1l, Tw, T1k, Tu; |
218 | | TT = FNMS(KP618033988, TS, TH); |
219 | | T1l = FMA(KP618033988, TH, TS); |
220 | | Tu = FNMS(KP250000000, Ts, T5); |
221 | | Tw = FNMS(KP559016994, Tv, Tu); |
222 | | T1k = FMA(KP559016994, Tv, Tu); |
223 | | TU = FNMS(KP951056516, TT, Tw); |
224 | | T1u = FMA(KP951056516, T1l, T1k); |
225 | | T1e = FMA(KP951056516, TT, Tw); |
226 | | T1m = FNMS(KP951056516, T1l, T1k); |
227 | | } |
228 | | { |
229 | | E T1b, TW, T1c, Tt, TV; |
230 | | T1b = FMA(KP951056516, T1a, T17); |
231 | | TW = W[5]; |
232 | | T1c = TW * TU; |
233 | | Tt = W[4]; |
234 | | TV = Tt * TU; |
235 | | cr[WS(rs, 3)] = FNMS(TW, T1b, TV); |
236 | | ci[WS(rs, 3)] = FMA(Tt, T1b, T1c); |
237 | | } |
238 | | { |
239 | | E T1x, T1w, T1y, T1t, T1v; |
240 | | T1x = FNMS(KP951056516, T1q, T1p); |
241 | | T1w = W[17]; |
242 | | T1y = T1w * T1u; |
243 | | T1t = W[16]; |
244 | | T1v = T1t * T1u; |
245 | | cr[WS(rs, 9)] = FNMS(T1w, T1x, T1v); |
246 | | ci[WS(rs, 9)] = FMA(T1t, T1x, T1y); |
247 | | } |
248 | | { |
249 | | E T1h, T1g, T1i, T1d, T1f; |
250 | | T1h = FNMS(KP951056516, T1a, T17); |
251 | | T1g = W[23]; |
252 | | T1i = T1g * T1e; |
253 | | T1d = W[22]; |
254 | | T1f = T1d * T1e; |
255 | | cr[WS(rs, 12)] = FNMS(T1g, T1h, T1f); |
256 | | ci[WS(rs, 12)] = FMA(T1d, T1h, T1i); |
257 | | } |
258 | | { |
259 | | E T1r, T1o, T1s, T1j, T1n; |
260 | | T1r = FMA(KP951056516, T1q, T1p); |
261 | | T1o = W[11]; |
262 | | T1s = T1o * T1m; |
263 | | T1j = W[10]; |
264 | | T1n = T1j * T1m; |
265 | | cr[WS(rs, 6)] = FNMS(T1o, T1r, T1n); |
266 | | ci[WS(rs, 6)] = FMA(T1j, T1r, T1s); |
267 | | } |
268 | | } |
269 | | { |
270 | | E T2o, T2E, T2N, T2P, T2Q, T2S, T2l, T2R, T2D, T2a, T2I, T2s, T2A; |
271 | | { |
272 | | E T2m, T2n, T2O, T2k, T2i, T2j; |
273 | | T2m = T1F - T1I; |
274 | | T2n = T1M - T1P; |
275 | | T2o = FMA(KP618033988, T2n, T2m); |
276 | | T2E = FNMS(KP618033988, T2m, T2n); |
277 | | T2O = T1C + T1R; |
278 | | T2N = W[18]; |
279 | | T2P = T2N * T2O; |
280 | | T2Q = W[19]; |
281 | | T2S = T2Q * T2O; |
282 | | T2k = T2g - T2h; |
283 | | T2i = T2g + T2h; |
284 | | T2j = FNMS(KP250000000, T2i, T2f); |
285 | | T2l = FMA(KP559016994, T2k, T2j); |
286 | | T2R = T2f + T2i; |
287 | | T2D = FNMS(KP559016994, T2k, T2j); |
288 | | { |
289 | | E T29, T2z, T1U, T2y, T1S, T1T; |
290 | | T29 = FMA(KP618033988, T28, T21); |
291 | | T2z = FNMS(KP618033988, T21, T28); |
292 | | T1S = FNMS(KP250000000, T1R, T1C); |
