/src/fftw3/rdft/scalar/r2cb/hc2cbdft_16.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Sun Sep 8 06:42:45 UTC 2024 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -dif -name hc2cbdft_16 -include rdft/scalar/hc2cb.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 206 FP additions, 100 FP multiplications, |
32 | | * (or, 136 additions, 30 multiplications, 70 fused multiply/add), |
33 | | * 66 stack variables, 3 constants, and 64 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hc2cb.h" |
36 | | |
37 | | static void hc2cbdft_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
40 | | DK(KP414213562, +0.414213562373095048801688724209698078569671875); |
41 | | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
42 | | { |
43 | | INT m; |
44 | | for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) { |
45 | | E Tf, T20, T32, T3Q, T3f, T3V, TN, T2a, T1m, T2f, T2G, T3G, T2T, T3L, T1F; |
46 | | E T26, T2J, T2M, T2N, T2U, T2V, T3H, Tu, T25, T3i, T3R, T1a, T2g, T1y, T21; |
47 | | E T39, T3W, T1p, T2b; |
48 | | { |
49 | | E T3, T1e, TA, T1C, T6, Tx, T1h, T1D, Td, T1A, TL, T1k, Ta, T1z, TG; |
50 | | E T1j; |
51 | | { |
52 | | E T1, T2, T1f, T1g; |
53 | | T1 = Rp[0]; |
54 | | T2 = Rm[WS(rs, 7)]; |
55 | | T3 = T1 + T2; |
56 | | T1e = T1 - T2; |
57 | | { |
58 | | E Ty, Tz, T4, T5; |
59 | | Ty = Ip[0]; |
60 | | Tz = Im[WS(rs, 7)]; |
61 | | TA = Ty + Tz; |
62 | | T1C = Ty - Tz; |
63 | | T4 = Rp[WS(rs, 4)]; |
64 | | T5 = Rm[WS(rs, 3)]; |
65 | | T6 = T4 + T5; |
66 | | Tx = T4 - T5; |
67 | | } |
68 | | T1f = Ip[WS(rs, 4)]; |
69 | | T1g = Im[WS(rs, 3)]; |
70 | | T1h = T1f + T1g; |
71 | | T1D = T1f - T1g; |
72 | | { |
73 | | E Tb, Tc, TH, TI, TJ, TK; |
74 | | Tb = Rm[WS(rs, 1)]; |
75 | | Tc = Rp[WS(rs, 6)]; |
76 | | TH = Tb - Tc; |
77 | | TI = Im[WS(rs, 1)]; |
78 | | TJ = Ip[WS(rs, 6)]; |
79 | | TK = TI + TJ; |
80 | | Td = Tb + Tc; |
81 | | T1A = TJ - TI; |
82 | | TL = TH + TK; |
83 | | T1k = TH - TK; |
84 | | } |
85 | | { |
86 | | E T8, T9, TC, TD, TE, TF; |
87 | | T8 = Rp[WS(rs, 2)]; |
88 | | T9 = Rm[WS(rs, 5)]; |
89 | | TC = T8 - T9; |
90 | | TD = Ip[WS(rs, 2)]; |
91 | | TE = Im[WS(rs, 5)]; |
92 | | TF = TD + TE; |
93 | | Ta = T8 + T9; |
94 | | T1z = TD - TE; |
95 | | TG = TC + TF; |
96 | | T1j = TC - TF; |
97 | | } |
98 | | } |
99 | | { |
100 | | E T7, Te, T30, T31; |
101 | | T7 = T3 + T6; |
102 | | Te = Ta + Td; |
103 | | Tf = T7 + Te; |
104 | | T20 = T7 - Te; |
105 | | T30 = TA - Tx; |
106 | | T31 = T1j - T1k; |
107 | | T32 = FMA(KP707106781, T31, T30); |
108 | | T3Q = FNMS(KP707106781, T31, T30); |
109 | | } |
110 | | { |
111 | | E T3d, T3e, TB, TM; |
112 | | T3d = T1e + T1h; |
113 | | T3e = TG + TL; |
114 | | T3f = FNMS(KP707106781, T3e, T3d); |
115 | | T3V = FMA(KP707106781, T3e, T3d); |
116 | | TB = Tx + TA; |
117 | | TM = TG - TL; |
118 | | TN = FMA(KP707106781, TM, TB); |
119 | | T2a = FNMS(KP707106781, TM, TB); |
120 | | } |
121 | | { |
122 | | E T1i, T1l, T2E, T2F; |
123 | | T1i = T1e - T1h; |
124 | | T1l = T1j + T1k; |
125 | | T1m = FMA(KP707106781, T1l, T1i); |
126 | | T2f = FNMS(KP707106781, T1l, T1i); |
127 | | T2E = T3 - T6; |
128 | | T2F = T1A - T1z; |
129 | | T2G = T2E + T2F; |
130 | | T3G = T2E - T2F; |
131 | | } |
132 | | { |
