Coverage Report

Created: 2024-09-08 06:43

/src/fftw3/rdft/scalar/r2cb/r2cb_11.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Sun Sep  8 06:42:07 UTC 2024 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 11 -name r2cb_11 -include rdft/scalar/r2cb.h */
29
30
/*
31
 * This function contains 60 FP additions, 56 FP multiplications,
32
 * (or, 4 additions, 0 multiplications, 56 fused multiply/add),
33
 * 44 stack variables, 11 constants, and 22 memory accesses
34
 */
35
#include "rdft/scalar/r2cb.h"
36
37
static void r2cb_11(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38
{
39
     DK(KP1_979642883, +1.979642883761865464752184075553437574753038744);
40
     DK(KP918985947, +0.918985947228994779780736114132655398124909697);
41
     DK(KP830830026, +0.830830026003772851058548298459246407048009821);
42
     DK(KP1_918985947, +1.918985947228994779780736114132655398124909697);
43
     DK(KP876768831, +0.876768831002589333891339807079336796764054852);
44
     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
45
     DK(KP778434453, +0.778434453334651800608337670740821884709317477);
46
     DK(KP634356270, +0.634356270682424498893150776899916060542806975);
47
     DK(KP342584725, +0.342584725681637509502641509861112333758894680);
48
     DK(KP715370323, +0.715370323453429719112414662767260662417897278);
49
     DK(KP521108558, +0.521108558113202722944698153526659300680427422);
50
     {
51
    INT i;
52
    for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(44, rs), MAKE_VOLATILE_STRIDE(44, csr), MAKE_VOLATILE_STRIDE(44, csi)) {
53
         E T1, Td, Th, Te, Tf, Tg, Tj, TT, Ts, TB, TK, T2, T6, T3, T4;
54
         E T5, Ta, To, TP, TG, Tx, T7;
55
         T1 = Cr[0];
56
         {
57
        E Ti, TS, Tr, TA, TJ;
58
        Td = Ci[WS(csi, 3)];
59
        Th = Ci[WS(csi, 5)];
60
        Te = Ci[WS(csi, 2)];
61
        Tf = Ci[WS(csi, 4)];
62
        Tg = Ci[WS(csi, 1)];
63
        Ti = FMA(KP521108558, Th, Tg);
64
        TS = FMS(KP521108558, Tg, Te);
65
        Tr = FMA(KP521108558, Td, Th);
66
        TA = FNMS(KP521108558, Te, Tf);
67
        TJ = FMA(KP521108558, Tf, Td);
68
        Tj = FMA(KP715370323, Ti, Tf);
69
        TT = FMA(KP715370323, TS, Td);
70
        Ts = FNMS(KP715370323, Tr, Te);
71
        TB = FMA(KP715370323, TA, Th);
72
        TK = FMA(KP715370323, TJ, Tg);
73
         }
74
         {
75
        E T8, TN, Tm, Tv, TE;
76
        T2 = Cr[WS(csr, 1)];
77
        T6 = Cr[WS(csr, 5)];
78
        T3 = Cr[WS(csr, 2)];
79
        T4 = Cr[WS(csr, 3)];
80
        T5 = Cr[WS(csr, 4)];
81
        T8 = FNMS(KP342584725, T4, T3);
82
        TN = FNMS(KP342584725, T6, T5);
83
        Tm = FNMS(KP342584725, T5, T2);
84
        Tv = FNMS(KP342584725, T2, T4);
85
        TE = FNMS(KP342584725, T3, T6);
86
        {
87
       E T9, Tn, TO, TF, Tw;
88
       T9 = FNMS(KP634356270, T8, T5);
89
       Ta = FNMS(KP778434453, T9, T2);
90
       Tn = FNMS(KP634356270, Tm, T3);
91
       To = FNMS(KP778434453, Tn, T6);
92
       TO = FNMS(KP634356270, TN, T4);
93
       TP = FNMS(KP778434453, TO, T3);
94
       TF = FNMS(KP634356270, TE, T2);
95