293 | | T1T = T1J - T1Q; |
294 | | T1U = FMA(KP559016994, T1T, T1S); |
295 | | T2y = FNMS(KP559016994, T1T, T1S); |
296 | | T2a = FNMS(KP951056516, T29, T1U); |
297 | | T2I = FNMS(KP951056516, T2z, T2y); |
298 | | T2s = FMA(KP951056516, T29, T1U); |
299 | | T2A = FMA(KP951056516, T2z, T2y); |
300 | | } |
301 | | } |
302 | | cr[WS(rs, 10)] = FNMS(T2Q, T2R, T2P); |
303 | | ci[WS(rs, 10)] = FMA(T2N, T2R, T2S); |
304 | | { |
305 | | E T2p, T2c, T2q, T1z, T2b; |
306 | | T2p = FMA(KP951056516, T2o, T2l); |
307 | | T2c = W[1]; |
308 | | T2q = T2c * T2a; |
309 | | T1z = W[0]; |
310 | | T2b = T1z * T2a; |
311 | | cr[WS(rs, 1)] = FNMS(T2c, T2p, T2b); |
312 | | ci[WS(rs, 1)] = FMA(T1z, T2p, T2q); |
313 | | } |
314 | | { |
315 | | E T2L, T2K, T2M, T2H, T2J; |
316 | | T2L = FMA(KP951056516, T2E, T2D); |
317 | | T2K = W[25]; |
318 | | T2M = T2K * T2I; |
319 | | T2H = W[24]; |
320 | | T2J = T2H * T2I; |
321 | | cr[WS(rs, 13)] = FNMS(T2K, T2L, T2J); |
322 | | ci[WS(rs, 13)] = FMA(T2H, T2L, T2M); |
323 | | } |
324 | | { |
325 | | E T2F, T2C, T2G, T2x, T2B; |
326 | | T2F = FNMS(KP951056516, T2E, T2D); |
327 | | T2C = W[13]; |
328 | | T2G = T2C * T2A; |
329 | | T2x = W[12]; |
330 | | T2B = T2x * T2A; |
331 | | cr[WS(rs, 7)] = FNMS(T2C, T2F, T2B); |
332 | | ci[WS(rs, 7)] = FMA(T2x, T2F, T2G); |
333 | | } |
334 | | { |
335 | | E T2v, T2u, T2w, T2r, T2t; |
336 | | T2v = FNMS(KP951056516, T2o, T2l); |
337 | | T2u = W[7]; |
338 | | T2w = T2u * T2s; |
339 | | T2r = W[6]; |
340 | | T2t = T2r * T2s; |
341 | | cr[WS(rs, 4)] = FNMS(T2u, T2v, T2t); |
342 | | ci[WS(rs, 4)] = FMA(T2r, T2v, T2w); |
343 | | } |
344 | | } |
345 | | { |
346 | | E T3o, T3E, T3N, T3P, T3Q, T3S, T3l, T3R, T3D, T3c, T3I, T3s, T3A; |
347 | | { |
348 | | E T3m, T3n, T3O, T3k, T3i, T3j; |
349 | | T3m = T2Y - T2Z; |
350 | | T3n = T2V - T2W; |
351 | | T3o = FNMS(KP618033988, T3n, T3m); |
352 | | T3E = FMA(KP618033988, T3m, T3n); |
353 | | T3O = T2U + T31; |
354 | | T3N = W[8]; |
355 | | T3P = T3N * T3O; |
356 | | T3Q = W[9]; |
357 | | T3S = T3Q * T3O; |
358 | | T3k = T3g - T3h; |
359 | | T3i = T3g + T3h; |
360 | | T3j = FNMS(KP250000000, T3i, T3f); |
361 | | T3l = FNMS(KP559016994, T3k, T3j); |
362 | | T3R = T3f + T3i; |
363 | | T3D = FMA(KP559016994, T3k, T3j); |
364 | | { |
365 | | E T3b, T3z, T34, T3y, T32, T33; |
366 | | T3b = FNMS(KP618033988, T3a, T37); |
367 | | T3z = FMA(KP618033988, T37, T3a); |