133 | | E T2R, T2S, T1B, T1E; |
134 | | T2R = Ta - Td; |
135 | | T2S = T1C - T1D; |
136 | | T2T = T2R + T2S; |
137 | | T3L = T2S - T2R; |
138 | | T1B = T1z + T1A; |
139 | | T1E = T1C + T1D; |
140 | | T1F = T1B + T1E; |
141 | | T26 = T1E - T1B; |
142 | | } |
143 | | } |
144 | | { |
145 | | E Ti, T1s, Tl, T1t, TS, TX, T34, T33, T2I, T2H, Tp, T1v, Ts, T1w, T13; |
146 | | E T18, T37, T36, T2L, T2K; |
147 | | { |
148 | | E TT, TR, TO, TW; |
149 | | { |
150 | | E Tg, Th, TP, TQ; |
151 | | Tg = Rp[WS(rs, 1)]; |
152 | | Th = Rm[WS(rs, 6)]; |
153 | | Ti = Tg + Th; |
154 | | TT = Tg - Th; |
155 | | TP = Ip[WS(rs, 1)]; |
156 | | TQ = Im[WS(rs, 6)]; |
157 | | TR = TP + TQ; |
158 | | T1s = TP - TQ; |
159 | | } |
160 | | { |
161 | | E Tj, Tk, TU, TV; |
162 | | Tj = Rp[WS(rs, 5)]; |
163 | | Tk = Rm[WS(rs, 2)]; |
164 | | Tl = Tj + Tk; |
165 | | TO = Tj - Tk; |
166 | | TU = Ip[WS(rs, 5)]; |
167 | | TV = Im[WS(rs, 2)]; |
168 | | TW = TU + TV; |
169 | | T1t = TU - TV; |
170 | | } |
171 | | TS = TO + TR; |
172 | | TX = TT - TW; |
173 | | T34 = TR - TO; |
174 | | T33 = TT + TW; |
175 | | T2I = T1s - T1t; |
176 | | T2H = Ti - Tl; |
177 | | } |
178 | | { |
179 | | E T14, T12, TZ, T17; |
180 | | { |
181 | | E Tn, To, T10, T11; |
182 | | Tn = Rm[0]; |
183 | | To = Rp[WS(rs, 7)]; |
184 | | Tp = Tn + To; |
185 | | T14 = Tn - To; |
186 | | T10 = Im[0]; |
187 | | T11 = Ip[WS(rs, 7)]; |
188 | | T12 = T10 + T11; |
189 | | T1v = T11 - T10; |
190 | | } |
191 | | { |
192 | | E Tq, Tr, T15, T16; |
193 | | Tq = Rp[WS(rs, 3)]; |
194 | | Tr = Rm[WS(rs, 4)]; |
195 | | Ts = Tq + Tr; |
196 | | TZ = Tq - Tr; |
197 | | T15 = Ip[WS(rs, 3)]; |
198 | | T16 = Im[WS(rs, 4)]; |
199 | | T17 = T15 + T16; |
200 | | T1w = T15 - T16; |
201 | | } |
202 | | T13 = TZ - T12; |
203 | | T18 = T14 - T17; |
204 | | T37 = TZ + T12; |
205 | | T36 = T14 + T17; |
206 | | T2L = T1v - T1w; |
207 | | T2K = Tp - Ts; |
208 | | } |
209 | | T2J = T2H - T2I; |
210 | | T2M = T2K + T2L; |
211 | | T2N = T2J + T2M; |
212 | | T2U = T2H + T2I; |
213 | | T2V = T2L - T2K; |
214 | | T3H = T2V - T2U; |
215 | | { |
216 | | E Tm, Tt, T3g, T3h; |
217 | | Tm = Ti + Tl; |
218 | | Tt = Tp + Ts; |
219 | | Tu = Tm + Tt; |
220 | | T25 = Tm - Tt; |
221 | | T3g = FNMS(KP414213562, T33, T34); |
222 | | T3h = FNMS(KP414213562, T36, T37); |
223 | | T3i = T3g + T3h; |
224 | | T3R = T3h - T3g; |
225 | | } |
226 | | { |
227 | | E TY, T19, T1u, T1x; |
228 | | TY = FMA(KP414213562, TX, TS); |
229 | | T19 = FNMS(KP414213562, T18, T13); |
230 | | T1a = TY + T19; |
231 | | T2g = T19 - TY; |
232 | | T1u = T1s + T1t; |
233 | | T1x = T1v + T1w; |
234 | | T1y = T1u + T1x; |
235 | | T21 = T1x - T1u; |
236 | | } |
237 | | { |
238 | | E T35, T38, T1n, T1o; |
239 | | T35 = FMA(KP414213562, T34, T33); |
240 | | T38 = FMA(KP414213562, T37, T36); |
241 | | T39 = T35 - T38; |
242 | | T3W = T35 + T38; |
243 | | T1n = FNMS(KP414213562, TS, TX); |
244 | | T1o = FMA(KP414213562, T13, T18); |
245 | | T1p = T1n + T1o; |
246 | | T2b = T1n - T1o; |
247 | | } |
248 | | } |
249 | | { |
250 | | E Tv, T1G, T1b, T1q, T1c, T1H, Tw, T1r, T1I, T1d; |
251 | | Tv = Tf + Tu; |
252 | | T1G = T1y + T1F; |
253 | | T1b = FMA(KP923879532, T1a, TN); |
254 | | T1q = FMA(KP923879532, T1p, T1m); |
255 | | Tw = W[0]; |
