Coverage Report

Created: 2024-09-08 06:43

/src/fftw3/rdft/scalar/r2cf/hc2cf2_16.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Sun Sep  8 06:41:47 UTC 2024 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 16 -dit -name hc2cf2_16 -include rdft/scalar/hc2cf.h */
29
30
/*
31
 * This function contains 196 FP additions, 134 FP multiplications,
32
 * (or, 104 additions, 42 multiplications, 92 fused multiply/add),
33
 * 90 stack variables, 3 constants, and 64 memory accesses
34
 */
35
#include "rdft/scalar/hc2cf.h"
36
37
static void hc2cf2_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
40
     DK(KP414213562, +0.414213562373095048801688724209698078569671875);
41
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
42
     {
43
    INT m;
44
    for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(64, rs)) {
45
         E T2, Tf, TM, TO, T3, T6, T5, Th, Tz, Ti, T7, TZ, TT, Tq, TW;
46
         E Tb, Tu, TP, TI, TF, TC, T1z, T1O, T1D, T1L, Tm, T1f, T1p, T1j, T1m;
47
         {
48
        E TN, TS, T4, Tp, Ta, Tt, Tl, Tg;
49
        T2 = W[0];
50
        Tf = W[2];
51
        Tg = T2 * Tf;
52
        TM = W[6];
53
        TN = T2 * TM;
54
        TO = W[7];
55
        TS = T2 * TO;
56
        T3 = W[4];
57
        T4 = T2 * T3;
58
        Tp = Tf * T3;
59
        T6 = W[5];
60
        Ta = T2 * T6;
61
        Tt = Tf * T6;
62
        T5 = W[1];
63
        Th = W[3];
64
        Tl = T2 * Th;
65
        Tz = FMA(T5, Th, Tg);
66
        Ti = FNMS(T5, Th, Tg);
67
        T7 = FMA(T5, T6, T4);
68
        TZ = FNMS(Th, T3, Tt);
69
        TT = FNMS(T5, TM, TS);
70
        Tq = FNMS(Th, T6, Tp);
71
        TW = FMA(Th, T6, Tp);
72
        Tb = FNMS(T5, T3, Ta);
73
        Tu = FMA(Th, T3, Tt);
74
        TP = FMA(T5, TO, TN);
75
        TI = FMA(T5, T3, Ta);
76
        TF = FNMS(T5, T6, T4);
77
        {
78
       E T1y, T1C, T1e, T1i;
79
       T1y = Tz * T3;
80
       T1C = Tz * T6;
81
       TC = FNMS(T5, Tf, Tl);
82
       T1z = FMA(TC, T6, T1y);
83
       T1O = FMA(TC, T3, T1C);
84
       T1D = FNMS(TC, T3, T1C);
85
       T1L = FNMS(TC, T6, T1y);
86
       T1e = Ti * T3;
87
       T1i = Ti * T6;
88
       Tm = FMA(T5, Tf, Tl);
89
       T1f = FMA(Tm, T6, T1e);
90
       T1p = FMA(Tm, T3, T1i);
91
       T1j = FNMS(Tm, T3, T1i);
92
       T1m = FNMS(Tm, T6, T1e);
93
        }
94
         }
95
         {
96
        E Te, T1U, T3A, T3L, T1G, T2D, T2B, T3h, T1R, T2w, T2I, T3i, Tx, T3M, T1Z;
97
        E T3w, TL, T26, T25, T37, T1d, T2o, T2l, T3c, T1s, T2m, T2t, T3d, T12, T28;
98
        E T2d, T38;
99
        {
100
       E T1, T3z, T8, T9, Tc, T3x, Td, T3y;
101
       T1 = Rp[0];
102
       T3z = Rm[0];
103
       T8 = Rp[WS(rs, 4)];
104
       T9 = T7 * T8;
105
       Tc = Rm[WS(rs, 4)];
106
       T3x = T7 * Tc;
107
       Td = FMA(Tb, Tc, T9);
108
       Te = T1 + Td;
109
       T1U = T1 - Td;
110
       T3y = FNMS(Tb, T8, T3x);
111
       T3A = T3y + T3z;
112
       T3L = T3z - T3y;
113
        }
114
        {
115
       E T1u, T1v, T1w, T2x, T1A, T1B, T1E, T2z;
116
       T1u = Ip[WS(rs, 7)];
117
       T1v = TM * T1u;
118
       T1w = Im[WS(rs, 7)];
119
       T2x = TM * T1w;
120
       T1A = Ip[WS(rs, 3)];
121
       T1B = T1z * T1A;
122
       T1E = Im[WS(rs, 3)];
123
       T2z = T1z * T1E;
124
       {
125
            E T1x, T1F, T2y, T2A;
126
            T1x = FMA(TO, T1w, T1v);
127