368 | | T32 = FNMS(KP250000000, T31, T2U); |
369 | | T33 = T2X - T30; |
370 | | T34 = FNMS(KP559016994, T33, T32); |
371 | | T3y = FMA(KP559016994, T33, T32); |
372 | | T3c = FMA(KP951056516, T3b, T34); |
373 | | T3I = FMA(KP951056516, T3z, T3y); |
374 | | T3s = FNMS(KP951056516, T3b, T34); |
375 | | T3A = FNMS(KP951056516, T3z, T3y); |
376 | | } |
377 | | } |
378 | | cr[WS(rs, 5)] = FNMS(T3Q, T3R, T3P); |
379 | | ci[WS(rs, 5)] = FMA(T3N, T3R, T3S); |
380 | | { |
381 | | E T3p, T3e, T3q, T2T, T3d; |
382 | | T3p = FNMS(KP951056516, T3o, T3l); |
383 | | T3e = W[3]; |
384 | | T3q = T3e * T3c; |
385 | | T2T = W[2]; |
386 | | T3d = T2T * T3c; |
387 | | cr[WS(rs, 2)] = FNMS(T3e, T3p, T3d); |
388 | | ci[WS(rs, 2)] = FMA(T2T, T3p, T3q); |
389 | | } |
390 | | { |
391 | | E T3L, T3K, T3M, T3H, T3J; |
392 | | T3L = FNMS(KP951056516, T3E, T3D); |
393 | | T3K = W[27]; |
394 | | T3M = T3K * T3I; |
395 | | T3H = W[26]; |
396 | | T3J = T3H * T3I; |
397 | | cr[WS(rs, 14)] = FNMS(T3K, T3L, T3J); |
398 | | ci[WS(rs, 14)] = FMA(T3H, T3L, T3M); |
399 | | } |
400 | | { |
401 | | E T3F, T3C, T3G, T3x, T3B; |
402 | | T3F = FMA(KP951056516, T3E, T3D); |
403 | | T3C = W[21]; |
404 | | T3G = T3C * T3A; |
405 | | T3x = W[20]; |
406 | | T3B = T3x * T3A; |
407 | | cr[WS(rs, 11)] = FNMS(T3C, T3F, T3B); |
408 | | ci[WS(rs, 11)] = FMA(T3x, T3F, T3G); |
409 | | } |
410 | | { |
411 | | E T3v, T3u, T3w, T3r, T3t; |
412 | | T3v = FMA(KP951056516, T3o, T3l); |
413 | | T3u = W[15]; |
414 | | T3w = T3u * T3s; |
415 | | T3r = W[14]; |
416 | | T3t = T3r * T3s; |
417 | | cr[WS(rs, 8)] = FNMS(T3u, T3v, T3t); |
418 | | ci[WS(rs, 8)] = FMA(T3r, T3v, T3w); |
419 | | } |
420 | | } |
421 | | } |
422 | | } |
423 | | } |
424 | | |
425 | | static const tw_instr twinstr[] = { |
426 | | { TW_FULL, 1, 15 }, |
427 | | { TW_NEXT, 1, 0 } |
428 | | }; |
429 | | |
430 | | static const hc2hc_desc desc = { 15, "hb_15", twinstr, &GENUS, { 72, 28, 112, 0 } }; |
431 | | |
432 | | void X(codelet_hb_15) (planner *p) { |
433 | | X(khc2hc_register) (p, hb_15, &desc); |
434 | | } |
435 | | #else |
436 | | |
437 | | /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 15 -dif -name hb_15 -include rdft/scalar/hb.h */ |
438 | | |
439 | | /* |
440 | | * This function contains 184 FP additions, 112 FP multiplications, |
441 | | * (or, 128 additions, 56 multiplications, 56 fused multiply/add), |