256 | | T1c = Tw * T1b; |
257 | | T1H = Tw * T1q; |
258 | | T1d = W[1]; |
259 | | T1r = FMA(T1d, T1q, T1c); |
260 | | T1I = FNMS(T1d, T1b, T1H); |
261 | | Rp[0] = Tv - T1r; |
262 | | Ip[0] = T1G + T1I; |
263 | | Rm[0] = Tv + T1r; |
264 | | Im[0] = T1I - T1G; |
265 | | } |
266 | | { |
267 | | E T1N, T1J, T1L, T1M, T1V, T1Q, T1T, T1R, T1X, T1K, T1P; |
268 | | T1N = T1F - T1y; |
269 | | T1K = Tf - Tu; |
270 | | T1J = W[14]; |
271 | | T1L = T1J * T1K; |
272 | | T1M = W[15]; |
273 | | T1V = T1M * T1K; |
274 | | T1Q = FNMS(KP923879532, T1a, TN); |
275 | | T1T = FNMS(KP923879532, T1p, T1m); |
276 | | T1P = W[16]; |
277 | | T1R = T1P * T1Q; |
278 | | T1X = T1P * T1T; |
279 | | { |
280 | | E T1O, T1W, T1U, T1Y, T1S; |
281 | | T1O = FNMS(T1M, T1N, T1L); |
282 | | T1W = FMA(T1J, T1N, T1V); |
283 | | T1S = W[17]; |
284 | | T1U = FMA(T1S, T1T, T1R); |
285 | | T1Y = FNMS(T1S, T1Q, T1X); |
286 | | Rp[WS(rs, 4)] = T1O - T1U; |
287 | | Ip[WS(rs, 4)] = T1W + T1Y; |
288 | | Rm[WS(rs, 4)] = T1O + T1U; |
289 | | Im[WS(rs, 4)] = T1Y - T1W; |
290 | | } |
291 | | } |
292 | | { |
293 | | E T2r, T2n, T2p, T2q, T2z, T2u, T2x, T2v, T2B, T2o, T2t; |
294 | | T2r = T26 - T25; |
295 | | T2o = T20 - T21; |
296 | | T2n = W[22]; |
297 | | T2p = T2n * T2o; |
298 | | T2q = W[23]; |
299 | | T2z = T2q * T2o; |
300 | | T2u = FNMS(KP923879532, T2b, T2a); |
301 | | T2x = FNMS(KP923879532, T2g, T2f); |
302 | | T2t = W[24]; |
303 | | T2v = T2t * T2u; |
304 | | T2B = T2t * T2x; |
305 | | { |
306 | | E T2s, T2A, T2y, T2C, T2w; |
307 | | T2s = FNMS(T2q, T2r, T2p); |
308 | | T2A = FMA(T2n, T2r, T2z); |
309 | | T2w = W[25]; |
310 | | T2y = FMA(T2w, T2x, T2v); |
311 | | T2C = FNMS(T2w, T2u, T2B); |
312 | | Rp[WS(rs, 6)] = T2s - T2y; |
313 | | Ip[WS(rs, 6)] = T2A + T2C; |
314 | | Rm[WS(rs, 6)] = T2s + T2y; |
315 | | Im[WS(rs, 6)] = T2C - T2A; |
316 | | } |
317 | | } |
318 | | { |
319 | | E T27, T1Z, T23, T24, T2j, T2c, T2h, T2d, T2l, T22, T29; |
320 | | T27 = T25 + T26; |
321 | | T22 = T20 + T21; |
322 | | T1Z = W[6]; |
323 | | T23 = T1Z * T22; |
324 | | T24 = W[7]; |
325 | | T2j = T24 * T22; |
326 | | T2c = FMA(KP923879532, T2b, T2a); |
327 | | T2h = FMA(KP923879532, T2g, T2f); |
328 | | T29 = W[8]; |
329 | | T2d = T29 * T2c; |
330 | | T2l = T29 * T2h; |
331 | | { |
332 | | E T28, T2k, T2i, T2m, T2e; |
333 | | T28 = FNMS(T24, T27, T23); |
334 | | T2k = FMA(T1Z, T27, T2j); |
335 | | T2e = W[9]; |
336 | | T2i = FMA(T2e, T2h, T2d); |
337 | | T2m = FNMS(T2e, T2c, T2l); |
338 | | Rp[WS(rs, 2)] = T28 - T2i; |
339 | | Ip[WS(rs, 2)] = T2k + T2m; |
340 | | Rm[WS(rs, 2)] = T28 + T2i; |
341 | | Im[WS(rs, 2)] = T2m - T2k; |
342 | | } |
343 | | } |
344 | | { |
345 | | E T3N, T47, T43, T45, T46, T4f, T3F, T3J, T3K, T3Z, T3S, T3X, T3T, T41, T4a; |
346 | | E T4d, T4b, T4h; |
347 | | { |
348 | | E T3M, T44, T3I, T3P, T49; |
349 | | T3M = T2J - T2M; |
350 | | T3N = FMA(KP707106781, T3M, T3L); |
351 | | T47 = FNMS(KP707106781, T3M, T3L); |
352 | | T44 = FNMS(KP707106781, T3H, T3G); |
353 | | T43 = W[26]; |
354 | | T45 = T43 * T44; |
355 | | T46 = W[27]; |
356 | | T4f = T46 * T44; |
357 | | T3I = FMA(KP707106781, T3H, T3G); |
358 | | T3F = W[10]; |
359 | | T3J = T3F * T3I; |
360 | | T3K = W[11]; |
361 | | T3Z = T3K * T3I; |
