/src/fftw3/rdft/scalar/r2cb/r2cb_11.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Sun Sep 8 06:42:07 UTC 2024 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 11 -name r2cb_11 -include rdft/scalar/r2cb.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 60 FP additions, 56 FP multiplications, |
32 | | * (or, 4 additions, 0 multiplications, 56 fused multiply/add), |
33 | | * 44 stack variables, 11 constants, and 22 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/r2cb.h" |
36 | | |
37 | | static void r2cb_11(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
38 | | { |
39 | | DK(KP1_979642883, +1.979642883761865464752184075553437574753038744); |
40 | | DK(KP918985947, +0.918985947228994779780736114132655398124909697); |
41 | | DK(KP830830026, +0.830830026003772851058548298459246407048009821); |
42 | | DK(KP1_918985947, +1.918985947228994779780736114132655398124909697); |
43 | | DK(KP876768831, +0.876768831002589333891339807079336796764054852); |
44 | | DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); |
45 | | DK(KP778434453, +0.778434453334651800608337670740821884709317477); |
46 | | DK(KP634356270, +0.634356270682424498893150776899916060542806975); |
47 | | DK(KP342584725, +0.342584725681637509502641509861112333758894680); |
48 | | DK(KP715370323, +0.715370323453429719112414662767260662417897278); |
49 | | DK(KP521108558, +0.521108558113202722944698153526659300680427422); |
50 | | { |
51 | | INT i; |
52 | | for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(44, rs), MAKE_VOLATILE_STRIDE(44, csr), MAKE_VOLATILE_STRIDE(44, csi)) { |
53 | | E T1, Td, Th, Te, Tf, Tg, Tj, TT, Ts, TB, TK, T2, T6, T3, T4; |
54 | | E T5, Ta, To, TP, TG, Tx, T7; |
55 | | T1 = Cr[0]; |
56 | | { |
57 | | E Ti, TS, Tr, TA, TJ; |
58 | | Td = Ci[WS(csi, 3)]; |
59 | | Th = Ci[WS(csi, 5)]; |
60 | | Te = Ci[WS(csi, 2)]; |
61 | | Tf = Ci[WS(csi, 4)]; |
62 | | Tg = Ci[WS(csi, 1)]; |
63 | | Ti = FMA(KP521108558, Th, Tg); |
64 | | TS = FMS(KP521108558, Tg, Te); |
65 | | Tr = FMA(KP521108558, Td, Th); |
66 | | TA = FNMS(KP521108558, Te, Tf); |
67 | | TJ = FMA(KP521108558, Tf, Td); |
68 | | Tj = FMA(KP715370323, Ti, Tf); |
69 | | TT = FMA(KP715370323, TS, Td); |
70 | | Ts = FNMS(KP715370323, Tr, Te); |
71 | | TB = FMA(KP715370323, TA, Th); |
72 | | TK = FMA(KP715370323, TJ, Tg); |
73 | | } |
74 | | { |
75 | | E T8, TN, Tm, Tv, TE; |
76 | | T2 = Cr[WS(csr, 1)]; |
77 | | T6 = Cr[WS(csr, 5)]; |
78 | | T3 = Cr[WS(csr, 2)]; |
79 | | T4 = Cr[WS(csr, 3)]; |
80 | | T5 = Cr[WS(csr, 4)]; |
81 | | T8 = FNMS(KP342584725, T4, T3); |
82 | | TN = FNMS(KP342584725, T6, T5); |
83 | | Tm = FNMS(KP342584725, T5, T2); |
84 | | Tv = FNMS(KP342584725, T2, T4); |
85 | | TE = FNMS(KP342584725, T3, T6); |
86 | | { |
87 | | E T9, Tn, TO, TF, Tw; |
88 | | T9 = FNMS(KP634356270, T8, T5); |
89 | | Ta = FNMS(KP778434453, T9, T2); |
90 | | Tn = FNMS(KP634356270, Tm, T3); |
91 | | To = FNMS(KP778434453, Tn, T6); |
92 | | TO = FNMS(KP634356270, TN, T4); |
93 | | TP = FNMS(KP778434453, TO, T3); |
94 | | TF = FNMS(KP634356270, TE, T2); |
95 | | TG = FNMS(KP778434453, TF, T4); |