442 | | * 75 stack variables, 6 constants, and 60 memory accesses |
443 | | */ |
444 | | #include "rdft/scalar/hb.h" |
445 | | |
446 | | static void hb_15(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) |
447 | 0 | { |
448 | 0 | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
449 | 0 | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
450 | 0 | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
451 | 0 | DK(KP587785252, +0.587785252292473129168705954639072768597652438); |
452 | 0 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
453 | 0 | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
454 | 0 | { |
455 | 0 | INT m; |
456 | 0 | for (m = mb, W = W + ((mb - 1) * 28); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 28, MAKE_VOLATILE_STRIDE(30, rs)) { |
457 | 0 | E T5, T10, T1J, T2C, T2c, T2M, TH, T18, T17, TS, T2Q, T2R, T2S, Tg, Tr; |
458 | 0 | E Ts, T11, T12, T13, T2N, T2O, T2P, T1u, T1x, T1y, T1W, T1Z, T28, T1P, T1S; |
459 | 0 | E T27, T1B, T1E, T1F, T2G, T2H, T2I, T2D, T2E, T2F; |
460 | 0 | { |
461 | 0 | E T1, TW, T4, T2a, TZ, T1I, T1H, T2b; |
462 | 0 | T1 = cr[0]; |
463 | 0 | TW = ci[WS(rs, 14)]; |
464 | 0 | { |
465 | 0 | E T2, T3, TX, TY; |
466 | 0 | T2 = cr[WS(rs, 5)]; |
467 | 0 | T3 = ci[WS(rs, 4)]; |
468 | 0 | T4 = T2 + T3; |
469 | 0 | T2a = KP866025403 * (T2 - T3); |
470 | 0 | TX = ci[WS(rs, 9)]; |
471 | 0 | TY = cr[WS(rs, 10)]; |
472 | 0 | TZ = TX - TY; |
473 | 0 | T1I = KP866025403 * (TX + TY); |
474 | 0 | } |
475 | 0 | T5 = T1 + T4; |
476 | 0 | T10 = TW + TZ; |
477 | 0 | T1H = FNMS(KP500000000, T4, T1); |
478 | 0 | T1J = T1H - T1I; |
479 | 0 | T2C = T1H + T1I; |
480 | 0 | T2b = FNMS(KP500000000, TZ, TW); |
481 | 0 | T2c = T2a + T2b; |
482 | 0 | T2M = T2b - T2a; |
483 | 0 | } |
484 | 0 | { |
485 | 0 | E Ta, T1N, T1s, Tl, T1U, T1z, Tf, T1Q, T1v, TG, T1R, T1w, Tq, T1X, T1C; |
486 | 0 | E TM, T1V, T1A, TB, T1O, T1t, TR, T1Y, T1D; |
487 | 0 | { |
488 | 0 | E T6, T7, T8, T9; |
489 | 0 | T6 = cr[WS(rs, 3)]; |
490 | 0 | T7 = ci[WS(rs, 6)]; |
491 | 0 | T8 = ci[WS(rs, 1)]; |
492 | 0 | T9 = T7 + T8; |
493 | 0 | Ta = T6 + T9; |
494 | 0 | T1N = KP866025403 * (T7 - T8); |
495 | 0 | T1s = FNMS(KP500000000, T9, T6); |
496 | 0 | } |
497 | 0 | { |
498 | 0 | E Th, Ti, Tj, Tk; |
499 | 0 | Th = cr[WS(rs, 6)]; |
500 | 0 | Ti = ci[WS(rs, 3)]; |
501 | 0 | Tj = cr[WS(rs, 1)]; |
502 | 0 | Tk = Ti + Tj; |
503 | 0 | Tl = Th + Tk; |
504 | 0 | T1U = KP866025403 * (Ti - Tj); |