362 | | T3S = FMA(KP923879532, T3R, T3Q); |
363 | | T3X = FNMS(KP923879532, T3W, T3V); |
364 | | T3P = W[12]; |
365 | | T3T = T3P * T3S; |
366 | | T41 = T3P * T3X; |
367 | | T4a = FNMS(KP923879532, T3R, T3Q); |
368 | | T4d = FMA(KP923879532, T3W, T3V); |
369 | | T49 = W[28]; |
370 | | T4b = T49 * T4a; |
371 | | T4h = T49 * T4d; |
372 | | } |
373 | | { |
374 | | E T3O, T40, T3Y, T42, T3U; |
375 | | T3O = FNMS(T3K, T3N, T3J); |
376 | | T40 = FMA(T3F, T3N, T3Z); |
377 | | T3U = W[13]; |
378 | | T3Y = FMA(T3U, T3X, T3T); |
379 | | T42 = FNMS(T3U, T3S, T41); |
380 | | Rp[WS(rs, 3)] = T3O - T3Y; |
381 | | Ip[WS(rs, 3)] = T40 + T42; |
382 | | Rm[WS(rs, 3)] = T3O + T3Y; |
383 | | Im[WS(rs, 3)] = T42 - T40; |
384 | | } |
385 | | { |
386 | | E T48, T4g, T4e, T4i, T4c; |
387 | | T48 = FNMS(T46, T47, T45); |
388 | | T4g = FMA(T43, T47, T4f); |
389 | | T4c = W[29]; |
390 | | T4e = FMA(T4c, T4d, T4b); |
391 | | T4i = FNMS(T4c, T4a, T4h); |
392 | | Rp[WS(rs, 7)] = T48 - T4e; |
393 | | Ip[WS(rs, 7)] = T4g + T4i; |
394 | | Rm[WS(rs, 7)] = T48 + T4e; |
395 | | Im[WS(rs, 7)] = T4i - T4g; |
396 | | } |
397 | | } |
398 | | { |
399 | | E T2X, T3t, T3p, T3r, T3s, T3B, T2D, T2P, T2Q, T3l, T3a, T3j, T3b, T3n, T3w; |
400 | | E T3z, T3x, T3D; |
401 | | { |
402 | | E T2W, T3q, T2O, T2Z, T3v; |
403 | | T2W = T2U + T2V; |
404 | | T2X = FMA(KP707106781, T2W, T2T); |
405 | | T3t = FNMS(KP707106781, T2W, T2T); |
406 | | T3q = FNMS(KP707106781, T2N, T2G); |
407 | | T3p = W[18]; |
408 | | T3r = T3p * T3q; |
409 | | T3s = W[19]; |
410 | | T3B = T3s * T3q; |
411 | | T2O = FMA(KP707106781, T2N, T2G); |
412 | | T2D = W[2]; |
413 | | T2P = T2D * T2O; |
414 | | T2Q = W[3]; |
415 | | T3l = T2Q * T2O; |
416 | | T3a = FMA(KP923879532, T39, T32); |
417 | | T3j = FNMS(KP923879532, T3i, T3f); |
418 | | T2Z = W[4]; |
419 | | T3b = T2Z * T3a; |
420 | | T3n = T2Z * T3j; |
421 | | T3w = FNMS(KP923879532, T39, T32); |
422 | | T3z = FMA(KP923879532, T3i, T3f); |
423 | | T3v = W[20]; |
424 | | T3x = T3v * T3w; |
425 | | T3D = T3v * T3z; |
426 | | } |
427 | | { |
428 | | E T2Y, T3m, T3k, T3o, T3c; |
429 | | T2Y = FNMS(T2Q, T2X, T2P); |
430 | | T3m = FMA(T2D, T2X, T3l); |
431 | | T3c = W[5]; |
432 | | T3k = FMA(T3c, T3j, T3b); |
433 | | T3o = FNMS(T3c, T3a, T3n); |
434 | | Rp[WS(rs, 1)] = T2Y - T3k; |
435 | | Ip[WS(rs, 1)] = T3m + T3o; |
436 | | Rm[WS(rs, 1)] = T2Y + T3k; |
437 | | Im[WS(rs, 1)] = T3o - T3m; |
438 | | } |
439 | | { |
440 | | E T3u, T3C, T3A, T3E, T3y; |
441 | | T3u = FNMS(T3s, T3t, T3r); |
442 | | T3C = FMA(T3p, T3t, T3B); |
443 | | T3y = W[21]; |
444 | | T3A = FMA(T3y, T3z, T3x); |
445 | | T3E = FNMS(T3y, T3w, T3D); |
446 | | Rp[WS(rs, 5)] = T3u - T3A; |
447 | | Ip[WS(rs, 5)] = T3C + T3E; |
448 | | Rm[WS(rs, 5)] = T3u + T3A; |
449 | | Im[WS(rs, 5)] = T3E - T3C; |
450 | | } |
451 | | } |
452 | | } |
453 | | } |
454 | | } |
455 | | |
456 | | static const tw_instr twinstr[] = { |
457 | | { TW_FULL, 1, 16 }, |
458 | | { TW_NEXT, 1, 0 } |
459 | | }; |
460 | | |
461 | | static const hc2c_desc desc = { 16, "hc2cbdft_16", twinstr, &GENUS, { 136, 30, 70, 0 } }; |
462 | | |
463 | | void X(codelet_hc2cbdft_16) (planner *p) { |
464 | | X(khc2c_register) (p, hc2cbdft_16, &desc, HC2C_VIA_DFT); |
