/src/fftw3/rdft/scalar/r2cf/hc2cf2_32.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Sun Sep 8 06:41:47 UTC 2024 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 32 -dit -name hc2cf2_32 -include rdft/scalar/hc2cf.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 488 FP additions, 350 FP multiplications, |
32 | | * (or, 236 additions, 98 multiplications, 252 fused multiply/add), |
33 | | * 164 stack variables, 7 constants, and 128 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hc2cf.h" |
36 | | |
37 | | static void hc2cf2_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
40 | | DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
41 | | DK(KP668178637, +0.668178637919298919997757686523080761552472251); |
42 | | DK(KP198912367, +0.198912367379658006911597622644676228597850501); |
43 | | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
44 | | DK(KP414213562, +0.414213562373095048801688724209698078569671875); |
45 | | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
46 | | { |
47 | | INT m; |
48 | | for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(128, rs)) { |
49 | | E T2, T8, T3, T6, Te, Ti, T5, T7, TJ, Tb, TM, Tc, Ts, T23, T1w; |
50 | | E T19, TA, TE, T1s, T1N, T1o, T1C, T1F, T1K, T15, T11, T2F, T31, T2J, T34; |
51 | | E T3f, T3z, T3j, T3C, Tw, T3M, T3Q, T1z, T2s, T2w, T1d, T3n, T3r, T26, T2T; |
52 | | E T2X, Th, TR, TP, Td, Tj, TW, Tn, TS, T1U, T2b, T29, T1R, T1V, T2g; |
53 | | E T1Z, T2c; |
54 | | { |
55 | | E Tz, T1n, T10, TD, T1r, T14, T9, T1Q, Tv, T1c; |
56 | | { |
57 | | E T4, T18, Ta, Tr; |
58 | | T2 = W[0]; |
59 | | T8 = W[4]; |
60 | | T3 = W[2]; |
61 | | T6 = W[3]; |
62 | | T4 = T2 * T3; |
63 | | T18 = T3 * T8; |
64 | | Ta = T2 * T6; |
65 | | Tr = T2 * T8; |
66 | | Te = W[6]; |
67 | | Tz = T3 * Te; |
68 | | T1n = T8 * Te; |
69 | | T10 = T2 * Te; |
70 | | Ti = W[7]; |
71 | | TD = T3 * Ti; |
72 | | T1r = T8 * Ti; |
73 | | T14 = T2 * Ti; |
74 | | T5 = W[1]; |
75 | | T7 = FMA(T5, T6, T4); |
76 | | TJ = FNMS(T5, T6, T4); |
77 | | T9 = T7 * T8; |
78 | | T1Q = TJ * T8; |
79 | | Tb = FNMS(T5, T3, Ta); |
80 | | TM = FMA(T5, T3, Ta); |
81 | | Tc = W[5]; |
82 | | Tv = T2 * Tc; |
83 | | T1c = T3 * Tc; |
84 | | Ts = FMA(T5, Tc, Tr); |
85 | | T23 = FMA(T6, Tc, T18); |
86 | | T1w = FNMS(T5, Tc, Tr); |
87 | | T19 = FNMS(T6, Tc, T18); |
88 | | } |
89 | | TA = FMA(T6, Ti, Tz); |
90 | | TE = FNMS(T6, Te, TD); |
91 | | T1s = FNMS(Tc, Te, T1r); |
92 | | T1N = FMA(T6, Te, TD); |
93 | | T1o = FMA(Tc, Ti, T1n); |
94 | | T1C = FMA(T5, Ti, T10); |
95 | | T1F = FNMS(T5, Te, T14); |
96 | | T1K = FNMS(T6, Ti, Tz); |
97 | | T15 = FMA(T5, Te, T14); |
98 | | T11 = FNMS(T5, Ti, T10); |
99 | | { |
100 | | E T2E, T2I, T2S, T2W; |
101 | | T2E = T7 * Te; |
102 | | T2F = FMA(Tb, Ti, T2E); |
103 | | T31 = FNMS(Tb, Ti, T2E); |
104 | | T2I = T7 * Ti; |
105 | | T2J = FNMS(Tb, Te, T2I); |
106 | | T34 = FMA(Tb, Te, T2I); |
107 | | { |
108 | | E T3e, T3i, T3L, T3P; |
109 | | T3e = TJ * Te; |