            T1F = FMA(T1D, T1E, T1B);
128
            T1G = T1x + T1F;
129
            T2D = T1x - T1F;
130
            T2y = FNMS(TO, T1u, T2x);
131
            T2A = FNMS(T1D, T1A, T2z);
132
            T2B = T2y - T2A;
133
            T3h = T2y + T2A;
134
       }
135
        }
136
        {
137
       E T1H, T1I, T1J, T2E, T1M, T1N, T1P, T2G;
138
       T1H = Ip[WS(rs, 1)];
139
       T1I = Tf * T1H;
140
       T1J = Im[WS(rs, 1)];
141
       T2E = Tf * T1J;
142
       T1M = Ip[WS(rs, 5)];
143
       T1N = T1L * T1M;
144
       T1P = Im[WS(rs, 5)];
145
       T2G = T1L * T1P;
146
       {
147
            E T1K, T1Q, T2F, T2H;
148
            T1K = FMA(Th, T1J, T1I);
149
            T1Q = FMA(T1O, T1P, T1N);
150
            T1R = T1K + T1Q;
151
            T2w = T1Q - T1K;
152
            T2F = FNMS(Th, T1H, T2E);
153
            T2H = FNMS(T1O, T1M, T2G);
154
            T2I = T2F - T2H;
155
            T3i = T2F + T2H;
156
       }
157
        }
158
        {
159
       E Tj, Tk, Tn, T1V, Tr, Ts, Tv, T1X;
160
       Tj = Rp[WS(rs, 2)];
161
       Tk = Ti * Tj;
162
       Tn = Rm[WS(rs, 2)];
163
       T1V = Ti * Tn;
164
       Tr = Rp[WS(rs, 6)];
165
       Ts = Tq * Tr;
166
       Tv = Rm[WS(rs, 6)];
167
       T1X = Tq * Tv;
168
       {
169
            E To, Tw, T1W, T1Y;
170
            To = FMA(Tm, Tn, Tk);
171
            Tw = FMA(Tu, Tv, Ts);
172
            Tx = To + Tw;
173
            T3M = To - Tw;
174
            T1W = FNMS(Tm, Tj, T1V);
175
            T1Y = FNMS(Tu, Tr, T1X);
176
            T1Z = T1W - T1Y;
177
            T3w = T1W + T1Y;
178
       }
179
        }
180
        {
181
       E TA, TB, TD, T21, TG, TH, TJ, T23;
182
       TA = Rp[WS(rs, 1)];
183
       TB = Tz * TA;
184
       TD = Rm[WS(rs, 1)];
185
       T21 = Tz * TD;
186
       TG = Rp[WS(rs, 5)];
187
       TH = TF * TG;
188
       TJ = Rm[WS(rs, 5)];
189
       T23 = TF * TJ;
190
       {
191
            E TE, TK, T22, T24;
192
            TE = FMA(TC, TD, TB);
193
            TK = FMA(TI, TJ, TH);
194
            TL = TE + TK;
195
            T26 = TE - TK;
196
            T22 = FNMS(TC, TA, T21);
197
            T24 = FNMS(TI, TG, T23);
198
            T25 = T22 - T24;
199
            T37 = T22 + T24;
200
       }
201
        }
202
        {
203
       E T15, T16, T17, T2h, T19, T1a, T1b, T2j;
204
       T15 = Ip[0];
205
       T16 = T2 * T15;
206
       T17 = Im[0];
207
       T2h = T2 * T17;
208
       T19 = Ip[WS(rs, 4)];
209
       T1a = T3 * T19;
210
       T1b = Im[WS(rs, 4)];
211
       T2j = T3 * T1b;
212
       {
213
            E T18, T1c, T2i, T2k;
214
            T18 = FMA(T5, T17, T16);
215
            T1c = FMA(T6, T1b, T1a);
216
            T1d = T18 + T1c;
217
            T2o = T18 - T1c;
218
            T2i = FNMS(T5, T15, T2h);
219
            T2k = FNMS(T6, T19, T2j);
220
            T2l = T2i - T2k;
221
            T3c = T2i + T2k;
222
       }
223
        }
224
        {
225
       E T1g, T1h, T1k, T2p, T1n, T1o, T1q, T2r;
226
       T1g = Ip[WS(rs, 2)];
227
       T1h = T1f * T1g;
228
       T1k = Im[WS(rs, 2)];
229
       T2p = T1f * T1k;
230
       T1n = Ip[WS(rs, 6)];
231
       T1o = T1m * T1n;
232
       T1q = Im[WS(rs, 6)];
233
       T2r = T1m * T1q;
234
       {
235
            E T1l, T1r, T2q, T2s;
236
            T1l = FMA(T1j, T1k, T1h);
237
            T1r = FMA(T1p, T1q, T1o);
238
            T1s = T1l + T1r;