465 | | } |
466 | | #else |
467 | | |
468 | | /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -dif -name hc2cbdft_16 -include rdft/scalar/hc2cb.h */ |
469 | | |
470 | | /* |
471 | | * This function contains 206 FP additions, 84 FP multiplications, |
472 | | * (or, 168 additions, 46 multiplications, 38 fused multiply/add), |
473 | | * 60 stack variables, 3 constants, and 64 memory accesses |
474 | | */ |
475 | | #include "rdft/scalar/hc2cb.h" |
476 | | |
477 | | static void hc2cbdft_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
478 | 0 | { |
479 | 0 | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
480 | 0 | DK(KP382683432, +0.382683432365089771728459984030398866761344562); |
481 | 0 | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
482 | 0 | { |
483 | 0 | INT m; |
484 | 0 | for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) { |
485 | 0 | E TB, T2L, T30, T1n, Tf, T1U, T2H, T3p, T1E, T1Z, TM, T31, T2s, T3k, T1i; |
486 | 0 | E T2M, Tu, T1Y, T2Q, T2X, T2T, T2Y, TY, T1d, T19, T1e, T2v, T2C, T2y, T2D; |
487 | 0 | E T1x, T1V; |
488 | 0 | { |
489 | 0 | E T3, T1j, TA, T1B, T6, Tx, T1m, T1C, Ta, TC, TF, T1y, Td, TH, TK; |
490 | 0 | E T1z; |
491 | 0 | { |
492 | 0 | E T1, T2, Ty, Tz; |
493 | 0 | T1 = Rp[0]; |
494 | 0 | T2 = Rm[WS(rs, 7)]; |
495 | 0 | T3 = T1 + T2; |
496 | 0 | T1j = T1 - T2; |
497 | 0 | Ty = Ip[0]; |
498 | 0 | Tz = Im[WS(rs, 7)]; |
499 | 0 | TA = Ty + Tz; |
500 | 0 | T1B = Ty - Tz; |
501 | 0 | } |
502 | 0 | { |
503 | 0 | E T4, T5, T1k, T1l; |
504 | 0 | T4 = Rp[WS(rs, 4)]; |
505 | 0 | T5 = Rm[WS(rs, 3)]; |
506 | 0 | T6 = T4 + T5; |
507 | 0 | Tx = T4 - T5; |
508 | 0 | T1k = Ip[WS(rs, 4)]; |
509 | 0 | T1l = Im[WS(rs, 3)]; |
510 | 0 | T1m = T1k + T1l; |
511 | 0 | T1C = T1k - T1l; |
512 | 0 | } |
513 | 0 | { |
514 | 0 | E T8, T9, TD, TE; |
515 | 0 | T8 = Rp[WS(rs, 2)]; |
516 | 0 | T9 = Rm[WS(rs, 5)]; |
517 | 0 | Ta = T8 + T9; |
518 | 0 | TC = T8 - T9; |
519 | 0 | TD = Ip[WS(rs, 2)]; |
520 | 0 | TE = Im[WS(rs, 5)]; |
521 | 0 | TF = TD + TE; |
522 | 0 | T1y = TD - TE; |
523 | 0 | } |
524 | 0 | { |
525 | 0 | E Tb, Tc, TI, TJ; |
526 | 0 | Tb = Rm[WS(rs, 1)]; |
527 | 0 | Tc = Rp[WS(rs, 6)]; |
528 | 0 | Td = Tb + Tc; |
529 | 0 | TH = Tb - Tc; |
530 | 0 | TI = Im[WS(rs, 1)]; |
531 | 0 | TJ = Ip[WS(rs, 6)]; |
532 | 0 | TK = TI + TJ; |
533 | 0 | T1z = TJ - TI; |
534 | 0 | } |
535 | 0 | { |
536 | 0 | E T7, Te, TG, TL; |
537 | 0 | TB = Tx + TA; |
538 | 0 | T2L = TA - Tx; |
539 | 0 | T30 = T1j + T1m; |
540 | 0 | T1n = T1j - T1m; |
541 | 0 | T7 = T3 + T6; |
542 | 0 | Te = Ta + Td; |
543 | 0 | Tf = T7 + Te; |
544 | 0 | T1U = T7 - Te; |
545 | 0 | { |
546 | 0 | E T2F, T2G, T1A, T1D; |
547 | 0 | T2F = Ta - Td; |
548 | 0 | T2G = T1B - T1C; |
549 | 0 | T2H = T2F + T2G; |
550 | 0 | T3p = T2G - T2F; |
551 | 0 | T1A = T1y + T1z; |
552 | 0 | T1D = T1B + T1C; |
553 | 0 | T1E = T1A + T1D; |
554 | 0 | T1Z = T1D - T1A; |
555 | 0 | } |
556 | 0 | TG = TC + TF; |
557 | 0 | TL = TH + TK; |
558 | 0 | TM = KP707106781 * (TG - TL); |
559 | 0 | T31 = KP707106781 * (TG + TL); |
560 | 0 | { |
561 | 0 | E T2q, T2r, T1g, T1h; |
562 | 0 | T2q = T3 - T6; |
563 | 0 | T2r = T1z - T1y; |
564 | 0 | T2s = T2q + T2r; |
565 | 0 | T3k = T2q - T2r; |
566 | 0 | T1g = TC - TF; |