110 | | T3f = FNMS(TM, Ti, T3e); |
111 | | T3z = FMA(TM, Ti, T3e); |
112 | | T3i = TJ * Ti; |
113 | | T3j = FMA(TM, Te, T3i); |
114 | | T3C = FNMS(TM, Te, T3i); |
115 | | T3L = Ts * Te; |
116 | | T3P = Ts * Ti; |
117 | | Tw = FNMS(T5, T8, Tv); |
118 | | T3M = FMA(Tw, Ti, T3L); |
119 | | T3Q = FNMS(Tw, Te, T3P); |
120 | | } |
121 | | { |
122 | | E T2r, T2v, T3m, T3q; |
123 | | T2r = T1w * Te; |
124 | | T2v = T1w * Ti; |
125 | | T1z = FMA(T5, T8, Tv); |
126 | | T2s = FMA(T1z, Ti, T2r); |
127 | | T2w = FNMS(T1z, Te, T2v); |
128 | | T3m = T19 * Te; |
129 | | T3q = T19 * Ti; |
130 | | T1d = FMA(T6, T8, T1c); |
131 | | T3n = FMA(T1d, Ti, T3m); |
132 | | T3r = FNMS(T1d, Te, T3q); |
133 | | } |
134 | | T2S = T23 * Te; |
135 | | T2W = T23 * Ti; |
136 | | T26 = FNMS(T6, T8, T1c); |
137 | | T2T = FMA(T26, Ti, T2S); |
138 | | T2X = FNMS(T26, Te, T2W); |
139 | | { |
140 | | E TQ, TV, Tf, Tm, Tg; |
141 | | Tg = T7 * Tc; |
142 | | Th = FMA(Tb, T8, Tg); |
143 | | TR = FNMS(Tb, T8, Tg); |
144 | | TP = FMA(Tb, Tc, T9); |
145 | | TQ = TP * Te; |
146 | | TV = TP * Ti; |
147 | | Td = FNMS(Tb, Tc, T9); |
148 | | Tf = Td * Te; |
149 | | Tm = Td * Ti; |
150 | | Tj = FMA(Th, Ti, Tf); |
151 | | TW = FNMS(TR, Te, TV); |
152 | | Tn = FNMS(Th, Te, Tm); |
153 | | TS = FMA(TR, Ti, TQ); |
154 | | } |
155 | | { |
156 | | E T2a, T2f, T1S, T1Y, T1T; |
157 | | T1T = TJ * Tc; |
158 | | T1U = FMA(TM, T8, T1T); |
159 | | T2b = FNMS(TM, T8, T1T); |
160 | | T29 = FMA(TM, Tc, T1Q); |
161 | | T2a = T29 * Te; |
162 | | T2f = T29 * Ti; |
163 | | T1R = FNMS(TM, Tc, T1Q); |
164 | | T1S = T1R * Te; |
165 | | T1Y = T1R * Ti; |
166 | | T1V = FMA(T1U, Ti, T1S); |
167 | | T2g = FNMS(T2b, Te, T2f); |
168 | | T1Z = FNMS(T1U, Te, T1Y); |
169 | | T2c = FMA(T2b, Ti, T2a); |
170 | | } |
171 | | } |
172 | | } |
173 | | { |
174 | | E Tq, T46, T8H, T97, TH, T98, T4b, T8D, TZ, T7f, T4j, T6t, T1g, T7g, T4q; |
175 | | E T6u, T1v, T1I, T7m, T7j, T7k, T7l, T4z, T6y, T4G, T6x, T22, T2j, T7o, T7p; |
176 | | E T7q, T7r, T4O, T6B, T4V, T6A, T3G, T7L, T7J, T8n, T5E, T6M, T61, T6P, T2N; |
177 | | E T7A, T7x, T8i, T55, T6F, T5s, T6I, T43, T7G, T7O, T8o, T5L, T62, T5S, T63; |
178 | | E T3c, T7y, T7D, T8j, T5c, T5t, T5j, T5u; |
179 | | { |
180 | | E T1, T8G, Tk, Tl, To, T8E, Tp, T8F; |
181 | | T1 = Rp[0]; |
182 | | T8G = Rm[0]; |
183 | | Tk = Rp[WS(rs, 8)]; |
184 | | Tl = Tj * Tk; |
185 | | To = Rm[WS(rs, 8)]; |
186 | | T8E = Tj * To; |
187 | | Tp = FMA(Tn, To, Tl); |
188 | | Tq = T1 + Tp; |
189 | | T46 = T1 - Tp; |
190 | | T8F = FNMS(Tn, Tk, T8E); |
191 | | T8H = T8F + T8G; |
192 | | T97 = T8G - T8F; |
193 | | } |
194 | | { |
195 | | E Tt, Tu, Tx, T47, TB, TC, TF, T49; |
196 | | Tt = Rp[WS(rs, 4)]; |
197 | | Tu = Ts * Tt; |
198 | | Tx = Rm[WS(rs, 4)]; |
199 | | T47 = Ts * Tx; |
200 | | TB = Rp[WS(rs, 12)]; |
201 | | TC = TA * TB; |
202 | | TF = Rm[WS(rs, 12)]; |
203 | | T49 = TA * TF; |
204 | | { |
205 | | E Ty, TG, T48, T4a; |
206 | | Ty = FMA(Tw, Tx, Tu); |