96 | | Tw = FNMS(KP634356270, Tv, T6); |
97 | | Tx = FNMS(KP778434453, Tw, T5); |
98 | | T7 = T2 + T3 + T4 + T5 + T6; |
99 | | } |
100 | | } |
101 | | R0[0] = FMA(KP2_000000000, T7, T1); |
102 | | { |
103 | | E Tc, Tl, Tb, Tk; |
104 | | Tb = FNMS(KP876768831, Ta, T6); |
105 | | Tc = FNMS(KP1_918985947, Tb, T1); |
106 | | Tk = FMA(KP830830026, Tj, Te); |
107 | | Tl = FMA(KP918985947, Tk, Td); |
108 | | R1[0] = FNMS(KP1_979642883, Tl, Tc); |
109 | | R0[WS(rs, 5)] = FMA(KP1_979642883, Tl, Tc); |
110 | | } |
111 | | { |
112 | | E TR, TV, TQ, TU; |
113 | | TQ = FNMS(KP876768831, TP, T2); |
114 | | TR = FNMS(KP1_918985947, TQ, T1); |
115 | | TU = FNMS(KP830830026, TT, Tf); |
116 | | TV = FNMS(KP918985947, TU, Th); |
117 | | R1[WS(rs, 2)] = FNMS(KP1_979642883, TV, TR); |
118 | | R0[WS(rs, 3)] = FMA(KP1_979642883, TV, TR); |
119 | | } |
120 | | { |
121 | | E TI, TM, TH, TL; |
122 | | TH = FNMS(KP876768831, TG, T5); |
123 | | TI = FNMS(KP1_918985947, TH, T1); |
124 | | TL = FNMS(KP830830026, TK, Th); |
125 | | TM = FMA(KP918985947, TL, Te); |
126 | | R1[WS(rs, 3)] = FNMS(KP1_979642883, TM, TI); |
127 | | R0[WS(rs, 2)] = FMA(KP1_979642883, TM, TI); |
128 | | } |
129 | | { |
130 | | E Tz, TD, Ty, TC; |
131 | | Ty = FNMS(KP876768831, Tx, T3); |
132 | | Tz = FNMS(KP1_918985947, Ty, T1); |
133 | | TC = FNMS(KP830830026, TB, Td); |
134 | | TD = FNMS(KP918985947, TC, Tg); |
135 | | R1[WS(rs, 1)] = FNMS(KP1_979642883, TD, Tz); |
136 | | R0[WS(rs, 4)] = FMA(KP1_979642883, TD, Tz); |
137 | | } |
138 | | { |
139 | | E Tq, Tu, Tp, Tt; |
140 | | Tp = FNMS(KP876768831, To, T4); |
141 | | Tq = FNMS(KP1_918985947, Tp, T1); |
142 | | Tt = FMA(KP830830026, Ts, Tg); |
143 | | Tu = FNMS(KP918985947, Tt, Tf); |
144 | | R1[WS(rs, 4)] = FNMS(KP1_979642883, Tu, Tq); |
145 | | R0[WS(rs, 1)] = FMA(KP1_979642883, Tu, Tq); |
146 | | } |
147 | | } |
148 | | } |
149 | | } |
150 | | |
151 | | static const kr2c_desc desc = { 11, "r2cb_11", { 4, 0, 56, 0 }, &GENUS }; |
152 | | |
153 | | void X(codelet_r2cb_11) (planner *p) { X(kr2c_register) (p, r2cb_11, &desc); |
154 | | } |
155 | | |
156 | | #else |
157 | | |
158 | | /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 11 -name r2cb_11 -include rdft/scalar/r2cb.h */ |
159 | | |
160 | | /* |
161 | | * This function contains 60 FP additions, 51 FP multiplications, |
162 | | * (or, 19 additions, 10 multiplications, 41 fused multiply/add), |
163 | | * 33 stack variables, 11 constants, and 22 memory accesses |
164 | | */ |
165 | | #include "rdft/scalar/r2cb.h" |
166 | | |
167 | | static void r2cb_11(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
168 | 0 | { |
169 | 0 | DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); |
170 | 0 | DK(KP1_918985947, +1.918985947228994779780736114132655398124909697); |
171 | 0 | DK(KP1_309721467, +1.309721467890570128113850144932587106367582399); |
172 | 0 | DK(KP284629676, +0.284629676546570280887585337232739337582102722); |
173 | 0 | DK(KP830830026, +0.830830026003772851058548298459246407048009821); |
174 | 0 | DK(KP1_682507065, +1.682507065662362337723623297838735435026584997); |