239
            T2m = T1l - T1r;
240
            T2q = FNMS(T1j, T1g, T2p);
241
            T2s = FNMS(T1p, T1n, T2r);
242
            T2t = T2q - T2s;
243
            T3d = T2q + T2s;
244
       }
245
        }
246
        {
247
       E TQ, TR, TU, T29, TX, TY, T10, T2b;
248
       TQ = Rp[WS(rs, 7)];
249
       TR = TP * TQ;
250
       TU = Rm[WS(rs, 7)];
251
       T29 = TP * TU;
252
       TX = Rp[WS(rs, 3)];
253
       TY = TW * TX;
254
       T10 = Rm[WS(rs, 3)];
255
       T2b = TW * T10;
256
       {
257
            E TV, T11, T2a, T2c;
258
            TV = FMA(TT, TU, TR);
259
            T11 = FMA(TZ, T10, TY);
260
            T12 = TV + T11;
261
            T28 = TV - T11;
262
            T2a = FNMS(TT, TQ, T29);
263
            T2c = FNMS(TZ, TX, T2b);
264
            T2d = T2a - T2c;
265
            T38 = T2a + T2c;
266
       }
267
        }
268
        {
269
       E T14, T3q, T3C, T3E, T1T, T3D, T3t, T3u;
270
       {
271
            E Ty, T13, T3v, T3B;
272
            Ty = Te + Tx;
273
            T13 = TL + T12;
274
            T14 = Ty + T13;
275
            T3q = Ty - T13;
276
            T3v = T37 + T38;
277
            T3B = T3w + T3A;
278
            T3C = T3v + T3B;
279
            T3E = T3B - T3v;
280
       }
281
       {
282
            E T1t, T1S, T3r, T3s;
283
            T1t = T1d + T1s;
284
            T1S = T1G + T1R;
285
            T1T = T1t + T1S;
286
            T3D = T1S - T1t;
287
            T3r = T3c + T3d;
288
            T3s = T3h + T3i;
289
            T3t = T3r - T3s;
290
            T3u = T3r + T3s;
291
       }
292
       Rm[WS(rs, 7)] = T14 - T1T;
293
       Im[WS(rs, 7)] = T3u - T3C;
294
       Rp[0] = T14 + T1T;
295
       Ip[0] = T3u + T3C;
296
       Rm[WS(rs, 3)] = T3q - T3t;
297
       Im[WS(rs, 3)] = T3D - T3E;
298
       Rp[WS(rs, 4)] = T3q + T3t;
299
       Ip[WS(rs, 4)] = T3D + T3E;
300
        }
301
        {
302
       E T3a, T3m, T3H, T3J, T3f, T3n, T3k, T3o;
303
       {
304
            E T36, T39, T3F, T3G;
305
            T36 = Te - Tx;
306
            T39 = T37 - T38;
307
            T3a = T36 + T39;
308
            T3m = T36 - T39;
309
            T3F = T12 - TL;
310
            T3G = T3A - T3w;
311
            T3H = T3F + T3G;
312
            T3J = T3G - T3F;
313
       }
314
       {
315
            E T3b, T3e, T3g, T3j;
316
            T3b = T1d - T1s;
317
            T3e = T3c - T3d;
318
            T3f = T3b + T3e;
319
            T3n = T3e - T3b;
320
            T3g = T1G - T1R;
321
            T3j = T3h - T3i;
322
            T3k = T3g - T3j;
323
            T3o = T3g + T3j;
324
       }
325
       {
326
            E T3l, T3I, T3p, T3K;
327
            T3l = T3f + T3k;
328
            Rm[WS(rs, 5)] = FNMS(KP707106781, T3l, T3a);
329
            Rp[WS(rs, 2)] = FMA(KP707106781, T3l, T3a);
330
            T3I = T3n + T3o;
331
            Im[WS(rs, 5)] = FMS(KP707106781, T3I, T3H);
332
            Ip[WS(rs, 2)] = FMA(KP707106781, T3I, T3H);
333
            T3p = T3n - T3o;
334
            Rm[WS(rs, 1)] = FNMS(KP707106781, T3p, T3m);
335
            Rp[WS(rs, 6)] = FMA(KP707106781, T3p, T3m);
336
            T3K = T3k - T3f;
337
            Im[WS(rs, 1)] = FMS(KP707106781, T3K, T3J);
338
            Ip[WS(rs, 6)] = FMA(KP707106781, T3K, T3J);
339
       }
340
        }
341
        {
342
       E T20, T3N, T3T, T2Q, T2f, T3O, T30, T34, T2T, T3U, T2v, T2N, T2X, T33, T2K;