567 | 0 | T1h = TH - TK; |
568 | 0 | T1i = KP707106781 * (T1g + T1h); |
569 | 0 | T2M = KP707106781 * (T1g - T1h); |
570 | 0 | } |
571 | 0 | } |
572 | 0 | } |
573 | 0 | { |
574 | 0 | E Ti, TT, TR, T1r, Tl, TO, TW, T1s, Tp, T14, T12, T1u, Ts, TZ, T17; |
575 | 0 | E T1v; |
576 | 0 | { |
577 | 0 | E Tg, Th, TP, TQ; |
578 | 0 | Tg = Rp[WS(rs, 1)]; |
579 | 0 | Th = Rm[WS(rs, 6)]; |
580 | 0 | Ti = Tg + Th; |
581 | 0 | TT = Tg - Th; |
582 | 0 | TP = Ip[WS(rs, 1)]; |
583 | 0 | TQ = Im[WS(rs, 6)]; |
584 | 0 | TR = TP + TQ; |
585 | 0 | T1r = TP - TQ; |
586 | 0 | } |
587 | 0 | { |
588 | 0 | E Tj, Tk, TU, TV; |
589 | 0 | Tj = Rp[WS(rs, 5)]; |
590 | 0 | Tk = Rm[WS(rs, 2)]; |
591 | 0 | Tl = Tj + Tk; |
592 | 0 | TO = Tj - Tk; |
593 | 0 | TU = Ip[WS(rs, 5)]; |
594 | 0 | TV = Im[WS(rs, 2)]; |
595 | 0 | TW = TU + TV; |
596 | 0 | T1s = TU - TV; |
597 | 0 | } |
598 | 0 | { |
599 | 0 | E Tn, To, T10, T11; |
600 | 0 | Tn = Rm[0]; |
601 | 0 | To = Rp[WS(rs, 7)]; |
602 | 0 | Tp = Tn + To; |
603 | 0 | T14 = Tn - To; |
604 | 0 | T10 = Im[0]; |
605 | 0 | T11 = Ip[WS(rs, 7)]; |
606 | 0 | T12 = T10 + T11; |
607 | 0 | T1u = T11 - T10; |
608 | 0 | } |
609 | 0 | { |
610 | 0 | E Tq, Tr, T15, T16; |
611 | 0 | Tq = Rp[WS(rs, 3)]; |
612 | 0 | Tr = Rm[WS(rs, 4)]; |
613 | 0 | Ts = Tq + Tr; |
614 | 0 | TZ = Tq - Tr; |
615 | 0 | T15 = Ip[WS(rs, 3)]; |
616 | 0 | T16 = Im[WS(rs, 4)]; |
617 | 0 | T17 = T15 + T16; |
618 | 0 | T1v = T15 - T16; |
619 | 0 | } |
620 | 0 | { |
621 | 0 | E Tm, Tt, T2O, T2P; |
622 | 0 | Tm = Ti + Tl; |
623 | 0 | Tt = Tp + Ts; |
624 | 0 | Tu = Tm + Tt; |
625 | 0 | T1Y = Tm - Tt; |
626 | 0 | T2O = TR - TO; |
627 | 0 | T2P = TT + TW; |
628 | 0 | T2Q = FMA(KP382683432, T2O, KP923879532 * T2P); |
629 | 0 | T2X = FNMS(KP923879532, T2O, KP382683432 * T2P); |
630 | 0 | } |
631 | 0 | { |
632 | 0 | E T2R, T2S, TS, TX; |
633 | 0 | T2R = TZ + T12; |
634 | 0 | T2S = T14 + T17; |
635 | 0 | T2T = FMA(KP382683432, T2R, KP923879532 * T2S); |
636 | 0 | T2Y = FNMS(KP923879532, T2R, KP382683432 * T2S); |
637 | 0 | TS = TO + TR; |
638 | 0 | TX = TT - TW; |
639 | 0 | TY = FMA(KP923879532, TS, KP382683432 * TX); |
640 | 0 | T1d = FNMS(KP382683432, TS, KP923879532 * TX); |
641 | 0 | } |
642 | 0 | { |
643 | 0 | E T13, T18, T2t, T2u; |
644 | 0 | T13 = TZ - T12; |
645 | 0 | T18 = T14 - T17; |
646 | 0 | T19 = FNMS(KP382683432, T18, KP923879532 * T13); |
647 | 0 | T1e = FMA(KP382683432, T13, KP923879532 * T18); |
648 | 0 | T2t = Ti - Tl; |
649 | 0 | T2u = T1r - T1s; |
650 | 0 | T2v = T2t - T2u; |
651 | 0 | T2C = T2t + T2u; |
652 | 0 | } |
653 | 0 | { |
654 | 0 | E T2w, T2x, T1t, T1w; |
655 | 0 | T2w = Tp - Ts; |
656 | 0 | T2x = T1u - T1v; |
657 | 0 | T2y = T2w + T2x; |
658 | 0 | T2D = T2x - T2w; |
659 | 0 | T1t = T1r + T1s; |
660 | 0 | T1w = T1u + T1v; |
661 | 0 | T1x = T1t + T1w; |
662 | 0 | T1V = T1w - T1t; |
663 | 0 | } |
664 | 0 | } |
665 | 0 | { |
666 | 0 | E Tv, T1F, T1b, T1N, T1p, T1P, T1L, T1R; |
667 | 0 | Tv = Tf + Tu; |
668 | 0 | T1F = T1x + T1E; |
669 | 0 | { |
670 | 0 | E TN, T1a, T1f, T1o; |
671 | 0 | TN = TB + TM; |
672 | 0 | T1a = TY + T19; |
673 | 0 | T1b = TN + T1a; |
674 | 0 | T1N = TN - T1a; |
675 | 0 | T1f = T1d + T1e; |
676 | 0 | T1o = T1i + T1n; |
677 | 0 | T1p = T1f + T1o; |
