Coverage Report

Created: 2024-09-08 06:43

/src/fftw3/rdft/scalar/r2cb/hc2cbdft_16.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Sun Sep  8 06:42:45 UTC 2024 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -dif -name hc2cbdft_16 -include rdft/scalar/hc2cb.h */
29
30
/*
31
 * This function contains 206 FP additions, 100 FP multiplications,
32
 * (or, 136 additions, 30 multiplications, 70 fused multiply/add),
33
 * 66 stack variables, 3 constants, and 64 memory accesses
34
 */
35
#include "rdft/scalar/hc2cb.h"
36
37
static void hc2cbdft_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
40
     DK(KP414213562, +0.414213562373095048801688724209698078569671875);
41
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
42
     {
43
    INT m;
44
    for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) {
45
         E Tf, T20, T32, T3Q, T3f, T3V, TN, T2a, T1m, T2f, T2G, T3G, T2T, T3L, T1F;
46
         E T26, T2J, T2M, T2N, T2U, T2V, T3H, Tu, T25, T3i, T3R, T1a, T2g, T1y, T21;
47
         E T39, T3W, T1p, T2b;
48
         {
49
        E T3, T1e, TA, T1C, T6, Tx, T1h, T1D, Td, T1A, TL, T1k, Ta, T1z, TG;
50
        E T1j;
51
        {
52
       E T1, T2, T1f, T1g;
53
       T1 = Rp[0];
54
       T2 = Rm[WS(rs, 7)];
55
       T3 = T1 + T2;
56
       T1e = T1 - T2;
57
       {
58
            E Ty, Tz, T4, T5;
59
            Ty = Ip[0];
60
            Tz = Im[WS(rs, 7)];
61
            TA = Ty + Tz;
62
            T1C = Ty - Tz;
63
            T4 = Rp[WS(rs, 4)];
64
            T5 = Rm[WS(rs, 3)];
65
            T6 = T4 + T5;
66
            Tx = T4 - T5;
67
       }
68
       T1f = Ip[WS(rs, 4)];
69
       T1g = Im[WS(rs, 3)];
70
       T1h = T1f + T1g;
71
       T1D = T1f - T1g;
72
       {
73
            E Tb, Tc, TH, TI, TJ, TK;
74
            Tb = Rm[WS(rs, 1)];
75
            Tc = Rp[WS(rs, 6)];
76
            TH = Tb - Tc;
77
            TI = Im[WS(rs, 1)];
78
            TJ = Ip[WS(rs, 6)];
79
            TK = TI + TJ;
80
            Td = Tb + Tc;
81
            T1A = TJ - TI;
82
            TL = TH + TK;
83
            T1k = TH - TK;
84
       }
85
       {
86
            E T8, T9, TC, TD, TE, TF;
87
            T8 = Rp[WS(rs, 2)];
88
            T9 = Rm[WS(rs, 5)];
89
            TC = T8 - T9;
90
            TD = Ip[WS(rs, 2)];
91
            TE = Im[WS(rs, 5)];
92
            TF = TD + TE;
93
            Ta = T8 + T9;
94
            T1z = TD - TE;
95
            TG = TC + TF;
96
            T1j = TC - TF;
97
       }
98
        }
99
        {
100
       E T7, Te, T30, T31;
101
       T7 = T3 + T6;
102
       Te = Ta + Td;
103
       Tf = T7 + Te;
104
       T20 = T7 - Te;
105
       T30 = TA - Tx;
106
       T31 = T1j - T1k;
107
       T32 = FMA(KP707106781, T31, T30);
108
       T3Q = FNMS(KP707106781, T31, T30);
109
        }
110
        {
111
       E T3d, T3e, TB, TM;
112
       T3d = T1e + T1h;
113
       T3e = TG + TL;
114
       T3f = FNMS(KP707106781, T3e, T3d);
115
       T3V = FMA(KP707106781, T3e, T3d);
116
       TB = Tx + TA;
117
       TM = TG - TL;
118
       TN = FMA(KP707106781, TM, TB);
119
       T2a = FNMS(KP707106781, TM, TB);
120
        }
121
        {
122
       E T1i, T1l, T2E, T2F;
123
       T1i = T1e - T1h;
124
       T1l = T1j + T1k;
125
       T1m = FMA(KP707106781, T1l, T1i);
126
       T2f = FNMS(KP707106781, T1l, T1i);
127
       T2E = T3 - T6;
128
       T2F = T1A - T1z;
129
