/src/fftw3/rdft/scalar/r2cb/r2cb_10.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Sun Sep 8 06:42:07 UTC 2024 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cb_10 -include rdft/scalar/r2cb.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 34 FP additions, 20 FP multiplications, |
32 | | * (or, 14 additions, 0 multiplications, 20 fused multiply/add), |
33 | | * 26 stack variables, 5 constants, and 20 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/r2cb.h" |
36 | | |
37 | | static void r2cb_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
38 | | { |
39 | | DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); |
40 | | DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); |
41 | | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
42 | | DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
43 | | DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); |
44 | | { |
45 | | INT i; |
46 | | for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) { |
47 | | E T3, Tb, Tn, Tu, Tk, Tv, Ta, Ts, Te, Tg, Ti, Tj; |
48 | | { |
49 | | E T1, T2, Tl, Tm; |
50 | | T1 = Cr[0]; |
51 | | T2 = Cr[WS(csr, 5)]; |
52 | | T3 = T1 - T2; |
53 | | Tb = T1 + T2; |
54 | | Tl = Ci[WS(csi, 2)]; |
55 | | Tm = Ci[WS(csi, 3)]; |
56 | | Tn = Tl - Tm; |
57 | | Tu = Tl + Tm; |
58 | | } |
59 | | Ti = Ci[WS(csi, 4)]; |
60 | | Tj = Ci[WS(csi, 1)]; |
61 | | Tk = Ti - Tj; |
62 | | Tv = Ti + Tj; |
63 | | { |
64 | | E T6, Tc, T9, Td; |
65 | | { |
66 | | E T4, T5, T7, T8; |
67 | | T4 = Cr[WS(csr, 2)]; |
68 | | T5 = Cr[WS(csr, 3)]; |
69 | | T6 = T4 - T5; |
70 | | Tc = T4 + T5; |
71 | | T7 = Cr[WS(csr, 4)]; |
72 | | T8 = Cr[WS(csr, 1)]; |
73 | | T9 = T7 - T8; |
74 | | Td = T7 + T8; |
75 | | } |
76 | | Ta = T6 + T9; |
77 | | Ts = T6 - T9; |
78 | | Te = Tc + Td; |
79 | | Tg = Tc - Td; |
80 | | } |
81 | | R1[WS(rs, 2)] = FMA(KP2_000000000, Ta, T3); |
82 | | R0[0] = FMA(KP2_000000000, Te, Tb); |
83 | | { |
84 | | E To, Tq, Th, Tp, Tf; |
85 | | To = FNMS(KP618033988, Tn, Tk); |
86 | | Tq = FMA(KP618033988, Tk, Tn); |
87 | | Tf = FNMS(KP500000000, Te, Tb); |
88 | | Th = FNMS(KP1_118033988, Tg, Tf); |
89 | | Tp = FMA(KP1_118033988, Tg, Tf); |
90 | | R0[WS(rs, 4)] = FNMS(KP1_902113032, To, Th); |
91 | | R0[WS(rs, 2)] = FMA(KP1_902113032, Tq, Tp); |
92 | | R0[WS(rs, 1)] = FMA(KP1_902113032, To, Th); |
93 | | R0[WS(rs, 3)] = FNMS(KP1_902113032, Tq, Tp); |
94 | | } |
95 | | { |
96 | | E Tw, Ty, Tt, Tx, Tr; |
97 | | Tw = FMA(KP618033988, Tv, Tu); |
98 | | Ty = FNMS(KP618033988, Tu, Tv); |
99 | | Tr = FNMS(KP500000000, Ta, T3); |
100 | | Tt = FMA(KP1_118033988, Ts, Tr); |
101 | | Tx = FNMS(KP1_118033988, Ts, Tr); |
102 | | R1[0] = FNMS(KP1_902113032, Tw, Tt); |
103 | | R1[WS(rs, 3)] = FMA(KP1_902113032, Ty, Tx); |
104 | | R1[WS(rs, 4)] = FMA(KP1_902113032, Tw, Tt); |
105 | | R1[WS(rs, 1)] = FNMS(KP1_902113032, Ty, Tx); |
106 | | } |
107 | | } |
108 | | } |
109 | | } |
110 | | |
111 | | static const kr2c_desc desc = { 10, "r2cb_10", { 14, 0, 20, 0 }, &GENUS }; |
112 | | |
113 | | void X(codelet_r2cb_10) (planner *p) { X(kr2c_register) (p, r2cb_10, &desc); |
114 | | } |
115 | | |
116 | | #else |
117 | | |