       TG = FNMS(KP778434453, TF, T4);
96
       Tw = FNMS(KP634356270, Tv, T6);
97
       Tx = FNMS(KP778434453, Tw, T5);
98
       T7 = T2 + T3 + T4 + T5 + T6;
99
        }
100
         }
101
         R0[0] = FMA(KP2_000000000, T7, T1);
102
         {
103
        E Tc, Tl, Tb, Tk;
104
        Tb = FNMS(KP876768831, Ta, T6);
105
        Tc = FNMS(KP1_918985947, Tb, T1);
106
        Tk = FMA(KP830830026, Tj, Te);
107
        Tl = FMA(KP918985947, Tk, Td);
108
        R1[0] = FNMS(KP1_979642883, Tl, Tc);
109
        R0[WS(rs, 5)] = FMA(KP1_979642883, Tl, Tc);
110
         }
111
         {
112
        E TR, TV, TQ, TU;
113
        TQ = FNMS(KP876768831, TP, T2);
114
        TR = FNMS(KP1_918985947, TQ, T1);
115
        TU = FNMS(KP830830026, TT, Tf);
116
        TV = FNMS(KP918985947, TU, Th);
117
        R1[WS(rs, 2)] = FNMS(KP1_979642883, TV, TR);
118
        R0[WS(rs, 3)] = FMA(KP1_979642883, TV, TR);
119
         }
120
         {
121
        E TI, TM, TH, TL;
122
        TH = FNMS(KP876768831, TG, T5);
123
        TI = FNMS(KP1_918985947, TH, T1);
124
        TL = FNMS(KP830830026, TK, Th);
125
        TM = FMA(KP918985947, TL, Te);
126
        R1[WS(rs, 3)] = FNMS(KP1_979642883, TM, TI);
127
        R0[WS(rs, 2)] = FMA(KP1_979642883, TM, TI);
128
         }
129
         {
130
        E Tz, TD, Ty, TC;
131
        Ty = FNMS(KP876768831, Tx, T3);
132
        Tz = FNMS(KP1_918985947, Ty, T1);
133
        TC = FNMS(KP830830026, TB, Td);
134
        TD = FNMS(KP918985947, TC, Tg);
135
        R1[WS(rs, 1)] = FNMS(KP1_979642883, TD, Tz);
136
        R0[WS(rs, 4)] = FMA(KP1_979642883, TD, Tz);
137
         }
138
         {
139
        E Tq, Tu, Tp, Tt;
140
        Tp = FNMS(KP876768831, To, T4);
141
        Tq = FNMS(KP1_918985947, Tp, T1);
142
        Tt = FMA(KP830830026, Ts, Tg);
143
        Tu = FNMS(KP918985947, Tt, Tf);
144
        R1[WS(rs, 4)] = FNMS(KP1_979642883, Tu, Tq);
145
        R0[WS(rs, 1)] = FMA(KP1_979642883, Tu, Tq);
146
         }
147
    }
148
     }
149
}
150
151
static const kr2c_desc desc = { 11, "r2cb_11", { 4, 0, 56, 0 }, &GENUS };
152
153
void X(codelet_r2cb_11) (planner *p) { X(kr2c_register) (p, r2cb_11, &desc);
154
}
155
156
#else
157
158
/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 11 -name r2cb_11 -include rdft/scalar/r2cb.h */
159
160
/*
161
 * This function contains 60 FP additions, 51 FP multiplications,
162
 * (or, 19 additions, 10 multiplications, 41 fused multiply/add),
163
 * 33 stack variables, 11 constants, and 22 memory accesses
164
 */
165
#include "rdft/scalar/r2cb.h"
166
167
static void r2cb_11(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
168
0
{
169
0
     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
170
0
     DK(KP1_918985947, +1.918985947228994779780736114132655398124909697);
171
0
     DK(KP1_309721467, +1.309721467890570128113850144932587106367582399);
172
0
     DK(KP284629676, +0.284629676546570280887585337232739337582102722);
173
0
     DK(KP830830026, +0.830830026003772851058548298459246407048009821);
174
0
     DK(KP1_682507065, +1.682507065662362337723623297838735435026584997);
175
0