       T2G = T2E + T2F;
130
       T3G = T2E - T2F;
131
        }
132
        {
133
       E T2R, T2S, T1B, T1E;
134
       T2R = Ta - Td;
135
       T2S = T1C - T1D;
136
       T2T = T2R + T2S;
137
       T3L = T2S - T2R;
138
       T1B = T1z + T1A;
139
       T1E = T1C + T1D;
140
       T1F = T1B + T1E;
141
       T26 = T1E - T1B;
142
        }
143
         }
144
         {
145
        E Ti, T1s, Tl, T1t, TS, TX, T34, T33, T2I, T2H, Tp, T1v, Ts, T1w, T13;
146
        E T18, T37, T36, T2L, T2K;
147
        {
148
       E TT, TR, TO, TW;
149
       {
150
            E Tg, Th, TP, TQ;
151
            Tg = Rp[WS(rs, 1)];
152
            Th = Rm[WS(rs, 6)];
153
            Ti = Tg + Th;
154
            TT = Tg - Th;
155
            TP = Ip[WS(rs, 1)];
156
            TQ = Im[WS(rs, 6)];
157
            TR = TP + TQ;
158
            T1s = TP - TQ;
159
       }
160
       {
161
            E Tj, Tk, TU, TV;
162
            Tj = Rp[WS(rs, 5)];
163
            Tk = Rm[WS(rs, 2)];
164
            Tl = Tj + Tk;
165
            TO = Tj - Tk;
166
            TU = Ip[WS(rs, 5)];
167
            TV = Im[WS(rs, 2)];
168
            TW = TU + TV;
169
            T1t = TU - TV;
170
       }
171
       TS = TO + TR;
172
       TX = TT - TW;
173
       T34 = TR - TO;
174
       T33 = TT + TW;
175
       T2I = T1s - T1t;
176
       T2H = Ti - Tl;
177
        }
178
        {
179
       E T14, T12, TZ, T17;
180
       {
181
            E Tn, To, T10, T11;
182
            Tn = Rm[0];
183
            To = Rp[WS(rs, 7)];
184
            Tp = Tn + To;
185
            T14 = Tn - To;
186
            T10 = Im[0];
187
            T11 = Ip[WS(rs, 7)];
188
            T12 = T10 + T11;
189
            T1v = T11 - T10;
190
       }
191
       {
192
            E Tq, Tr, T15, T16;
193
            Tq = Rp[WS(rs, 3)];
194
            Tr = Rm[WS(rs, 4)];
195
            Ts = Tq + Tr;
196
            TZ = Tq - Tr;
197
            T15 = Ip[WS(rs, 3)];
198
            T16 = Im[WS(rs, 4)];
199
            T17 = T15 + T16;
200
            T1w = T15 - T16;
201
       }
202
       T13 = TZ - T12;
203
       T18 = T14 - T17;
204
       T37 = TZ + T12;
205
       T36 = T14 + T17;
206
       T2L = T1v - T1w;
207
       T2K = Tp - Ts;
208
        }
209
        T2J = T2H - T2I;
210
        T2M = T2K + T2L;
211
        T2N = T2J + T2M;
212
        T2U = T2H + T2I;
213
        T2V = T2L - T2K;
214
        T3H = T2V - T2U;
215
        {
216
       E Tm, Tt, T3g, T3h;
217
       Tm = Ti + Tl;
218
       Tt = Tp + Ts;
219
       Tu = Tm + Tt;
220
       T25 = Tm - Tt;
221
       T3g = FNMS(KP414213562, T33, T34);
222
       T3h = FNMS(KP414213562, T36, T37);
223
       T3i = T3g + T3h;
224
       T3R = T3h - T3g;
225
        }
226
        {
227
       E TY, T19, T1u, T1x;
228
       TY = FMA(KP414213562, TX, TS);
229
       T19 = FNMS(KP414213562, T18, T13);
230
       T1a = TY + T19;
231
       T2g = T19 - TY;
232
       T1u = T1s + T1t;
233
       T1x = T1v + T1w;
234
       T1y = T1u + T1x;
235
       T21 = T1x - T1u;
236
        }
237
        {
238
       E T35, T38, T1n, T1o;
239
       T35 = FMA(KP414213562, T34, T33);
240
       T38 = FMA(KP414213562, T37, T36);
241
       T39 = T35 - T38;
242
       T3W = T35 + T38;
243
       T1n = FNMS(KP414213562, TS, TX);
244
       T1o = FMA(KP414213562, T13, T18);
245
       T1p = T1n + T1o;
246
       T2b = T1n - T1o;
247
        }
248
         }
249