343
       E T2O;
344
       {
345
            E T27, T2e, T2n, T2u;
346
            T20 = T1U - T1Z;
347
            T3N = T3L - T3M;
348
            T3T = T3M + T3L;
349
            T2Q = T1U + T1Z;
350
            T27 = T25 - T26;
351
            T2e = T28 + T2d;
352
            T2f = T27 - T2e;
353
            T3O = T27 + T2e;
354
            {
355
           E T2Y, T2Z, T2R, T2S;
356
           T2Y = T2D + T2I;
357
           T2Z = T2B + T2w;
358
           T30 = FNMS(KP414213562, T2Z, T2Y);
359
           T34 = FMA(KP414213562, T2Y, T2Z);
360
           T2R = T26 + T25;
361
           T2S = T28 - T2d;
362
           T2T = T2R + T2S;
363
           T3U = T2S - T2R;
364
            }
365
            T2n = T2l + T2m;
366
            T2u = T2o - T2t;
367
            T2v = FMA(KP414213562, T2u, T2n);
368
            T2N = FNMS(KP414213562, T2n, T2u);
369
            {
370
           E T2V, T2W, T2C, T2J;
371
           T2V = T2o + T2t;
372
           T2W = T2l - T2m;
373
           T2X = FMA(KP414213562, T2W, T2V);
374
           T33 = FNMS(KP414213562, T2V, T2W);
375
           T2C = T2w - T2B;
376
           T2J = T2D - T2I;
377
           T2K = FMA(KP414213562, T2J, T2C);
378
           T2O = FNMS(KP414213562, T2C, T2J);
379
            }
380
       }
381
       {
382
            E T2g, T2L, T3V, T3W;
383
            T2g = FMA(KP707106781, T2f, T20);
384
            T2L = T2v + T2K;
385
            Rm[WS(rs, 4)] = FNMS(KP923879532, T2L, T2g);
386
            Rp[WS(rs, 3)] = FMA(KP923879532, T2L, T2g);
387
            T3V = FMA(KP707106781, T3U, T3T);
388
            T3W = T2O - T2N;
389
            Im[WS(rs, 4)] = FMS(KP923879532, T3W, T3V);
390
            Ip[WS(rs, 3)] = FMA(KP923879532, T3W, T3V);
391
       }
392
       {
393
            E T2M, T2P, T3X, T3Y;
394
            T2M = FNMS(KP707106781, T2f, T20);
395
            T2P = T2N + T2O;
396
            Rp[WS(rs, 7)] = FNMS(KP923879532, T2P, T2M);
397
            Rm[0] = FMA(KP923879532, T2P, T2M);
398
            T3X = FNMS(KP707106781, T3U, T3T);
399
            T3Y = T2K - T2v;
400
            Im[0] = FMS(KP923879532, T3Y, T3X);
401
            Ip[WS(rs, 7)] = FMA(KP923879532, T3Y, T3X);
402
       }
403
       {
404
            E T2U, T31, T3P, T3Q;
405
            T2U = FMA(KP707106781, T2T, T2Q);
406
            T31 = T2X + T30;
407
            Rm[WS(rs, 6)] = FNMS(KP923879532, T31, T2U);
408
            Rp[WS(rs, 1)] = FMA(KP923879532, T31, T2U);
409
            T3P = FMA(KP707106781, T3O, T3N);
410
            T3Q = T33 + T34;
411
            Im[WS(rs, 6)] = FMS(KP923879532, T3Q, T3P);
412
            Ip[WS(rs, 1)] = FMA(KP923879532, T3Q, T3P);
413
       }
414
       {
415
            E T32, T35, T3R, T3S;
416
            T32 = FNMS(KP707106781, T2T, T2Q);
417
            T35 = T33 - T34;
418
            Rm[WS(rs, 2)] = FNMS(KP923879532, T35, T32);
419
            Rp[WS(rs, 5)] = FMA(KP923879532, T35, T32);
420
            T3R = FNMS(KP707106781, T3O, T3N);
421
            T3S = T30 - T2X;
422
            Im[WS(rs, 2)] = FMS(KP923879532, T3S, T3R);
423
            Ip[WS(rs, 5)] = FMA(KP923879532, T3S, T3R);
424
       }
425
        }
426
         }
427
    }
428
     }
429
}
430
431
static const tw_instr twinstr[] = {
432
     { TW_CEXP, 1, 1 },
433
     { TW_CEXP, 1, 3 },
434
     { TW_CEXP, 1, 9 },
435
     { TW_CEXP, 1, 15 },
436