     DK(KP563465113, +0.563465113682859395422835830693233798071555798);
176
0
     DK(KP1_511499148, +1.511499148708516567548071687944688840359434890);
177
0
     DK(KP1_979642883, +1.979642883761865464752184075553437574753038744);
178
0
     DK(KP1_819263990, +1.819263990709036742823430766158056920120482102);
179
0
     DK(KP1_081281634, +1.081281634911195164215271908637383390863541216);
180
0
     {
181
0
    INT i;
182
0
    for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(44, rs), MAKE_VOLATILE_STRIDE(44, csr), MAKE_VOLATILE_STRIDE(44, csi)) {
183
0
         E Td, Tl, Tf, Th, Tj, T1, T2, T6, T5, T4, T3, T7, Tk, Te, Tg;
184
0
         E Ti;
185
0
         {
186
0
        E T8, Tc, T9, Ta, Tb;
187
0
        T8 = Ci[WS(csi, 2)];
188
0
        Tc = Ci[WS(csi, 1)];
189
0
        T9 = Ci[WS(csi, 4)];
190
0
        Ta = Ci[WS(csi, 5)];
191
0
        Tb = Ci[WS(csi, 3)];
192
0
        Td = FMA(KP1_081281634, T8, KP1_819263990 * T9) + FNMA(KP1_979642883, Ta, KP1_511499148 * Tb) - (KP563465113 * Tc);
193
0
        Tl = FMA(KP1_979642883, T8, KP1_819263990 * Ta) + FNMA(KP563465113, T9, KP1_081281634 * Tb) - (KP1_511499148 * Tc);
194
0
        Tf = FMA(KP563465113, T8, KP1_819263990 * Tb) + FNMA(KP1_511499148, Ta, KP1_081281634 * T9) - (KP1_979642883 * Tc);
195
0
        Th = FMA(KP1_081281634, Tc, KP1_819263990 * T8) + FMA(KP1_979642883, Tb, KP1_511499148 * T9) + (KP563465113 * Ta);
196
0
        Tj = FMA(KP563465113, Tb, KP1_979642883 * T9) + FNMS(KP1_511499148, T8, KP1_081281634 * Ta) - (KP1_819263990 * Tc);
197
0
         }
198
0
         T1 = Cr[0];
199
0
         T2 = Cr[WS(csr, 1)];
200
0
         T6 = Cr[WS(csr, 5)];
201
0
         T5 = Cr[WS(csr, 4)];
202
0
         T4 = Cr[WS(csr, 3)];
203
0
         T3 = Cr[WS(csr, 2)];
204
0
         T7 = FMA(KP1_682507065, T3, T1) + FNMS(KP284629676, T6, KP830830026 * T5) + FNMA(KP1_309721467, T4, KP1_918985947 * T2);
205
0
         Tk = FMA(KP1_682507065, T4, T1) + FNMS(KP1_918985947, T5, KP830830026 * T6) + FNMA(KP284629676, T3, KP1_309721467 * T2);
206
0
         Te = FMA(KP830830026, T4, T1) + FNMS(KP1_309721467, T6, KP1_682507065 * T5) + FNMA(KP1_918985947, T3, KP284629676 * T2);
207
0
         Tg = FMA(KP1_682507065, T2, T1) + FNMS(KP1_918985947, T6, KP830830026 * T3) + FNMA(KP1_309721467, T5, KP284629676 * T4);
208
0
         Ti = FMA(KP830830026, T2, T1) + FNMS(KP284629676, T5, KP1_682507065 * T6) + FNMA(KP1_918985947, T4, KP1_309721467 * T3);
209
0
         R0[WS(rs, 3)] = T7 - Td;
210
0
         R0[WS(rs, 4)] = Te - Tf;
211
0
         R0[WS(rs, 2)] = Tk + Tl;
212
0
         R1[WS(rs, 2)] = T7 + Td;
213
0
         R1[WS(rs, 3)] = Tk - Tl;
214
0
         R0[WS(rs, 1)] = Ti + Tj;
215
0
         R1[WS(rs, 1)] = Te + Tf;
216
0
         R0[WS(rs, 5)] = Tg + Th;
217
0
         R1[0] = Tg - Th;
218
0
         R1[WS(rs, 4)] = Ti - Tj;
219
0
         R0[0] = FMA(KP2_000000000, T2 + T3 + T4 + T5 + T6, T1);
220
0
    }
221
0
     }
222
0
}
223
224
static const kr2c_desc desc = { 11, "r2cb_11", { 19, 10, 41, 0 }, &GENUS };
225
226
1
void X(codelet_r2cb_11) (planner *p) { X(kr2c_register) (p, r2cb_11, &desc);
227
1
}
228
229
#endif