         {
250
        E Tv, T1G, T1b, T1q, T1c, T1H, Tw, T1r, T1I, T1d;
251
        Tv = Tf + Tu;
252
        T1G = T1y + T1F;
253
        T1b = FMA(KP923879532, T1a, TN);
254
        T1q = FMA(KP923879532, T1p, T1m);
255
        Tw = W[0];
256
        T1c = Tw * T1b;
257
        T1H = Tw * T1q;
258
        T1d = W[1];
259
        T1r = FMA(T1d, T1q, T1c);
260
        T1I = FNMS(T1d, T1b, T1H);
261
        Rp[0] = Tv - T1r;
262
        Ip[0] = T1G + T1I;
263
        Rm[0] = Tv + T1r;
264
        Im[0] = T1I - T1G;
265
         }
266
         {
267
        E T1N, T1J, T1L, T1M, T1V, T1Q, T1T, T1R, T1X, T1K, T1P;
268
        T1N = T1F - T1y;
269
        T1K = Tf - Tu;
270
        T1J = W[14];
271
        T1L = T1J * T1K;
272
        T1M = W[15];
273
        T1V = T1M * T1K;
274
        T1Q = FNMS(KP923879532, T1a, TN);
275
        T1T = FNMS(KP923879532, T1p, T1m);
276
        T1P = W[16];
277
        T1R = T1P * T1Q;
278
        T1X = T1P * T1T;
279
        {
280
       E T1O, T1W, T1U, T1Y, T1S;
281
       T1O = FNMS(T1M, T1N, T1L);
282
       T1W = FMA(T1J, T1N, T1V);
283
       T1S = W[17];
284
       T1U = FMA(T1S, T1T, T1R);
285
       T1Y = FNMS(T1S, T1Q, T1X);
286
       Rp[WS(rs, 4)] = T1O - T1U;
287
       Ip[WS(rs, 4)] = T1W + T1Y;
288
       Rm[WS(rs, 4)] = T1O + T1U;
289
       Im[WS(rs, 4)] = T1Y - T1W;
290
        }
291
         }
292
         {
293
        E T2r, T2n, T2p, T2q, T2z, T2u, T2x, T2v, T2B, T2o, T2t;
294
        T2r = T26 - T25;
295
        T2o = T20 - T21;
296
        T2n = W[22];
297
        T2p = T2n * T2o;
298
        T2q = W[23];
299
        T2z = T2q * T2o;
300
        T2u = FNMS(KP923879532, T2b, T2a);
301
        T2x = FNMS(KP923879532, T2g, T2f);
302
        T2t = W[24];
303
        T2v = T2t * T2u;
304
        T2B = T2t * T2x;
305
        {
306
       E T2s, T2A, T2y, T2C, T2w;
307
       T2s = FNMS(T2q, T2r, T2p);
308
       T2A = FMA(T2n, T2r, T2z);
309
       T2w = W[25];
310
       T2y = FMA(T2w, T2x, T2v);
311
       T2C = FNMS(T2w, T2u, T2B);
312
       Rp[WS(rs, 6)] = T2s - T2y;
313
       Ip[WS(rs, 6)] = T2A + T2C;
314
       Rm[WS(rs, 6)] = T2s + T2y;
315
       Im[WS(rs, 6)] = T2C - T2A;
316
        }
317
         }
318
         {
319
        E T27, T1Z, T23, T24, T2j, T2c, T2h, T2d, T2l, T22, T29;
320
        T27 = T25 + T26;
321
        T22 = T20 + T21;
322
        T1Z = W[6];
323
        T23 = T1Z * T22;
324
        T24 = W[7];
325
        T2j = T24 * T22;
326
        T2c = FMA(KP923879532, T2b, T2a);
327
        T2h = FMA(KP923879532, T2g, T2f);
328
        T29 = W[8];
329
        T2d = T29 * T2c;
330
        T2l = T29 * T2h;
331
        {
332
       E T28, T2k, T2i, T2m, T2e;
333
       T28 = FNMS(T24, T27, T23);
334
       T2k = FMA(T1Z, T27, T2j);
335
       T2e = W[9];
336
       T2i = FMA(T2e, T2h, T2d);
337
       T2m = FNMS(T2e, T2c, T2l);
338
       Rp[WS(rs, 2)] = T28 - T2i;
339
       Ip[WS(rs, 2)] = T2k + T2m;
340
       Rm[WS(rs, 2)] = T28 + T2i;
341
       Im[WS(rs, 2)] = T2m - T2k;
342
        }
343
         }
344
         {
345
        E T3N, T47, T43, T45, T46, T4f, T3F, T3J, T3K, T3Z, T3S, T3X, T3T, T41, T4a;
346
        E T4d, T4b, T4h;
347
        {
348
       E T3M, T44, T3I, T3P, T49;
349
       T3M = T2J - T2M;
350
       T3N = FMA(KP707106781, T3M, T3L);
351
       T47 = FNMS(KP707106781, T3M, T3L);
352
       T44 = FNMS(KP707106781, T3H, T3G);
353
       T43 = W[26];
354