175 | 0 | DK(KP563465113, +0.563465113682859395422835830693233798071555798); |
176 | 0 | DK(KP1_511499148, +1.511499148708516567548071687944688840359434890); |
177 | 0 | DK(KP1_979642883, +1.979642883761865464752184075553437574753038744); |
178 | 0 | DK(KP1_819263990, +1.819263990709036742823430766158056920120482102); |
179 | 0 | DK(KP1_081281634, +1.081281634911195164215271908637383390863541216); |
180 | 0 | { |
181 | 0 | INT i; |
182 | 0 | for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(44, rs), MAKE_VOLATILE_STRIDE(44, csr), MAKE_VOLATILE_STRIDE(44, csi)) { |
183 | 0 | E Td, Tl, Tf, Th, Tj, T1, T2, T6, T5, T4, T3, T7, Tk, Te, Tg; |
184 | 0 | E Ti; |
185 | 0 | { |
186 | 0 | E T8, Tc, T9, Ta, Tb; |
187 | 0 | T8 = Ci[WS(csi, 2)]; |
188 | 0 | Tc = Ci[WS(csi, 1)]; |
189 | 0 | T9 = Ci[WS(csi, 4)]; |
190 | 0 | Ta = Ci[WS(csi, 5)]; |
191 | 0 | Tb = Ci[WS(csi, 3)]; |
192 | 0 | Td = FMA(KP1_081281634, T8, KP1_819263990 * T9) + FNMA(KP1_979642883, Ta, KP1_511499148 * Tb) - (KP563465113 * Tc); |
193 | 0 | Tl = FMA(KP1_979642883, T8, KP1_819263990 * Ta) + FNMA(KP563465113, T9, KP1_081281634 * Tb) - (KP1_511499148 * Tc); |
194 | 0 | Tf = FMA(KP563465113, T8, KP1_819263990 * Tb) + FNMA(KP1_511499148, Ta, KP1_081281634 * T9) - (KP1_979642883 * Tc); |
195 | 0 | Th = FMA(KP1_081281634, Tc, KP1_819263990 * T8) + FMA(KP1_979642883, Tb, KP1_511499148 * T9) + (KP563465113 * Ta); |
196 | 0 | Tj = FMA(KP563465113, Tb, KP1_979642883 * T9) + FNMS(KP1_511499148, T8, KP1_081281634 * Ta) - (KP1_819263990 * Tc); |
197 | 0 | } |
198 | 0 | T1 = Cr[0]; |
199 | 0 | T2 = Cr[WS(csr, 1)]; |
200 | 0 | T6 = Cr[WS(csr, 5)]; |
201 | 0 | T5 = Cr[WS(csr, 4)]; |
202 | 0 | T4 = Cr[WS(csr, 3)]; |
203 | 0 | T3 = Cr[WS(csr, 2)]; |
204 | 0 | T7 = FMA(KP1_682507065, T3, T1) + FNMS(KP284629676, T6, KP830830026 * T5) + FNMA(KP1_309721467, T4, KP1_918985947 * T2); |
205 | 0 | Tk = FMA(KP1_682507065, T4, T1) + FNMS(KP1_918985947, T5, KP830830026 * T6) + FNMA(KP284629676, T3, KP1_309721467 * T2); |
206 | 0 | Te = FMA(KP830830026, T4, T1) + FNMS(KP1_309721467, T6, KP1_682507065 * T5) + FNMA(KP1_918985947, T3, KP284629676 * T2); |
207 | 0 | Tg = FMA(KP1_682507065, T2, T1) + FNMS(KP1_918985947, T6, KP830830026 * T3) + FNMA(KP1_309721467, T5, KP284629676 * T4); |
208 | 0 | Ti = FMA(KP830830026, T2, T1) + FNMS(KP284629676, T5, KP1_682507065 * T6) + FNMA(KP1_918985947, T4, KP1_309721467 * T3); |
209 | 0 | R0[WS(rs, 3)] = T7 - Td; |
210 | 0 | R0[WS(rs, 4)] = Te - Tf; |
211 | 0 | R0[WS(rs, 2)] = Tk + Tl; |
212 | 0 | R1[WS(rs, 2)] = T7 + Td; |
213 | 0 | R1[WS(rs, 3)] = Tk - Tl; |
214 | 0 | R0[WS(rs, 1)] = Ti + Tj; |
215 | 0 | R1[WS(rs, 1)] = Te + Tf; |
216 | 0 | R0[WS(rs, 5)] = Tg + Th; |
217 | 0 | R1[0] = Tg - Th; |
218 | 0 | R1[WS(rs, 4)] = Ti - Tj; |
219 | 0 | R0[0] = FMA(KP2_000000000, T2 + T3 + T4 + T5 + T6, T1); |
220 | 0 | } |
221 | 0 | } |
222 | 0 | } |
223 | | |
224 | | static const kr2c_desc desc = { 11, "r2cb_11", { 19, 10, 41, 0 }, &GENUS }; |
225 | | |
226 | 1 | void X(codelet_r2cb_11) (planner *p) { X(kr2c_register) (p, r2cb_11, &desc); |
227 | 1 | } |
228 | | |
229 | | #endif |