118 | | /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cb_10 -include rdft/scalar/r2cb.h */ |
119 | | |
120 | | /* |
121 | | * This function contains 34 FP additions, 14 FP multiplications, |
122 | | * (or, 26 additions, 6 multiplications, 8 fused multiply/add), |
123 | | * 26 stack variables, 5 constants, and 20 memory accesses |
124 | | */ |
125 | | #include "rdft/scalar/r2cb.h" |
126 | | |
127 | | static void r2cb_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
128 | 0 | { |
129 | 0 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
130 | 0 | DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); |
131 | 0 | DK(KP1_175570504, +1.175570504584946258337411909278145537195304875); |
132 | 0 | DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); |
133 | 0 | DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); |
134 | 0 | { |
135 | 0 | INT i; |
136 | 0 | for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) { |
137 | 0 | E T3, Tb, Tn, Tv, Tk, Tu, Ta, Ts, Te, Tg, Ti, Tj; |
138 | 0 | { |
139 | 0 | E T1, T2, Tl, Tm; |
140 | 0 | T1 = Cr[0]; |
141 | 0 | T2 = Cr[WS(csr, 5)]; |
142 | 0 | T3 = T1 - T2; |
143 | 0 | Tb = T1 + T2; |
144 | 0 | Tl = Ci[WS(csi, 4)]; |
145 | 0 | Tm = Ci[WS(csi, 1)]; |
146 | 0 | Tn = Tl - Tm; |
147 | 0 | Tv = Tl + Tm; |
148 | 0 | } |
149 | 0 | Ti = Ci[WS(csi, 2)]; |
150 | 0 | Tj = Ci[WS(csi, 3)]; |
151 | 0 | Tk = Ti - Tj; |
152 | 0 | Tu = Ti + Tj; |
153 | 0 | { |
154 | 0 | E T6, Tc, T9, Td; |
155 | 0 | { |
156 | 0 | E T4, T5, T7, T8; |
157 | 0 | T4 = Cr[WS(csr, 2)]; |
158 | 0 | T5 = Cr[WS(csr, 3)]; |
159 | 0 | T6 = T4 - T5; |
160 | 0 | Tc = T4 + T5; |
161 | 0 | T7 = Cr[WS(csr, 4)]; |
162 | 0 | T8 = Cr[WS(csr, 1)]; |
163 | 0 | T9 = T7 - T8; |
164 | 0 | Td = T7 + T8; |
165 | 0 | } |
166 | 0 | Ta = T6 + T9; |
167 | 0 | Ts = KP1_118033988 * (T6 - T9); |
168 | 0 | Te = Tc + Td; |
169 | 0 | Tg = KP1_118033988 * (Tc - Td); |
170 | 0 | } |
171 | 0 | R1[WS(rs, 2)] = FMA(KP2_000000000, Ta, T3); |
172 | 0 | R0[0] = FMA(KP2_000000000, Te, Tb); |
173 | 0 | { |
174 | 0 | E To, Tq, Th, Tp, Tf; |
175 | 0 | To = FNMS(KP1_902113032, Tn, KP1_175570504 * Tk); |
176 | 0 | Tq = FMA(KP1_902113032, Tk, KP1_175570504 * Tn); |
177 | 0 | Tf = FNMS(KP500000000, Te, Tb); |
178 | 0 | Th = Tf - Tg; |
179 | 0 | Tp = Tg + Tf; |
180 | 0 | R0[WS(rs, 1)] = Th - To; |
181 | 0 | R0[WS(rs, 2)] = Tp + Tq; |
182 | 0 | R0[WS(rs, 4)] = Th + To; |
183 | 0 | R0[WS(rs, 3)] = Tp - Tq; |
184 | 0 | } |
185 | 0 | { |
186 | 0 | E Tw, Ty, Tt, Tx, Tr; |
187 | 0 | Tw = FNMS(KP1_902113032, Tv, KP1_175570504 * Tu); |
188 | 0 | Ty = FMA(KP1_902113032, Tu, KP1_175570504 * Tv); |
189 | 0 | Tr = FNMS(KP500000000, Ta, T3); |
190 | 0 | Tt = Tr - Ts; |
191 | 0 | Tx = Ts + Tr; |
192 | 0 | R1[WS(rs, 3)] = Tt - Tw; |
193 | 0 | R1[WS(rs, 4)] = Tx + Ty; |
194 | 0 | R1[WS(rs, 1)] = Tt + Tw; |
195 | 0 | R1[0] = Tx - Ty; |
196 | 0 | } |
197 | 0 | } |
198 | 0 | } |
199 | 0 | } |
200 | | |
201 | | static const kr2c_desc desc = { 10, "r2cb_10", { 26, 6, 8, 0 }, &GENUS }; |
202 | | |
203 | 1 | void X(codelet_r2cb_10) (planner *p) { X(kr2c_register) (p, r2cb_10, &desc); |
204 | 1 | } |
205 | | |
206 | | #endif |