       T45 = T43 * T44;
355
       T46 = W[27];
356
       T4f = T46 * T44;
357
       T3I = FMA(KP707106781, T3H, T3G);
358
       T3F = W[10];
359
       T3J = T3F * T3I;
360
       T3K = W[11];
361
       T3Z = T3K * T3I;
362
       T3S = FMA(KP923879532, T3R, T3Q);
363
       T3X = FNMS(KP923879532, T3W, T3V);
364
       T3P = W[12];
365
       T3T = T3P * T3S;
366
       T41 = T3P * T3X;
367
       T4a = FNMS(KP923879532, T3R, T3Q);
368
       T4d = FMA(KP923879532, T3W, T3V);
369
       T49 = W[28];
370
       T4b = T49 * T4a;
371
       T4h = T49 * T4d;
372
        }
373
        {
374
       E T3O, T40, T3Y, T42, T3U;
375
       T3O = FNMS(T3K, T3N, T3J);
376
       T40 = FMA(T3F, T3N, T3Z);
377
       T3U = W[13];
378
       T3Y = FMA(T3U, T3X, T3T);
379
       T42 = FNMS(T3U, T3S, T41);
380
       Rp[WS(rs, 3)] = T3O - T3Y;
381
       Ip[WS(rs, 3)] = T40 + T42;
382
       Rm[WS(rs, 3)] = T3O + T3Y;
383
       Im[WS(rs, 3)] = T42 - T40;
384
        }
385
        {
386
       E T48, T4g, T4e, T4i, T4c;
387
       T48 = FNMS(T46, T47, T45);
388
       T4g = FMA(T43, T47, T4f);
389
       T4c = W[29];
390
       T4e = FMA(T4c, T4d, T4b);
391
       T4i = FNMS(T4c, T4a, T4h);
392
       Rp[WS(rs, 7)] = T48 - T4e;
393
       Ip[WS(rs, 7)] = T4g + T4i;
394
       Rm[WS(rs, 7)] = T48 + T4e;
395
       Im[WS(rs, 7)] = T4i - T4g;
396
        }
397
         }
398
         {
399
        E T2X, T3t, T3p, T3r, T3s, T3B, T2D, T2P, T2Q, T3l, T3a, T3j, T3b, T3n, T3w;
400
        E T3z, T3x, T3D;
401
        {
402
       E T2W, T3q, T2O, T2Z, T3v;
403
       T2W = T2U + T2V;
404
       T2X = FMA(KP707106781, T2W, T2T);
405
       T3t = FNMS(KP707106781, T2W, T2T);
406
       T3q = FNMS(KP707106781, T2N, T2G);
407
       T3p = W[18];
408
       T3r = T3p * T3q;
409
       T3s = W[19];
410
       T3B = T3s * T3q;
411
       T2O = FMA(KP707106781, T2N, T2G);
412
       T2D = W[2];
413
       T2P = T2D * T2O;
414
       T2Q = W[3];
415
       T3l = T2Q * T2O;
416
       T3a = FMA(KP923879532, T39, T32);
417
       T3j = FNMS(KP923879532, T3i, T3f);
418
       T2Z = W[4];
419
       T3b = T2Z * T3a;
420
       T3n = T2Z * T3j;
421
       T3w = FNMS(KP923879532, T39, T32);
422
       T3z = FMA(KP923879532, T3i, T3f);
423
       T3v = W[20];
424
       T3x = T3v * T3w;
425
       T3D = T3v * T3z;
426
        }
427
        {
428
       E T2Y, T3m, T3k, T3o, T3c;
429
       T2Y = FNMS(T2Q, T2X, T2P);
430
       T3m = FMA(T2D, T2X, T3l);
431
       T3c = W[5];
432
       T3k = FMA(T3c, T3j, T3b);
433
       T3o = FNMS(T3c, T3a, T3n);
434
       Rp[WS(rs, 1)] = T2Y - T3k;
435
       Ip[WS(rs, 1)] = T3m + T3o;
436
       Rm[WS(rs, 1)] = T2Y + T3k;
437
       Im[WS(rs, 1)] = T3o - T3m;
438
        }
439
        {
440
       E T3u, T3C, T3A, T3E, T3y;
441
       T3u = FNMS(T3s, T3t, T3r);
442
       T3C = FMA(T3p, T3t, T3B);
443
       T3y = W[21];
444
       T3A = FMA(T3y, T3z, T3x);
445
       T3E = FNMS(T3y, T3w, T3D);
446
       Rp[WS(rs, 5)] = T3u - T3A;
447
       Ip[WS(rs, 5)] = T3C + T3E;
448
       Rm[WS(rs, 5)] = T3u + T3A;
449
       Im[WS(rs, 5)] = T3E - T3C;
450
        }
451
         }
452
    }
453
     }
454
}
455
456
static const tw_instr twinstr[] = {
457
     { TW_FULL, 1, 16 },
458
     { TW_NEXT, 1, 0 }
459
};
460
461
static const hc2c_desc desc = { 16, "hc2cbdft_16", twinstr, &GENUS, { 136, 30, 70, 0 } };
462
463
void X(codelet_hc2cbdft_16) (planner *p) {
