Coverage Report

Created: 2024-09-08 06:43

/src/fftw3/rdft/scalar/r2cb/r2cb_10.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Sun Sep  8 06:42:07 UTC 2024 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cb_10 -include rdft/scalar/r2cb.h */
29
30
/*
31
 * This function contains 34 FP additions, 20 FP multiplications,
32
 * (or, 14 additions, 0 multiplications, 20 fused multiply/add),
33
 * 26 stack variables, 5 constants, and 20 memory accesses
34
 */
35
#include "rdft/scalar/r2cb.h"
36
37
static void r2cb_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38
{
39
     DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
40
     DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
41
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
42
     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
43
     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
44
     {
45
    INT i;
46
    for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
47
         E T3, Tb, Tn, Tu, Tk, Tv, Ta, Ts, Te, Tg, Ti, Tj;
48
         {
49
        E T1, T2, Tl, Tm;
50
        T1 = Cr[0];
51
        T2 = Cr[WS(csr, 5)];
52
        T3 = T1 - T2;
53
        Tb = T1 + T2;
54
        Tl = Ci[WS(csi, 2)];
55
        Tm = Ci[WS(csi, 3)];
56
        Tn = Tl - Tm;
57
        Tu = Tl + Tm;
58
         }
59
         Ti = Ci[WS(csi, 4)];
60
         Tj = Ci[WS(csi, 1)];
61
         Tk = Ti - Tj;
62
         Tv = Ti + Tj;
63
         {
64
        E T6, Tc, T9, Td;
65
        {
66
       E T4, T5, T7, T8;
67
       T4 = Cr[WS(csr, 2)];
68
       T5 = Cr[WS(csr, 3)];
69
       T6 = T4 - T5;
70
       Tc = T4 + T5;
71
       T7 = Cr[WS(csr, 4)];
72
       T8 = Cr[WS(csr, 1)];
73
       T9 = T7 - T8;
74
       Td = T7 + T8;
75
        }
76
        Ta = T6 + T9;
77
        Ts = T6 - T9;
78
        Te = Tc + Td;
79
        Tg = Tc - Td;
80
         }
81
         R1[WS(rs, 2)] = FMA(KP2_000000000, Ta, T3);
82
         R0[0] = FMA(KP2_000000000, Te, Tb);
83
         {
84
        E To, Tq, Th, Tp, Tf;
85
        To = FNMS(KP618033988, Tn, Tk);
86
        Tq = FMA(KP618033988, Tk, Tn);
87
        Tf = FNMS(KP500000000, Te, Tb);
88
        Th = FNMS(KP1_118033988, Tg, Tf);
89
        Tp = FMA(KP1_118033988, Tg, Tf);
90
        R0[WS(rs, 4)] = FNMS(KP1_902113032, To, Th);
91
        R0[WS(rs, 2)] = FMA(KP1_902113032, Tq, Tp);
92
        R0[WS(rs, 1)] = FMA(KP1_902113032, To, Th);
93
        R0[WS(rs, 3)] = FNMS(KP1_902113032, Tq, Tp);
94
         }
95
         {
96
        E Tw, Ty, Tt, Tx, Tr;
97
        Tw = FMA(KP618033988, Tv, Tu);
98
        Ty = FNMS(KP618033988, Tu, Tv);
99
        Tr = FNMS(KP500000000, Ta, T3);
100
        Tt = FMA(KP1_118033988, Ts, Tr);
101
        Tx = FNMS(KP1_118033988, Ts, Tr);
102
        R1[0] = FNMS(KP1_902113032, Tw, Tt);
103
        R1[WS(rs, 3)] = FMA(KP1_902113032, Ty, Tx);
104
        R1[WS(rs, 4)] = FMA(KP1_902113032, Tw, Tt);
105
        R1[WS(rs, 1)] = FNMS(KP1_902113032, Ty, Tx);
106
         }
107
    }
108
     }
109
}
110
111
static const kr2c_desc desc = { 10, "r2cb_10", { 14, 0, 20, 0 }, &GENUS };
112
113
void X(codelet_r2cb_10) (planner *p) { X(kr2c_register) (p, r2cb_10, &desc);