     { TW_NEXT, 1, 0 }
437
};
438
439
static const hc2c_desc desc = { 16, "hc2cf2_16", twinstr, &GENUS, { 104, 42, 92, 0 } };
440
441
void X(codelet_hc2cf2_16) (planner *p) {
442
     X(khc2c_register) (p, hc2cf2_16, &desc, HC2C_VIA_RDFT);
443
}
444
#else
445
446
/* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 16 -dit -name hc2cf2_16 -include rdft/scalar/hc2cf.h */
447
448
/*
449
 * This function contains 196 FP additions, 108 FP multiplications,
450
 * (or, 156 additions, 68 multiplications, 40 fused multiply/add),
451
 * 82 stack variables, 3 constants, and 64 memory accesses
452
 */
453
#include "rdft/scalar/hc2cf.h"
454
455
static void hc2cf2_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
456
0
{
457
0
     DK(KP382683432, +0.382683432365089771728459984030398866761344562);
458
0
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
459
0
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
460
0
     {
461
0
    INT m;
462
0
    for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(64, rs)) {
463
0
         E T2, T5, Tg, Ti, Tk, To, TE, TC, T6, T3, T8, TW, TJ, Tt, TU;
464
0
         E Tc, Tx, TH, TN, TO, TP, TR, T1f, T1k, T1b, T1i, T1y, T1H, T1u, T1F;
465
0
         {
466
0
        E T7, Tv, Ta, Ts, T4, Tw, Tb, Tr;
467
0
        {
468
0
       E Th, Tn, Tj, Tm;
469
0
       T2 = W[0];
470
0
       T5 = W[1];
471
0
       Tg = W[2];
472
0
       Ti = W[3];
473
0
       Th = T2 * Tg;
474
0
       Tn = T5 * Tg;
475
0
       Tj = T5 * Ti;
476
0
       Tm = T2 * Ti;
477
0
       Tk = Th - Tj;
478
0
       To = Tm + Tn;
479
0
       TE = Tm - Tn;
480
0
       TC = Th + Tj;
481
0
       T6 = W[5];
482
0
       T7 = T5 * T6;
483
0
       Tv = Tg * T6;
484
0
       Ta = T2 * T6;
485
0
       Ts = Ti * T6;
486
0
       T3 = W[4];
487
0
       T4 = T2 * T3;
488
0
       Tw = Ti * T3;
489
0
       Tb = T5 * T3;
490
0
       Tr = Tg * T3;
491
0
        }
492
0
        T8 = T4 + T7;
493
0
        TW = Tv - Tw;
494
0
        TJ = Ta + Tb;
495
0
        Tt = Tr - Ts;
496
0
        TU = Tr + Ts;
497
0
        Tc = Ta - Tb;
498
0
        Tx = Tv + Tw;
499
0
        TH = T4 - T7;
500
0
        TN = W[6];
501
0
        TO = W[7];
502
0
        TP = FMA(T2, TN, T5 * TO);
503
0
        TR = FNMS(T5, TN, T2 * TO);
504
0
        {
505
0
       E T1d, T1e, T19, T1a;
506
0
       T1d = Tk * T6;
507
0
       T1e = To * T3;
508
0
       T1f = T1d - T1e;
509
0
       T1k = T1d + T1e;
510
0
       T19 = Tk * T3;
511
0
       T1a = To * T6;
512
0
       T1b = T19 + T1a;
513
0
       T1i = T19 - T1a;
514
0
        }
515
0
        {
516
0
       E T1w, T1x, T1s, T1t;
517
0
       T1w = TC * T6;
518
0
       T1x = TE * T3;
519
0
       T1y = T1w - T1x;
520
0
       T1H = T1w + T1x;
521
0
       T1s = TC * T3;
522
0
       T1t = TE * T6;
523
0
       T1u = T1s + T1t;
524
0
       T1F = T1s - T1t;
525
0
        }
526
0
         }
527
0
         {
528
0
        E Tf, T3r, T1N, T3e, TA, T3s, T1Q, T3b, TM, T2M, T1W, T2w, TZ, T2N, T21;
529
0
        E T2x, T1B, T1K, T2V, T2W, T2X, T2Y, T2j, T2D, T2o, T2E, T18, T1n, T2Q, T2R;
530
0
        E T2S, T2T, T28, T2A, T2d, T2B;
531
0
        {
532
0
       E T1, T3d, Te, T3c, T9, Td;
533
0
       T1 = Rp[0];
534
0
       T3d = Rm[0];
535
0
       T9 = Rp[WS(rs, 4)];
536
0
       Td = Rm[WS(rs, 4)];
537
0
       Te = FMA(T8, T9, Tc * Td);
538
0
       T3c = FNMS(Tc, T9, T8 * Td);
539
0
       Tf = T1 + Te;