464
     X(khc2c_register) (p, hc2cbdft_16, &desc, HC2C_VIA_DFT);
465
}
466
#else
467
468
/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -dif -name hc2cbdft_16 -include rdft/scalar/hc2cb.h */
469
470
/*
471
 * This function contains 206 FP additions, 84 FP multiplications,
472
 * (or, 168 additions, 46 multiplications, 38 fused multiply/add),
473
 * 60 stack variables, 3 constants, and 64 memory accesses
474
 */
475
#include "rdft/scalar/hc2cb.h"
476
477
static void hc2cbdft_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
478
0
{
479
0
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
480
0
     DK(KP382683432, +0.382683432365089771728459984030398866761344562);
481
0
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
482
0
     {
483
0
    INT m;
484
0
    for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) {
485
0
         E TB, T2L, T30, T1n, Tf, T1U, T2H, T3p, T1E, T1Z, TM, T31, T2s, T3k, T1i;
486
0
         E T2M, Tu, T1Y, T2Q, T2X, T2T, T2Y, TY, T1d, T19, T1e, T2v, T2C, T2y, T2D;
487
0
         E T1x, T1V;
488
0
         {
489
0
        E T3, T1j, TA, T1B, T6, Tx, T1m, T1C, Ta, TC, TF, T1y, Td, TH, TK;
490
0
        E T1z;
491
0
        {
492
0
       E T1, T2, Ty, Tz;
493
0
       T1 = Rp[0];
494
0
       T2 = Rm[WS(rs, 7)];
495
0
       T3 = T1 + T2;
496
0
       T1j = T1 - T2;
497
0
       Ty = Ip[0];
498
0
       Tz = Im[WS(rs, 7)];
499
0
       TA = Ty + Tz;
500
0
       T1B = Ty - Tz;
501
0
        }
502
0
        {
503
0
       E T4, T5, T1k, T1l;
504
0
       T4 = Rp[WS(rs, 4)];
505
0
       T5 = Rm[WS(rs, 3)];
506
0
       T6 = T4 + T5;
507
0
       Tx = T4 - T5;
508
0
       T1k = Ip[WS(rs, 4)];
509
0
       T1l = Im[WS(rs, 3)];
510
0
       T1m = T1k + T1l;
511
0
       T1C = T1k - T1l;
512
0
        }
513
0
        {
514
0
       E T8, T9, TD, TE;
515
0
       T8 = Rp[WS(rs, 2)];
516
0
       T9 = Rm[WS(rs, 5)];
517
0
       Ta = T8 + T9;
518
0
       TC = T8 - T9;
519
0
       TD = Ip[WS(rs, 2)];
520
0
       TE = Im[WS(rs, 5)];
521
0
       TF = TD + TE;
522
0
       T1y = TD - TE;
523
0
        }
524
0
        {
525
0
       E Tb, Tc, TI, TJ;
526
0
       Tb = Rm[WS(rs, 1)];
527
0
       Tc = Rp[WS(rs, 6)];
528
0
       Td = Tb + Tc;
529
0
       TH = Tb - Tc;
530
0
       TI = Im[WS(rs, 1)];
531
0
       TJ = Ip[WS(rs, 6)];
532
0
       TK = TI + TJ;
533
0
       T1z = TJ - TI;
534
0
        }
535
0
        {
536
0
       E T7, Te, TG, TL;
537
0
       TB = Tx + TA;
538
0
       T2L = TA - Tx;
539
0
       T30 = T1j + T1m;
540
0
       T1n = T1j - T1m;
541
0
       T7 = T3 + T6;
542
0
       Te = Ta + Td;
543
0
       Tf = T7 + Te;
544
0
       T1U = T7 - Te;
545
0
       {
546
0
            E T2F, T2G, T1A, T1D;
547
0
            T2F = Ta - Td;
548
0
            T2G = T1B - T1C;
549
0
            T2H = T2F + T2G;
550
0
            T3p = T2G - T2F;
551
0
            T1A = T1y + T1z;
552
0
            T1D = T1B + T1C;
553
0
            T1E = T1A + T1D;
554
0
            T1Z = T1D - T1A;
555
0
       }
556
0
       TG = TC + TF;
557
0
       TL = TH + TK;
558
0
       TM = KP707106781 * (TG - TL);
559
0
       T31 = KP707106781 * (TG + TL);
560
0
       {
561
0
            E T2q, T2r, T1g, T1h;
562
0
            T2q = T3 - T6;
563
0
            T2r = T1z - T1y;
564
0
            T2s = T2q + T2r;
565
0
            T3k = T2q - T2r;
566
0
            T1g = TC - TF;
567
0