505 | 0 | T1z = FNMS(KP500000000, Tk, Th); |
506 | 0 | } |
507 | 0 | { |
508 | 0 | E Tb, Tc, Td, Te; |
509 | 0 | Tb = ci[WS(rs, 2)]; |
510 | 0 | Tc = cr[WS(rs, 2)]; |
511 | 0 | Td = cr[WS(rs, 7)]; |
512 | 0 | Te = Tc + Td; |
513 | 0 | Tf = Tb + Te; |
514 | 0 | T1Q = KP866025403 * (Tc - Td); |
515 | 0 | T1v = FNMS(KP500000000, Te, Tb); |
516 | 0 | } |
517 | 0 | { |
518 | 0 | E TF, TC, TD, TE; |
519 | 0 | TF = cr[WS(rs, 12)]; |
520 | 0 | TC = ci[WS(rs, 12)]; |
521 | 0 | TD = ci[WS(rs, 7)]; |
522 | 0 | TE = TC + TD; |
523 | 0 | TG = TE - TF; |
524 | 0 | T1R = FMA(KP500000000, TE, TF); |
525 | 0 | T1w = KP866025403 * (TD - TC); |
526 | 0 | } |
527 | 0 | { |
528 | 0 | E Tm, Tn, To, Tp; |
529 | 0 | Tm = ci[WS(rs, 5)]; |
530 | 0 | Tn = ci[0]; |
531 | 0 | To = cr[WS(rs, 4)]; |
532 | 0 | Tp = Tn + To; |
533 | 0 | Tq = Tm + Tp; |
534 | 0 | T1X = KP866025403 * (Tn - To); |
535 | 0 | T1C = FNMS(KP500000000, Tp, Tm); |
536 | 0 | } |
537 | 0 | { |
538 | 0 | E TI, TJ, TK, TL; |
539 | 0 | TI = ci[WS(rs, 8)]; |
540 | 0 | TJ = ci[WS(rs, 13)]; |
541 | 0 | TK = cr[WS(rs, 11)]; |
542 | 0 | TL = TJ - TK; |
543 | 0 | TM = TI + TL; |
544 | 0 | T1V = FNMS(KP500000000, TL, TI); |
545 | 0 | T1A = KP866025403 * (TJ + TK); |
546 | 0 | } |
547 | 0 | { |
548 | 0 | E Tx, Ty, Tz, TA; |
549 | 0 | Tx = ci[WS(rs, 11)]; |
550 | 0 | Ty = cr[WS(rs, 8)]; |
551 | 0 | Tz = cr[WS(rs, 13)]; |
552 | 0 | TA = Ty + Tz; |
553 | 0 | TB = Tx - TA; |
554 | 0 | T1O = FMA(KP500000000, TA, Tx); |
555 | 0 | T1t = KP866025403 * (Ty - Tz); |
556 | 0 | } |
557 | 0 | { |
558 | 0 | E TQ, TN, TO, TP; |
559 | 0 | TQ = cr[WS(rs, 9)]; |
560 | 0 | TN = ci[WS(rs, 10)]; |
561 | 0 | TO = cr[WS(rs, 14)]; |
562 | 0 | TP = TN - TO; |
563 | 0 | TR = TP - TQ; |
564 | 0 | T1Y = FMA(KP500000000, TP, TQ); |
565 | 0 | T1D = KP866025403 * (TN + TO); |
566 | 0 | } |
567 | 0 | TH = TB - TG; |
568 | 0 | T18 = Tl - Tq; |
569 | 0 | T17 = Ta - Tf; |
570 | 0 | TS = TM - TR; |
571 | 0 | T2Q = T1V - T1U; |
572 | 0 | T2R = T1X + T1Y; |
573 | 0 | T2S = T2Q - T2R; |
574 | 0 | Tg = Ta + Tf; |
575 | 0 | Tr = Tl + Tq; |
576 | 0 | Ts = Tg + Tr; |
577 | 0 | T11 = TB + TG; |
578 | 0 | T12 = TM + TR; |
579 | 0 | T13 = T11 + T12; |
580 | 0 | T2N = T1O - T1N; |
581 | 0 | T2O = T1Q + T1R; |
582 | 0 | T2P = T2N - T2O; |
583 | 0 | T1u = T1s + T1t; |
584 | 0 | T1x = T1v + T1w; |
585 | 0 | T1y = T1u + T1x; |
586 | 0 | T1W = T1U + T1V; |
587 | 0 | T1Z = T1X - T1Y; |