540
0
       T3r = T3d - T3c;
541
0
       T1N = T1 - Te;
542
0
       T3e = T3c + T3d;
543
0
        }
544
0
        {
545
0
       E Tq, T1O, Tz, T1P;
546
0
       {
547
0
            E Tl, Tp, Tu, Ty;
548
0
            Tl = Rp[WS(rs, 2)];
549
0
            Tp = Rm[WS(rs, 2)];
550
0
            Tq = FMA(Tk, Tl, To * Tp);
551
0
            T1O = FNMS(To, Tl, Tk * Tp);
552
0
            Tu = Rp[WS(rs, 6)];
553
0
            Ty = Rm[WS(rs, 6)];
554
0
            Tz = FMA(Tt, Tu, Tx * Ty);
555
0
            T1P = FNMS(Tx, Tu, Tt * Ty);
556
0
       }
557
0
       TA = Tq + Tz;
558
0
       T3s = Tq - Tz;
559
0
       T1Q = T1O - T1P;
560
0
       T3b = T1O + T1P;
561
0
        }
562
0
        {
563
0
       E TG, T1S, TL, T1T, T1U, T1V;
564
0
       {
565
0
            E TD, TF, TI, TK;
566
0
            TD = Rp[WS(rs, 1)];
567
0
            TF = Rm[WS(rs, 1)];
568
0
            TG = FMA(TC, TD, TE * TF);
569
0
            T1S = FNMS(TE, TD, TC * TF);
570
0
            TI = Rp[WS(rs, 5)];
571
0
            TK = Rm[WS(rs, 5)];
572
0
            TL = FMA(TH, TI, TJ * TK);
573
0
            T1T = FNMS(TJ, TI, TH * TK);
574
0
       }
575
0
       TM = TG + TL;
576
0
       T2M = T1S + T1T;
577
0
       T1U = T1S - T1T;
578
0
       T1V = TG - TL;
579
0
       T1W = T1U - T1V;
580
0
       T2w = T1V + T1U;
581
0
        }
582
0
        {
583
0
       E TT, T1Y, TY, T1Z, T1X, T20;
584
0
       {
585
0
            E TQ, TS, TV, TX;
586
0
            TQ = Rp[WS(rs, 7)];
587
0
            TS = Rm[WS(rs, 7)];
588
0
            TT = FMA(TP, TQ, TR * TS);
589
0
            T1Y = FNMS(TR, TQ, TP * TS);
590
0
            TV = Rp[WS(rs, 3)];
591
0
            TX = Rm[WS(rs, 3)];
592
0
            TY = FMA(TU, TV, TW * TX);
593
0
            T1Z = FNMS(TW, TV, TU * TX);
594
0
       }
595
0
       TZ = TT + TY;
596
0
       T2N = T1Y + T1Z;
597
0
       T1X = TT - TY;
598
0
       T20 = T1Y - T1Z;
599
0
       T21 = T1X + T20;
600
0
       T2x = T1X - T20;
601
0
        }
602
0
        {
603
0
       E T1r, T2k, T1J, T2h, T1A, T2l, T1E, T2g;
604
0
       {
605
0
            E T1p, T1q, T1G, T1I;
606
0
            T1p = Ip[WS(rs, 7)];
607
0
            T1q = Im[WS(rs, 7)];
608
0
            T1r = FMA(TN, T1p, TO * T1q);
609
0
            T2k = FNMS(TO, T1p, TN * T1q);
610
0
            T1G = Ip[WS(rs, 5)];
611
0
            T1I = Im[WS(rs, 5)];
612
0
            T1J = FMA(T1F, T1G, T1H * T1I);
613
0
            T2h = FNMS(T1H, T1G, T1F * T1I);
614
0
       }
615
0
       {
616
0
            E T1v, T1z, T1C, T1D;
617
0
            T1v = Ip[WS(rs, 3)];
618
0
            T1z = Im[WS(rs, 3)];
619
0
            T1A = FMA(T1u, T1v, T1y * T1z);
620
0
            T2l = FNMS(T1y, T1v, T1u * T1z);
621
0
            T1C = Ip[WS(rs, 1)];
622
0
            T1D = Im[WS(rs, 1)];
623
0
            T1E = FMA(Tg, T1C, Ti * T1D);
624
0
            T2g = FNMS(Ti, T1C, Tg * T1D);
625
0
       }
626
0
       T1B = T1r + T1A;
627
0
       T1K = T1E + T1J;
628
0
       T2V = T1B - T1K;
629
0
       T2W = T2k + T2l;
630
0
       T2X = T2g + T2h;
631
0
       T2Y = T2W - T2X;
632
0
       {
633
0
            E T2f, T2i, T2m, T2n;
634
0
            T2f = T1r - T1A;
635
0
            T2i = T2g - T2h;
636
0
            T2j = T2f - T2i;
637
0
            T2D = T2f + T2i;
638
0
            T2m = T2k - T2l;
639
0
            T2n = T1E - T1J;
640
0
            T2o = T2m + T2n;