678 | 0 | T1P = T1o - T1f; |
679 | 0 | { |
680 | 0 | E T1I, T1K, T1H, T1J; |
681 | 0 | T1I = Tf - Tu; |
682 | 0 | T1K = T1E - T1x; |
683 | 0 | T1H = W[14]; |
684 | 0 | T1J = W[15]; |
685 | 0 | T1L = FNMS(T1J, T1K, T1H * T1I); |
686 | 0 | T1R = FMA(T1J, T1I, T1H * T1K); |
687 | 0 | } |
688 | 0 | } |
689 | 0 | { |
690 | 0 | E T1q, T1G, Tw, T1c; |
691 | 0 | Tw = W[0]; |
692 | 0 | T1c = W[1]; |
693 | 0 | T1q = FMA(Tw, T1b, T1c * T1p); |
694 | 0 | T1G = FNMS(T1c, T1b, Tw * T1p); |
695 | 0 | Rp[0] = Tv - T1q; |
696 | 0 | Ip[0] = T1F + T1G; |
697 | 0 | Rm[0] = Tv + T1q; |
698 | 0 | Im[0] = T1G - T1F; |
699 | 0 | } |
700 | 0 | { |
701 | 0 | E T1Q, T1S, T1M, T1O; |
702 | 0 | T1M = W[16]; |
703 | 0 | T1O = W[17]; |
704 | 0 | T1Q = FMA(T1M, T1N, T1O * T1P); |
705 | 0 | T1S = FNMS(T1O, T1N, T1M * T1P); |
706 | 0 | Rp[WS(rs, 4)] = T1L - T1Q; |
707 | 0 | Ip[WS(rs, 4)] = T1R + T1S; |
708 | 0 | Rm[WS(rs, 4)] = T1L + T1Q; |
709 | 0 | Im[WS(rs, 4)] = T1S - T1R; |
710 | 0 | } |
711 | 0 | } |
712 | 0 | { |
713 | 0 | E T25, T2j, T29, T2l, T21, T2b, T2h, T2n; |
714 | 0 | { |
715 | 0 | E T23, T24, T27, T28; |
716 | 0 | T23 = TB - TM; |
717 | 0 | T24 = T1d - T1e; |
718 | 0 | T25 = T23 + T24; |
719 | 0 | T2j = T23 - T24; |
720 | 0 | T27 = T19 - TY; |
721 | 0 | T28 = T1n - T1i; |
722 | 0 | T29 = T27 + T28; |
723 | 0 | T2l = T28 - T27; |
724 | 0 | } |
725 | 0 | { |
726 | 0 | E T1W, T20, T1T, T1X; |
727 | 0 | T1W = T1U + T1V; |
728 | 0 | T20 = T1Y + T1Z; |
729 | 0 | T1T = W[6]; |
730 | 0 | T1X = W[7]; |
731 | 0 | T21 = FNMS(T1X, T20, T1T * T1W); |
732 | 0 | T2b = FMA(T1X, T1W, T1T * T20); |
733 | 0 | } |
734 | 0 | { |
735 | 0 | E T2e, T2g, T2d, T2f; |
736 | 0 | T2e = T1U - T1V; |
737 | 0 | T2g = T1Z - T1Y; |
738 | 0 | T2d = W[22]; |
739 | 0 | T2f = W[23]; |
740 | 0 | T2h = FNMS(T2f, T2g, T2d * T2e); |
741 | 0 | T2n = FMA(T2f, T2e, T2d * T2g); |
742 | 0 | } |
743 | 0 | { |
744 | 0 | E T2a, T2c, T22, T26; |
745 | 0 | T22 = W[8]; |
746 | 0 | T26 = W[9]; |
747 | 0 | T2a = FMA(T22, T25, T26 * T29); |
748 | 0 | T2c = FNMS(T26, T25, T22 * T29); |
749 | 0 | Rp[WS(rs, 2)] = T21 - T2a; |
750 | 0 | Ip[WS(rs, 2)] = T2b + T2c; |
751 | 0 | Rm[WS(rs, 2)] = T21 + T2a; |
752 | 0 | Im[WS(rs, 2)] = T2c - T2b; |
753 | 0 | } |
754 | 0 | { |
755 | 0 | E T2m, T2o, T2i, T2k; |
756 | 0 | T2i = W[24]; |
757 | 0 | T2k = W[25]; |
758 | 0 | T2m = FMA(T2i, T2j, T2k * T2l); |
759 | 0 | T2o = FNMS(T2k, T2j, T2i * T2l); |
760 | 0 | Rp[WS(rs, 6)] = T2h - T2m; |
761 | 0 | Ip[WS(rs, 6)] = T2n + T2o; |
762 | 0 | Rm[WS(rs, 6)] = T2h + T2m; |
763 | 0 | Im[WS(rs, 6)] = T2o - T2n; |
764 | 0 | } |
765 | 0 | } |
766 | 0 | { |
767 | 0 | E T2A, T38, T2I, T3a, T2V, T3d, T33, T3f, T2z, T2E; |
768 | 0 | T2z = KP707106781 * (T2v + T2y); |
769 | 0 | T2A = T2s + T2z; |
770 | 0 | T38 = T2s - T2z; |
771 | 0 | T2E = KP707106781 * (T2C + T2D); |
772 | 0 | T2I = T2E + T2H; |
773 | 0 | T3a = T2H - T2E; |
774 | 0 | { |
775 | 0 | E T2N, T2U, T2Z, T32; |
776 | 0 | T2N = T2L + T2M; |
777 | 0 | T2U = T2Q - T2T; |
778 | 0 | T2V = T2N + T2U; |
779 | 0 | T3d = T2N - T2U; |
780 | 0 | T2Z = T2X + T2Y; |
781 | 0 | T32 = T30 - T31; |
782 | 0 | T33 = T2Z + T32; |
783 | 0 | T3f = T32 - T2Z; |
784 | 0 | } |
785 | 0 | { |
786 | 0 | E T2J, T35, T34, T36; |
787 | 0 | { |