588 | 0 | T28 = T1W + T1Z; |
589 | 0 | T1P = T1N + T1O; |
590 | 0 | T1S = T1Q - T1R; |
591 | 0 | T27 = T1P + T1S; |
592 | 0 | T1B = T1z + T1A; |
593 | 0 | T1E = T1C + T1D; |
594 | 0 | T1F = T1B + T1E; |
595 | 0 | T2G = T1z - T1A; |
596 | 0 | T2H = T1C - T1D; |
597 | 0 | T2I = T2G + T2H; |
598 | 0 | T2D = T1s - T1t; |
599 | 0 | T2E = T1v - T1w; |
600 | 0 | T2F = T2D + T2E; |
601 | 0 | } |
602 | 0 | cr[0] = T5 + Ts; |
603 | 0 | ci[0] = T10 + T13; |
604 | 0 | { |
605 | 0 | E TT, T19, T1k, T1h, T16, T1l, Tw, T1g; |
606 | 0 | TT = FNMS(KP951056516, TS, KP587785252 * TH); |
607 | 0 | T19 = FNMS(KP951056516, T18, KP587785252 * T17); |
608 | 0 | T1k = FMA(KP951056516, T17, KP587785252 * T18); |
609 | 0 | T1h = FMA(KP951056516, TH, KP587785252 * TS); |
610 | 0 | { |
611 | 0 | E T14, T15, Tu, Tv; |
612 | 0 | T14 = FNMS(KP250000000, T13, T10); |
613 | 0 | T15 = KP559016994 * (T11 - T12); |
614 | 0 | T16 = T14 - T15; |
615 | 0 | T1l = T15 + T14; |
616 | 0 | Tu = FNMS(KP250000000, Ts, T5); |
617 | 0 | Tv = KP559016994 * (Tg - Tr); |
618 | 0 | Tw = Tu - Tv; |
619 | 0 | T1g = Tv + Tu; |
620 | 0 | } |
621 | 0 | { |
622 | 0 | E TU, T1a, Tt, TV; |
623 | 0 | TU = Tw + TT; |
624 | 0 | T1a = T16 - T19; |
625 | 0 | Tt = W[4]; |
626 | 0 | TV = W[5]; |
627 | 0 | cr[WS(rs, 3)] = FNMS(TV, T1a, Tt * TU); |
628 | 0 | ci[WS(rs, 3)] = FMA(TV, TU, Tt * T1a); |
629 | 0 | } |
630 | 0 | { |
631 | 0 | E T1o, T1q, T1n, T1p; |
632 | 0 | T1o = T1g + T1h; |
633 | 0 | T1q = T1l - T1k; |
634 | 0 | T1n = W[16]; |
635 | 0 | T1p = W[17]; |
636 | 0 | cr[WS(rs, 9)] = FNMS(T1p, T1q, T1n * T1o); |
637 | 0 | ci[WS(rs, 9)] = FMA(T1p, T1o, T1n * T1q); |
638 | 0 | } |
639 | 0 | { |
640 | 0 | E T1c, T1e, T1b, T1d; |
641 | 0 | T1c = Tw - TT; |
642 | 0 | T1e = T19 + T16; |
643 | 0 | T1b = W[22]; |
644 | 0 | T1d = W[23]; |
645 | 0 | cr[WS(rs, 12)] = FNMS(T1d, T1e, T1b * T1c); |
646 | 0 | ci[WS(rs, 12)] = FMA(T1d, T1c, T1b * T1e); |
647 | 0 | } |
648 | 0 | { |
649 | 0 | E T1i, T1m, T1f, T1j; |
650 | 0 | T1i = T1g - T1h; |
651 | 0 | T1m = T1k + T1l; |
652 | 0 | T1f = W[10]; |
653 | 0 | T1j = W[11]; |
654 | 0 | cr[WS(rs, 6)] = FNMS(T1j, T1m, T1f * T1i); |
655 | 0 | ci[WS(rs, 6)] = FMA(T1j, T1i, T1f * T1m); |
656 | 0 | } |
657 | 0 | } |
658 | 0 | { |
659 | 0 | E T21, T2n, T26, T2q, T1M, T2y, T2m, T2f, T2A, T2r, T2x, T2z; |
660 | 0 | { |
661 | 0 | E T1T, T20, T24, T25; |
662 | 0 | T1T = T1P - T1S; |
663 | 0 | T20 = T1W - T1Z; |