641
0
            T2E = T2m - T2n;
642
0
       }
643
0
        }
644
0
        {
645
0
       E T14, T24, T1m, T2b, T17, T25, T1h, T2a;
646
0
       {
647
0
            E T12, T13, T1j, T1l;
648
0
            T12 = Ip[0];
649
0
            T13 = Im[0];
650
0
            T14 = FMA(T2, T12, T5 * T13);
651
0
            T24 = FNMS(T5, T12, T2 * T13);
652
0
            T1j = Ip[WS(rs, 6)];
653
0
            T1l = Im[WS(rs, 6)];
654
0
            T1m = FMA(T1i, T1j, T1k * T1l);
655
0
            T2b = FNMS(T1k, T1j, T1i * T1l);
656
0
       }
657
0
       {
658
0
            E T15, T16, T1c, T1g;
659
0
            T15 = Ip[WS(rs, 4)];
660
0
            T16 = Im[WS(rs, 4)];
661
0
            T17 = FMA(T3, T15, T6 * T16);
662
0
            T25 = FNMS(T6, T15, T3 * T16);
663
0
            T1c = Ip[WS(rs, 2)];
664
0
            T1g = Im[WS(rs, 2)];
665
0
            T1h = FMA(T1b, T1c, T1f * T1g);
666
0
            T2a = FNMS(T1f, T1c, T1b * T1g);
667
0
       }
668
0
       T18 = T14 + T17;
669
0
       T1n = T1h + T1m;
670
0
       T2Q = T18 - T1n;
671
0
       T2R = T24 + T25;
672
0
       T2S = T2a + T2b;
673
0
       T2T = T2R - T2S;
674
0
       {
675
0
            E T26, T27, T29, T2c;
676
0
            T26 = T24 - T25;
677
0
            T27 = T1h - T1m;
678
0
            T28 = T26 + T27;
679
0
            T2A = T26 - T27;
680
0
            T29 = T14 - T17;
681
0
            T2c = T2a - T2b;
682
0
            T2d = T29 - T2c;
683
0
            T2B = T29 + T2c;
684
0
       }
685
0
        }
686
0
        {
687
0
       E T23, T2r, T3A, T3C, T2q, T3B, T2u, T3x;
688
0
       {
689
0
            E T1R, T22, T3y, T3z;
690
0
            T1R = T1N - T1Q;
691
0
            T22 = KP707106781 * (T1W - T21);
692
0
            T23 = T1R + T22;
693
0
            T2r = T1R - T22;
694
0
            T3y = KP707106781 * (T2x - T2w);
695
0
            T3z = T3s + T3r;
696
0
            T3A = T3y + T3z;
697
0
            T3C = T3z - T3y;
698
0
       }
699
0
       {
700
0
            E T2e, T2p, T2s, T2t;
701
0
            T2e = FMA(KP923879532, T28, KP382683432 * T2d);
702
0
            T2p = FNMS(KP923879532, T2o, KP382683432 * T2j);
703
0
            T2q = T2e + T2p;
704
0
            T3B = T2p - T2e;
705
0
            T2s = FNMS(KP923879532, T2d, KP382683432 * T28);
706
0
            T2t = FMA(KP382683432, T2o, KP923879532 * T2j);
707
0
            T2u = T2s - T2t;
708
0
            T3x = T2s + T2t;
709
0
       }
710
0
       Rm[WS(rs, 4)] = T23 - T2q;
711
0
       Im[WS(rs, 4)] = T3x - T3A;
712
0
       Rp[WS(rs, 3)] = T23 + T2q;
713
0
       Ip[WS(rs, 3)] = T3x + T3A;
714
0
       Rm[0] = T2r - T2u;
715
0
       Im[0] = T3B - T3C;
716
0
       Rp[WS(rs, 7)] = T2r + T2u;
717
0
       Ip[WS(rs, 7)] = T3B + T3C;
718
0
        }
719
0
        {
720
0
       E T2P, T31, T3m, T3o, T30, T3n, T34, T3j;
721
0
       {
722
0
            E T2L, T2O, T3k, T3l;
723
0
            T2L = Tf - TA;
724
0
            T2O = T2M - T2N;
725
0
            T2P = T2L + T2O;
726
0
            T31 = T2L - T2O;
727
0
            T3k = TZ - TM;
728
0
            T3l = T3e - T3b;
729
0
            T3m = T3k + T3l;
730
0
            T3o = T3l - T3k;
731
0
       }
732
0
       {
733
0
            E T2U, T2Z, T32, T33;
734
0
            T2U = T2Q + T2T;
735
0
            T2Z = T2V - T2Y;
736
0
            T30 = KP707106781 * (T2U + T2Z);
737
0