            T1h = TH - TK;
568
0
            T1i = KP707106781 * (T1g + T1h);
569
0
            T2M = KP707106781 * (T1g - T1h);
570
0
       }
571
0
        }
572
0
         }
573
0
         {
574
0
        E Ti, TT, TR, T1r, Tl, TO, TW, T1s, Tp, T14, T12, T1u, Ts, TZ, T17;
575
0
        E T1v;
576
0
        {
577
0
       E Tg, Th, TP, TQ;
578
0
       Tg = Rp[WS(rs, 1)];
579
0
       Th = Rm[WS(rs, 6)];
580
0
       Ti = Tg + Th;
581
0
       TT = Tg - Th;
582
0
       TP = Ip[WS(rs, 1)];
583
0
       TQ = Im[WS(rs, 6)];
584
0
       TR = TP + TQ;
585
0
       T1r = TP - TQ;
586
0
        }
587
0
        {
588
0
       E Tj, Tk, TU, TV;
589
0
       Tj = Rp[WS(rs, 5)];
590
0
       Tk = Rm[WS(rs, 2)];
591
0
       Tl = Tj + Tk;
592
0
       TO = Tj - Tk;
593
0
       TU = Ip[WS(rs, 5)];
594
0
       TV = Im[WS(rs, 2)];
595
0
       TW = TU + TV;
596
0
       T1s = TU - TV;
597
0
        }
598
0
        {
599
0
       E Tn, To, T10, T11;
600
0
       Tn = Rm[0];
601
0
       To = Rp[WS(rs, 7)];
602
0
       Tp = Tn + To;
603
0
       T14 = Tn - To;
604
0
       T10 = Im[0];
605
0
       T11 = Ip[WS(rs, 7)];
606
0
       T12 = T10 + T11;
607
0
       T1u = T11 - T10;
608
0
        }
609
0
        {
610
0
       E Tq, Tr, T15, T16;
611
0
       Tq = Rp[WS(rs, 3)];
612
0
       Tr = Rm[WS(rs, 4)];
613
0
       Ts = Tq + Tr;
614
0
       TZ = Tq - Tr;
615
0
       T15 = Ip[WS(rs, 3)];
616
0
       T16 = Im[WS(rs, 4)];
617
0
       T17 = T15 + T16;
618
0
       T1v = T15 - T16;
619
0
        }
620
0
        {
621
0
       E Tm, Tt, T2O, T2P;
622
0
       Tm = Ti + Tl;
623
0
       Tt = Tp + Ts;
624
0
       Tu = Tm + Tt;
625
0
       T1Y = Tm - Tt;
626
0
       T2O = TR - TO;
627
0
       T2P = TT + TW;
628
0
       T2Q = FMA(KP382683432, T2O, KP923879532 * T2P);
629
0
       T2X = FNMS(KP923879532, T2O, KP382683432 * T2P);
630
0
        }
631
0
        {
632
0
       E T2R, T2S, TS, TX;
633
0
       T2R = TZ + T12;
634
0
       T2S = T14 + T17;
635
0
       T2T = FMA(KP382683432, T2R, KP923879532 * T2S);
636
0
       T2Y = FNMS(KP923879532, T2R, KP382683432 * T2S);
637
0
       TS = TO + TR;
638
0
       TX = TT - TW;
639
0
       TY = FMA(KP923879532, TS, KP382683432 * TX);
640
0
       T1d = FNMS(KP382683432, TS, KP923879532 * TX);
641
0
        }
642
0
        {
643
0
       E T13, T18, T2t, T2u;
644
0
       T13 = TZ - T12;
645
0
       T18 = T14 - T17;
646
0
       T19 = FNMS(KP382683432, T18, KP923879532 * T13);
647
0
       T1e = FMA(KP382683432, T13, KP923879532 * T18);
648
0
       T2t = Ti - Tl;
649
0
       T2u = T1r - T1s;
650
0
       T2v = T2t - T2u;
651
0
       T2C = T2t + T2u;
652
0
        }
653
0
        {
654
0
       E T2w, T2x, T1t, T1w;
655
0
       T2w = Tp - Ts;
656
0
       T2x = T1u - T1v;
657
0
       T2y = T2w + T2x;
658
0
       T2D = T2x - T2w;
659
0
       T1t = T1r + T1s;
660
0
       T1w = T1u + T1v;
661
0
       T1x = T1t + T1w;
662
0
       T1V = T1w - T1t;
663
0
        }
664
0
         }
665
0
         {
666
0
        E Tv, T1F, T1b, T1N, T1p, T1P, T1L, T1R;
667
0
        Tv = Tf + Tu;
668
0
        T1F = T1x + T1E;
669
0
        {
670
0
       E TN, T1a, T1f, T1o;
671
0
       TN = TB + TM;
672
0
       T1a = TY + T19;
673
0
       T1b = TN + T1a;
674
0
       T1N = TN - T1a;
675
0
       T1f = T1d + T1e;
676
0
       T1o = T1i + T1n;
677
0
       T1p = T1f + T1o;
678
0
       T1P = T1o - T1f;
679
0
       {
680