664 | 0 | T21 = FMA(KP951056516, T1T, KP587785252 * T20); |
665 | 0 | T2n = FNMS(KP951056516, T20, KP587785252 * T1T); |
666 | 0 | T24 = T1u - T1x; |
667 | 0 | T25 = T1B - T1E; |
668 | 0 | T26 = FMA(KP951056516, T24, KP587785252 * T25); |
669 | 0 | T2q = FNMS(KP951056516, T25, KP587785252 * T24); |
670 | 0 | } |
671 | 0 | { |
672 | 0 | E T1G, T1K, T1L, T29, T2d, T2e; |
673 | 0 | T1G = KP559016994 * (T1y - T1F); |
674 | 0 | T1K = T1y + T1F; |
675 | 0 | T1L = FNMS(KP250000000, T1K, T1J); |
676 | 0 | T1M = T1G + T1L; |
677 | 0 | T2y = T1J + T1K; |
678 | 0 | T2m = T1L - T1G; |
679 | 0 | T29 = KP559016994 * (T27 - T28); |
680 | 0 | T2d = T27 + T28; |
681 | 0 | T2e = FNMS(KP250000000, T2d, T2c); |
682 | 0 | T2f = T29 + T2e; |
683 | 0 | T2A = T2c + T2d; |
684 | 0 | T2r = T2e - T29; |
685 | 0 | } |
686 | 0 | T2x = W[18]; |
687 | 0 | T2z = W[19]; |
688 | 0 | cr[WS(rs, 10)] = FNMS(T2z, T2A, T2x * T2y); |
689 | 0 | ci[WS(rs, 10)] = FMA(T2z, T2y, T2x * T2A); |
690 | 0 | { |
691 | 0 | E T2u, T2w, T2t, T2v; |
692 | 0 | T2u = T2m + T2n; |
693 | 0 | T2w = T2r - T2q; |
694 | 0 | T2t = W[24]; |
695 | 0 | T2v = W[25]; |
696 | 0 | cr[WS(rs, 13)] = FNMS(T2v, T2w, T2t * T2u); |
697 | 0 | ci[WS(rs, 13)] = FMA(T2v, T2u, T2t * T2w); |
698 | 0 | } |
699 | 0 | { |
700 | 0 | E T22, T2g, T1r, T23; |
701 | 0 | T22 = T1M - T21; |
702 | 0 | T2g = T26 + T2f; |
703 | 0 | T1r = W[0]; |
704 | 0 | T23 = W[1]; |
705 | 0 | cr[WS(rs, 1)] = FNMS(T23, T2g, T1r * T22); |
706 | 0 | ci[WS(rs, 1)] = FMA(T23, T22, T1r * T2g); |
707 | 0 | } |
708 | 0 | { |
709 | 0 | E T2i, T2k, T2h, T2j; |
710 | 0 | T2i = T1M + T21; |
711 | 0 | T2k = T2f - T26; |
712 | 0 | T2h = W[6]; |
713 | 0 | T2j = W[7]; |
714 | 0 | cr[WS(rs, 4)] = FNMS(T2j, T2k, T2h * T2i); |
715 | 0 | ci[WS(rs, 4)] = FMA(T2j, T2i, T2h * T2k); |
716 | 0 | } |
717 | 0 | { |
718 | 0 | E T2o, T2s, T2l, T2p; |
719 | 0 | T2o = T2m - T2n; |
720 | 0 | T2s = T2q + T2r; |
721 | 0 | T2l = W[12]; |
722 | 0 | T2p = W[13]; |
723 | 0 | cr[WS(rs, 7)] = FNMS(T2p, T2s, T2l * T2o); |
724 | 0 | ci[WS(rs, 7)] = FMA(T2p, T2o, T2l * T2s); |
725 | 0 | } |
726 | 0 | } |
727 | 0 | { |
728 | 0 | E T31, T3h, T36, T3k, T2K, T3g, T2Y, T2U, T3l, T39, T2B, T2L; |
729 | 0 | { |
730 | 0 | E T2Z, T30, T34, T35; |
731 | 0 | T2Z = T2N + T2O; |
732 | 0 | T30 = T2Q + T2R; |
733 | 0 | T31 = FNMS(KP951056516, T30, KP587785252 * T2Z); |
734 | 0 | T3h = FMA(KP951056516, T2Z, KP587785252 * T30); |