            T3n = KP707106781 * (T2Z - T2U);
738
0
            T32 = T2T - T2Q;
739
0
            T33 = T2V + T2Y;
740
0
            T34 = KP707106781 * (T32 - T33);
741
0
            T3j = KP707106781 * (T32 + T33);
742
0
       }
743
0
       Rm[WS(rs, 5)] = T2P - T30;
744
0
       Im[WS(rs, 5)] = T3j - T3m;
745
0
       Rp[WS(rs, 2)] = T2P + T30;
746
0
       Ip[WS(rs, 2)] = T3j + T3m;
747
0
       Rm[WS(rs, 1)] = T31 - T34;
748
0
       Im[WS(rs, 1)] = T3n - T3o;
749
0
       Rp[WS(rs, 6)] = T31 + T34;
750
0
       Ip[WS(rs, 6)] = T3n + T3o;
751
0
        }
752
0
        {
753
0
       E T2z, T2H, T3u, T3w, T2G, T3v, T2K, T3p;
754
0
       {
755
0
            E T2v, T2y, T3q, T3t;
756
0
            T2v = T1N + T1Q;
757
0
            T2y = KP707106781 * (T2w + T2x);
758
0
            T2z = T2v + T2y;
759
0
            T2H = T2v - T2y;
760
0
            T3q = KP707106781 * (T1W + T21);
761
0
            T3t = T3r - T3s;
762
0
            T3u = T3q + T3t;
763
0
            T3w = T3t - T3q;
764
0
       }
765
0
       {
766
0
            E T2C, T2F, T2I, T2J;
767
0
            T2C = FMA(KP382683432, T2A, KP923879532 * T2B);
768
0
            T2F = FNMS(KP382683432, T2E, KP923879532 * T2D);
769
0
            T2G = T2C + T2F;
770
0
            T3v = T2F - T2C;
771
0
            T2I = FNMS(KP382683432, T2B, KP923879532 * T2A);
772
0
            T2J = FMA(KP923879532, T2E, KP382683432 * T2D);
773
0
            T2K = T2I - T2J;
774
0
            T3p = T2I + T2J;
775
0
       }
776
0
       Rm[WS(rs, 6)] = T2z - T2G;
777
0
       Im[WS(rs, 6)] = T3p - T3u;
778
0
       Rp[WS(rs, 1)] = T2z + T2G;
779
0
       Ip[WS(rs, 1)] = T3p + T3u;
780
0
       Rm[WS(rs, 2)] = T2H - T2K;
781
0
       Im[WS(rs, 2)] = T3v - T3w;
782
0
       Rp[WS(rs, 5)] = T2H + T2K;
783
0
       Ip[WS(rs, 5)] = T3v + T3w;
784
0
        }
785
0
        {
786
0
       E T11, T35, T3g, T3i, T1M, T3h, T38, T39;
787
0
       {
788
0
            E TB, T10, T3a, T3f;
789
0
            TB = Tf + TA;
790
0
            T10 = TM + TZ;
791
0
            T11 = TB + T10;
792
0
            T35 = TB - T10;
793
0
            T3a = T2M + T2N;
794
0
            T3f = T3b + T3e;
795
0
            T3g = T3a + T3f;
796
0
            T3i = T3f - T3a;
797
0
       }
798
0
       {
799
0
            E T1o, T1L, T36, T37;
800
0
            T1o = T18 + T1n;
801
0
            T1L = T1B + T1K;
802
0
            T1M = T1o + T1L;
803
0
            T3h = T1L - T1o;
804
0
            T36 = T2R + T2S;
805
0
            T37 = T2W + T2X;
806
0
            T38 = T36 - T37;
807
0
            T39 = T36 + T37;
808
0
       }
809
0
       Rm[WS(rs, 7)] = T11 - T1M;
810
0
       Im[WS(rs, 7)] = T39 - T3g;
811
0
       Rp[0] = T11 + T1M;
812
0
       Ip[0] = T39 + T3g;
813
0
       Rm[WS(rs, 3)] = T35 - T38;
814
0
       Im[WS(rs, 3)] = T3h - T3i;
815
0
       Rp[WS(rs, 4)] = T35 + T38;
816
0
       Ip[WS(rs, 4)] = T3h + T3i;
817
0
        }
818
0
         }
819
0
    }
820
0
     }
821
0
}
822
823
static const tw_instr twinstr[] = {
824
     { TW_CEXP, 1, 1 },
825
     { TW_CEXP, 1, 3 },
826
     { TW_CEXP, 1, 9 },
827
     { TW_CEXP, 1, 15 },
828
     { TW_NEXT, 1, 0 }
829
};
830
831
static const hc2c_desc desc = { 16, "hc2cf2_16", twinstr, &GENUS, { 156, 68, 40, 0 } };
832
833
1
void X(codelet_hc2cf2_16) (planner *p) {
834
1
     X(khc2c_register) (p, hc2cf2_16, &desc, HC2C_VIA_RDFT);
835
1
}
836
#endif