0
            E T1I, T1K, T1H, T1J;
681
0
            T1I = Tf - Tu;
682
0
            T1K = T1E - T1x;
683
0
            T1H = W[14];
684
0
            T1J = W[15];
685
0
            T1L = FNMS(T1J, T1K, T1H * T1I);
686
0
            T1R = FMA(T1J, T1I, T1H * T1K);
687
0
       }
688
0
        }
689
0
        {
690
0
       E T1q, T1G, Tw, T1c;
691
0
       Tw = W[0];
692
0
       T1c = W[1];
693
0
       T1q = FMA(Tw, T1b, T1c * T1p);
694
0
       T1G = FNMS(T1c, T1b, Tw * T1p);
695
0
       Rp[0] = Tv - T1q;
696
0
       Ip[0] = T1F + T1G;
697
0
       Rm[0] = Tv + T1q;
698
0
       Im[0] = T1G - T1F;
699
0
        }
700
0
        {
701
0
       E T1Q, T1S, T1M, T1O;
702
0
       T1M = W[16];
703
0
       T1O = W[17];
704
0
       T1Q = FMA(T1M, T1N, T1O * T1P);
705
0
       T1S = FNMS(T1O, T1N, T1M * T1P);
706
0
       Rp[WS(rs, 4)] = T1L - T1Q;
707
0
       Ip[WS(rs, 4)] = T1R + T1S;
708
0
       Rm[WS(rs, 4)] = T1L + T1Q;
709
0
       Im[WS(rs, 4)] = T1S - T1R;
710
0
        }
711
0
         }
712
0
         {
713
0
        E T25, T2j, T29, T2l, T21, T2b, T2h, T2n;
714
0
        {
715
0
       E T23, T24, T27, T28;
716
0
       T23 = TB - TM;
717
0
       T24 = T1d - T1e;
718
0
       T25 = T23 + T24;
719
0
       T2j = T23 - T24;
720
0
       T27 = T19 - TY;
721
0
       T28 = T1n - T1i;
722
0
       T29 = T27 + T28;
723
0
       T2l = T28 - T27;
724
0
        }
725
0
        {
726
0
       E T1W, T20, T1T, T1X;
727
0
       T1W = T1U + T1V;
728
0
       T20 = T1Y + T1Z;
729
0
       T1T = W[6];
730
0
       T1X = W[7];
731
0
       T21 = FNMS(T1X, T20, T1T * T1W);
732
0
       T2b = FMA(T1X, T1W, T1T * T20);
733
0
        }
734
0
        {
735
0
       E T2e, T2g, T2d, T2f;
736
0
       T2e = T1U - T1V;
737
0
       T2g = T1Z - T1Y;
738
0
       T2d = W[22];
739
0
       T2f = W[23];
740
0
       T2h = FNMS(T2f, T2g, T2d * T2e);
741
0
       T2n = FMA(T2f, T2e, T2d * T2g);
742
0
        }
743
0
        {
744
0
       E T2a, T2c, T22, T26;
745
0
       T22 = W[8];
746
0
       T26 = W[9];
747
0
       T2a = FMA(T22, T25, T26 * T29);
748
0
       T2c = FNMS(T26, T25, T22 * T29);
749
0
       Rp[WS(rs, 2)] = T21 - T2a;
750
0
       Ip[WS(rs, 2)] = T2b + T2c;
751
0
       Rm[WS(rs, 2)] = T21 + T2a;
752
0
       Im[WS(rs, 2)] = T2c - T2b;
753
0
        }
754
0
        {
755
0
       E T2m, T2o, T2i, T2k;
756
0
       T2i = W[24];
757
0
       T2k = W[25];
758
0
       T2m = FMA(T2i, T2j, T2k * T2l);
759
0
       T2o = FNMS(T2k, T2j, T2i * T2l);
760
0
       Rp[WS(rs, 6)] = T2h - T2m;
761
0
       Ip[WS(rs, 6)] = T2n + T2o;
762
0
       Rm[WS(rs, 6)] = T2h + T2m;
763
0
       Im[WS(rs, 6)] = T2o - T2n;
764
0
        }
765
0
         }
766
0
         {
767
0
        E T2A, T38, T2I, T3a, T2V, T3d, T33, T3f, T2z, T2E;
768
0
        T2z = KP707106781 * (T2v + T2y);
769
0
        T2A = T2s + T2z;
770
0
        T38 = T2s - T2z;
771
0
        T2E = KP707106781 * (T2C + T2D);
772
0
        T2I = T2E + T2H;
773
0
        T3a = T2H - T2E;
774
0
        {
775
0
       E T2N, T2U, T2Z, T32;
776
0
       T2N = T2L + T2M;
777
0
       T2U = T2Q - T2T;
778
0
       T2V = T2N + T2U;
779
0
       T3d = T2N - T2U;
780
0
       T2Z = T2X + T2Y;
781
0
       T32 = T30 - T31;
782
0
       T33 = T2Z + T32;
783
0
       T3f = T32 - T2Z;
784
0
        }
785
0
        {
786
0
       E T2J, T35, T34, T36;
787
0
       {
788
0
            E T2p, T2B, T2K, T2W;