735 | 0 | T34 = T2D - T2E; |
736 | 0 | T35 = T2G - T2H; |
737 | 0 | T36 = FNMS(KP951056516, T35, KP587785252 * T34); |
738 | 0 | T3k = FMA(KP951056516, T34, KP587785252 * T35); |
739 | 0 | } |
740 | 0 | { |
741 | 0 | E T2X, T2J, T2W, T38, T2T, T37; |
742 | 0 | T2X = KP559016994 * (T2F - T2I); |
743 | 0 | T2J = T2F + T2I; |
744 | 0 | T2W = FNMS(KP250000000, T2J, T2C); |
745 | 0 | T2K = T2C + T2J; |
746 | 0 | T3g = T2X + T2W; |
747 | 0 | T2Y = T2W - T2X; |
748 | 0 | T38 = KP559016994 * (T2P - T2S); |
749 | 0 | T2T = T2P + T2S; |
750 | 0 | T37 = FNMS(KP250000000, T2T, T2M); |
751 | 0 | T2U = T2M + T2T; |
752 | 0 | T3l = T38 + T37; |
753 | 0 | T39 = T37 - T38; |
754 | 0 | } |
755 | 0 | T2B = W[8]; |
756 | 0 | T2L = W[9]; |
757 | 0 | cr[WS(rs, 5)] = FNMS(T2L, T2U, T2B * T2K); |
758 | 0 | ci[WS(rs, 5)] = FMA(T2L, T2K, T2B * T2U); |
759 | 0 | { |
760 | 0 | E T3o, T3q, T3n, T3p; |
761 | 0 | T3o = T3g + T3h; |
762 | 0 | T3q = T3l - T3k; |
763 | 0 | T3n = W[26]; |
764 | 0 | T3p = W[27]; |
765 | 0 | cr[WS(rs, 14)] = FNMS(T3p, T3q, T3n * T3o); |
766 | 0 | ci[WS(rs, 14)] = FMA(T3n, T3q, T3p * T3o); |
767 | 0 | } |
768 | 0 | { |
769 | 0 | E T32, T3a, T2V, T33; |
770 | 0 | T32 = T2Y - T31; |
771 | 0 | T3a = T36 + T39; |
772 | 0 | T2V = W[2]; |
773 | 0 | T33 = W[3]; |
774 | 0 | cr[WS(rs, 2)] = FNMS(T33, T3a, T2V * T32); |
775 | 0 | ci[WS(rs, 2)] = FMA(T2V, T3a, T33 * T32); |
776 | 0 | } |
777 | 0 | { |
778 | 0 | E T3c, T3e, T3b, T3d; |
779 | 0 | T3c = T2Y + T31; |
780 | 0 | T3e = T39 - T36; |
781 | 0 | T3b = W[14]; |
782 | 0 | T3d = W[15]; |
783 | 0 | cr[WS(rs, 8)] = FNMS(T3d, T3e, T3b * T3c); |
784 | 0 | ci[WS(rs, 8)] = FMA(T3b, T3e, T3d * T3c); |
785 | 0 | } |
786 | 0 | { |
787 | 0 | E T3i, T3m, T3f, T3j; |
788 | 0 | T3i = T3g - T3h; |
789 | 0 | T3m = T3k + T3l; |
790 | 0 | T3f = W[20]; |
791 | 0 | T3j = W[21]; |
792 | 0 | cr[WS(rs, 11)] = FNMS(T3j, T3m, T3f * T3i); |
793 | 0 | ci[WS(rs, 11)] = FMA(T3f, T3m, T3j * T3i); |
794 | 0 | } |
795 | 0 | } |
796 | 0 | } |
797 | 0 | } |
798 | 0 | } |
799 | | |
800 | | static const tw_instr twinstr[] = { |
801 | | { TW_FULL, 1, 15 }, |
802 | | { TW_NEXT, 1, 0 } |
803 | | }; |
804 | | |
805 | | static const hc2hc_desc desc = { 15, "hb_15", twinstr, &GENUS, { 128, 56, 56, 0 } }; |
806 | | |
807 | 1 | void X(codelet_hb_15) (planner *p) { |
808 | 1 | X(khc2hc_register) (p, hb_15, &desc); |
809 | 1 | } |
810 | | #endif |