788 | 0 | E T2p, T2B, T2K, T2W; |
789 | 0 | T2p = W[2]; |
790 | 0 | T2B = W[3]; |
791 | 0 | T2J = FNMS(T2B, T2I, T2p * T2A); |
792 | 0 | T35 = FMA(T2B, T2A, T2p * T2I); |
793 | 0 | T2K = W[4]; |
794 | 0 | T2W = W[5]; |
795 | 0 | T34 = FMA(T2K, T2V, T2W * T33); |
796 | 0 | T36 = FNMS(T2W, T2V, T2K * T33); |
797 | 0 | } |
798 | 0 | Rp[WS(rs, 1)] = T2J - T34; |
799 | 0 | Ip[WS(rs, 1)] = T35 + T36; |
800 | 0 | Rm[WS(rs, 1)] = T2J + T34; |
801 | 0 | Im[WS(rs, 1)] = T36 - T35; |
802 | 0 | } |
803 | 0 | { |
804 | 0 | E T3b, T3h, T3g, T3i; |
805 | 0 | { |
806 | 0 | E T37, T39, T3c, T3e; |
807 | 0 | T37 = W[18]; |
808 | 0 | T39 = W[19]; |
809 | 0 | T3b = FNMS(T39, T3a, T37 * T38); |
810 | 0 | T3h = FMA(T39, T38, T37 * T3a); |
811 | 0 | T3c = W[20]; |
812 | 0 | T3e = W[21]; |
813 | 0 | T3g = FMA(T3c, T3d, T3e * T3f); |
814 | 0 | T3i = FNMS(T3e, T3d, T3c * T3f); |
815 | 0 | } |
816 | 0 | Rp[WS(rs, 5)] = T3b - T3g; |
817 | 0 | Ip[WS(rs, 5)] = T3h + T3i; |
818 | 0 | Rm[WS(rs, 5)] = T3b + T3g; |
819 | 0 | Im[WS(rs, 5)] = T3i - T3h; |
820 | 0 | } |
821 | 0 | } |
822 | 0 | { |
823 | 0 | E T3m, T3E, T3q, T3G, T3v, T3J, T3z, T3L, T3l, T3o; |
824 | 0 | T3l = KP707106781 * (T2D - T2C); |
825 | 0 | T3m = T3k + T3l; |
826 | 0 | T3E = T3k - T3l; |
827 | 0 | T3o = KP707106781 * (T2v - T2y); |
828 | 0 | T3q = T3o + T3p; |
829 | 0 | T3G = T3p - T3o; |
830 | 0 | { |
831 | 0 | E T3t, T3u, T3x, T3y; |
832 | 0 | T3t = T2L - T2M; |
833 | 0 | T3u = T2X - T2Y; |
834 | 0 | T3v = T3t + T3u; |
835 | 0 | T3J = T3t - T3u; |
836 | 0 | T3x = T31 + T30; |
837 | 0 | T3y = T2Q + T2T; |
838 | 0 | T3z = T3x - T3y; |
839 | 0 | T3L = T3y + T3x; |
840 | 0 | } |
841 | 0 | { |
842 | 0 | E T3r, T3B, T3A, T3C; |
843 | 0 | { |
844 | 0 | E T3j, T3n, T3s, T3w; |
845 | 0 | T3j = W[10]; |
846 | 0 | T3n = W[11]; |
847 | 0 | T3r = FNMS(T3n, T3q, T3j * T3m); |
848 | 0 | T3B = FMA(T3n, T3m, T3j * T3q); |
849 | 0 | T3s = W[12]; |
850 | 0 | T3w = W[13]; |
851 | 0 | T3A = FMA(T3s, T3v, T3w * T3z); |
852 | 0 | T3C = FNMS(T3w, T3v, T3s * T3z); |
853 | 0 | } |
854 | 0 | Rp[WS(rs, 3)] = T3r - T3A; |
855 | 0 | Ip[WS(rs, 3)] = T3B + T3C; |
856 | 0 | Rm[WS(rs, 3)] = T3r + T3A; |
857 | 0 | Im[WS(rs, 3)] = T3C - T3B; |
858 | 0 | } |
859 | 0 | { |
860 | 0 | E T3H, T3N, T3M, T3O; |
861 | 0 | { |
862 | 0 | E T3D, T3F, T3I, T3K; |
863 | 0 | T3D = W[26]; |
864 | 0 | T3F = W[27]; |
865 | 0 | T3H = FNMS(T3F, T3G, T3D * T3E); |
866 | 0 | T3N = FMA(T3F, T3E, T3D * T3G); |
867 | 0 | T3I = W[28]; |
868 | 0 | T3K = W[29]; |
869 | 0 | T3M = FMA(T3I, T3J, T3K * T3L); |
870 | 0 | T3O = FNMS(T3K, T3J, T3I * T3L); |
871 | 0 | } |
872 | 0 | Rp[WS(rs, 7)] = T3H - T3M; |
873 | 0 | Ip[WS(rs, 7)] = T3N + T3O; |
874 | 0 | Rm[WS(rs, 7)] = T3H + T3M; |
875 | 0 | Im[WS(rs, 7)] = T3O - T3N; |
876 | 0 | } |
877 | 0 | } |
878 | 0 | } |
879 | 0 | } |
880 | 0 | } |
881 | | |
882 | | static const tw_instr twinstr[] = { |
883 | | { TW_FULL, 1, 16 }, |
884 | | { TW_NEXT, 1, 0 } |
885 | | }; |
886 | | |
887 | | static const hc2c_desc desc = { 16, "hc2cbdft_16", twinstr, &GENUS, { 168, 46, 38, 0 } }; |
888 | | |
889 | 1 | void X(codelet_hc2cbdft_16) (planner *p) { |
890 | 1 | X(khc2c_register) (p, hc2cbdft_16, &desc, HC2C_VIA_DFT); |
891 | 1 | } |
892 | | #endif |