789
0
            T2p = W[2];
790
0
            T2B = W[3];
791
0
            T2J = FNMS(T2B, T2I, T2p * T2A);
792
0
            T35 = FMA(T2B, T2A, T2p * T2I);
793
0
            T2K = W[4];
794
0
            T2W = W[5];
795
0
            T34 = FMA(T2K, T2V, T2W * T33);
796
0
            T36 = FNMS(T2W, T2V, T2K * T33);
797
0
       }
798
0
       Rp[WS(rs, 1)] = T2J - T34;
799
0
       Ip[WS(rs, 1)] = T35 + T36;
800
0
       Rm[WS(rs, 1)] = T2J + T34;
801
0
       Im[WS(rs, 1)] = T36 - T35;
802
0
        }
803
0
        {
804
0
       E T3b, T3h, T3g, T3i;
805
0
       {
806
0
            E T37, T39, T3c, T3e;
807
0
            T37 = W[18];
808
0
            T39 = W[19];
809
0
            T3b = FNMS(T39, T3a, T37 * T38);
810
0
            T3h = FMA(T39, T38, T37 * T3a);
811
0
            T3c = W[20];
812
0
            T3e = W[21];
813
0
            T3g = FMA(T3c, T3d, T3e * T3f);
814
0
            T3i = FNMS(T3e, T3d, T3c * T3f);
815
0
       }
816
0
       Rp[WS(rs, 5)] = T3b - T3g;
817
0
       Ip[WS(rs, 5)] = T3h + T3i;
818
0
       Rm[WS(rs, 5)] = T3b + T3g;
819
0
       Im[WS(rs, 5)] = T3i - T3h;
820
0
        }
821
0
         }
822
0
         {
823
0
        E T3m, T3E, T3q, T3G, T3v, T3J, T3z, T3L, T3l, T3o;
824
0
        T3l = KP707106781 * (T2D - T2C);
825
0
        T3m = T3k + T3l;
826
0
        T3E = T3k - T3l;
827
0
        T3o = KP707106781 * (T2v - T2y);
828
0
        T3q = T3o + T3p;
829
0
        T3G = T3p - T3o;
830
0
        {
831
0
       E T3t, T3u, T3x, T3y;
832
0
       T3t = T2L - T2M;
833
0
       T3u = T2X - T2Y;
834
0
       T3v = T3t + T3u;
835
0
       T3J = T3t - T3u;
836
0
       T3x = T31 + T30;
837
0
       T3y = T2Q + T2T;
838
0
       T3z = T3x - T3y;
839
0
       T3L = T3y + T3x;
840
0
        }
841
0
        {
842
0
       E T3r, T3B, T3A, T3C;
843
0
       {
844
0
            E T3j, T3n, T3s, T3w;
845
0
            T3j = W[10];
846
0
            T3n = W[11];
847
0
            T3r = FNMS(T3n, T3q, T3j * T3m);
848
0
            T3B = FMA(T3n, T3m, T3j * T3q);
849
0
            T3s = W[12];
850
0
            T3w = W[13];
851
0
            T3A = FMA(T3s, T3v, T3w * T3z);
852
0
            T3C = FNMS(T3w, T3v, T3s * T3z);
853
0
       }
854
0
       Rp[WS(rs, 3)] = T3r - T3A;
855
0
       Ip[WS(rs, 3)] = T3B + T3C;
856
0
       Rm[WS(rs, 3)] = T3r + T3A;
857
0
       Im[WS(rs, 3)] = T3C - T3B;
858
0
        }
859
0
        {
860
0
       E T3H, T3N, T3M, T3O;
861
0
       {
862
0
            E T3D, T3F, T3I, T3K;
863
0
            T3D = W[26];
864
0
            T3F = W[27];
865
0
            T3H = FNMS(T3F, T3G, T3D * T3E);
866
0
            T3N = FMA(T3F, T3E, T3D * T3G);
867
0
            T3I = W[28];
868
0
            T3K = W[29];
869
0
            T3M = FMA(T3I, T3J, T3K * T3L);
870
0
            T3O = FNMS(T3K, T3J, T3I * T3L);
871
0
       }
872
0
       Rp[WS(rs, 7)] = T3H - T3M;
873
0
       Ip[WS(rs, 7)] = T3N + T3O;
874
0
       Rm[WS(rs, 7)] = T3H + T3M;
875
0
       Im[WS(rs, 7)] = T3O - T3N;
876
0
        }
877
0
         }
878
0
    }
879
0
     }
880
0
}
881
882
static const tw_instr twinstr[] = {
883
     { TW_FULL, 1, 16 },
884
     { TW_NEXT, 1, 0 }
885
};
886
887
static const hc2c_desc desc = { 16, "hc2cbdft_16", twinstr, &GENUS, { 168, 46, 38, 0 } };
888
889
1
void X(codelet_hc2cbdft_16) (planner *p) {
890
1
     X(khc2c_register) (p, hc2cbdft_16, &desc, HC2C_VIA_DFT);
891
1
}
892
#endif