114
}
115
116
#else
117
118
/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cb_10 -include rdft/scalar/r2cb.h */
119
120
/*
121
 * This function contains 34 FP additions, 14 FP multiplications,
122
 * (or, 26 additions, 6 multiplications, 8 fused multiply/add),
123
 * 26 stack variables, 5 constants, and 20 memory accesses
124
 */
125
#include "rdft/scalar/r2cb.h"
126
127
static void r2cb_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
128
0
{
129
0
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
130
0
     DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
131
0
     DK(KP1_175570504, +1.175570504584946258337411909278145537195304875);
132
0
     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
133
0
     DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
134
0
     {
135
0
    INT i;
136
0
    for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
137
0
         E T3, Tb, Tn, Tv, Tk, Tu, Ta, Ts, Te, Tg, Ti, Tj;
138
0
         {
139
0
        E T1, T2, Tl, Tm;
140
0
        T1 = Cr[0];
141
0
        T2 = Cr[WS(csr, 5)];
142
0
        T3 = T1 - T2;
143
0
        Tb = T1 + T2;
144
0
        Tl = Ci[WS(csi, 4)];
145
0
        Tm = Ci[WS(csi, 1)];
146
0
        Tn = Tl - Tm;
147
0
        Tv = Tl + Tm;
148
0
         }
149
0
         Ti = Ci[WS(csi, 2)];
150
0
         Tj = Ci[WS(csi, 3)];
151
0
         Tk = Ti - Tj;
152
0
         Tu = Ti + Tj;
153
0
         {
154
0
        E T6, Tc, T9, Td;
155
0
        {
156
0
       E T4, T5, T7, T8;
157
0
       T4 = Cr[WS(csr, 2)];
158
0
       T5 = Cr[WS(csr, 3)];
159
0
       T6 = T4 - T5;
160
0
       Tc = T4 + T5;
161
0
       T7 = Cr[WS(csr, 4)];
162
0
       T8 = Cr[WS(csr, 1)];
163
0
       T9 = T7 - T8;
164
0
       Td = T7 + T8;
165
0
        }
166
0
        Ta = T6 + T9;
167
0
        Ts = KP1_118033988 * (T6 - T9);
168
0
        Te = Tc + Td;
169
0
        Tg = KP1_118033988 * (Tc - Td);
170
0
         }
171
0
         R1[WS(rs, 2)] = FMA(KP2_000000000, Ta, T3);
172
0
         R0[0] = FMA(KP2_000000000, Te, Tb);
173
0
         {
174
0
        E To, Tq, Th, Tp, Tf;
175
0
        To = FNMS(KP1_902113032, Tn, KP1_175570504 * Tk);
176
0
        Tq = FMA(KP1_902113032, Tk, KP1_175570504 * Tn);
177
0
        Tf = FNMS(KP500000000, Te, Tb);
178
0
        Th = Tf - Tg;
179
0
        Tp = Tg + Tf;
180
0
        R0[WS(rs, 1)] = Th - To;
181
0
        R0[WS(rs, 2)] = Tp + Tq;
182
0
        R0[WS(rs, 4)] = Th + To;
183
0
        R0[WS(rs, 3)] = Tp - Tq;
184
0
         }
185
0
         {
186
0
        E Tw, Ty, Tt, Tx, Tr;
187
0
        Tw = FNMS(KP1_902113032, Tv, KP1_175570504 * Tu);
188
0
        Ty = FMA(KP1_902113032, Tu, KP1_175570504 * Tv);
189
0
        Tr = FNMS(KP500000000, Ta, T3);
190
0
        Tt = Tr - Ts;
191
0
        Tx = Ts + Tr;
192
0
        R1[WS(rs, 3)] = Tt - Tw;
193
0
        R1[WS(rs, 4)] = Tx + Ty;
194
0
        R1[WS(rs, 1)] = Tt + Tw;
195
0
        R1[0] = Tx - Ty;
196
0
         }
197
0
    }
198
0
     }
199
0
}
200
201
static const kr2c_desc desc = { 10, "r2cb_10", { 26, 6, 8, 0 }, &GENUS };
202
203
1
void X(codelet_r2cb_10) (planner *p) { X(kr2c_register) (p, r2cb_10, &desc);
204
1
}
205
206
#endif