207 | | TG = FMA(TE, TF, TC); |
208 | | TH = Ty + TG; |
209 | | T98 = Ty - TG; |
210 | | T48 = FNMS(Tw, Tt, T47); |
211 | | T4a = FNMS(TE, TB, T49); |
212 | | T4b = T48 - T4a; |
213 | | T8D = T48 + T4a; |
214 | | } |
215 | | } |
216 | | { |
217 | | E TO, T4f, TY, T4h, T4d, T4i; |
218 | | { |
219 | | E TK, TL, TN, T4e; |
220 | | TK = Rp[WS(rs, 2)]; |
221 | | TL = TJ * TK; |
222 | | TN = Rm[WS(rs, 2)]; |
223 | | T4e = TJ * TN; |
224 | | TO = FMA(TM, TN, TL); |
225 | | T4f = FNMS(TM, TK, T4e); |
226 | | } |
227 | | { |
228 | | E TT, TU, TX, T4g; |
229 | | TT = Rp[WS(rs, 10)]; |
230 | | TU = TS * TT; |
231 | | TX = Rm[WS(rs, 10)]; |
232 | | T4g = TS * TX; |
233 | | TY = FMA(TW, TX, TU); |
234 | | T4h = FNMS(TW, TT, T4g); |
235 | | } |
236 | | TZ = TO + TY; |
237 | | T7f = T4f + T4h; |
238 | | T4d = TO - TY; |
239 | | T4i = T4f - T4h; |
240 | | T4j = T4d + T4i; |
241 | | T6t = T4i - T4d; |
242 | | } |
243 | | { |
244 | | E T17, T4m, T1f, T4o, T4k, T4p; |
245 | | { |
246 | | E T12, T13, T16, T4l; |
247 | | T12 = Rp[WS(rs, 14)]; |
248 | | T13 = T11 * T12; |
249 | | T16 = Rm[WS(rs, 14)]; |
250 | | T4l = T11 * T16; |
251 | | T17 = FMA(T15, T16, T13); |
252 | | T4m = FNMS(T15, T12, T4l); |
253 | | } |
254 | | { |
255 | | E T1a, T1b, T1e, T4n; |
256 | | T1a = Rp[WS(rs, 6)]; |
257 | | T1b = T19 * T1a; |
258 | | T1e = Rm[WS(rs, 6)]; |
259 | | T4n = T19 * T1e; |
260 | | T1f = FMA(T1d, T1e, T1b); |
261 | | T4o = FNMS(T1d, T1a, T4n); |
262 | | } |
263 | | T1g = T17 + T1f; |
264 | | T7g = T4m + T4o; |
265 | | T4k = T17 - T1f; |
266 | | T4p = T4m - T4o; |
267 | | T4q = T4k - T4p; |
268 | | T6u = T4k + T4p; |
269 | | } |
270 | | { |
271 | | E T1m, T4B, T1H, T4x, T1u, T4D, T1B, T4v; |
272 | | { |
273 | | E T1j, T1k, T1l, T4A; |
274 | | T1j = Rp[WS(rs, 1)]; |
275 | | T1k = T7 * T1j; |
276 | | T1l = Rm[WS(rs, 1)]; |
277 | | T4A = T7 * T1l; |
278 | | T1m = FMA(Tb, T1l, T1k); |
279 | | T4B = FNMS(Tb, T1j, T4A); |
280 | | } |
281 | | { |
282 | | E T1D, T1E, T1G, T4w; |
283 | | T1D = Rp[WS(rs, 13)]; |
284 | | T1E = T1C * T1D; |
285 | | T1G = Rm[WS(rs, 13)]; |
286 | | T4w = T1C * T1G; |
287 | | T1H = FMA(T1F, T1G, T1E); |
288 | | T4x = FNMS(T1F, T1D, T4w); |
289 | | } |
290 | | { |
291 | | E T1p, T1q, T1t, T4C; |
292 | | T1p = Rp[WS(rs, 9)]; |
293 | | T1q = T1o * T1p; |
294 | | T1t = Rm[WS(rs, 9)]; |
295 | | T4C = T1o * T1t; |
296 | | T1u = FMA(T1s, T1t, T1q); |
297 | | T4D = FNMS(T1s, T1p, T4C); |
298 | | } |
299 | | { |
300 | | E T1x, T1y, T1A, T4u; |
301 | | T1x = Rp[WS(rs, 5)]; |
302 | | T1y = T1w * T1x; |
303 | | T1A = Rm[WS(rs, 5)]; |
304 | | T4u = T1w * T1A; |
305 | | T1B = FMA(T1z, T1A, T1y); |
306 | | T4v = FNMS(T1z, T1x, T4u); |
307 | | } |
308 | | T1v = T1m + T1u; |
309 | | T1I = T1B + T1H; |
310 | | T7m = T1v - T1I; |
311 | | T7j = T4B + T4D; |
312 | | T7k = T4v + T4x; |
313 | | T7l = T7j - T7k; |
314 | | { |
315 | | E T4t, T4y, T4E, T4F; |
316 | | T4t = T1m - T1u; |
317 | | T4y = T4v - T4x; |
318 | | T4z = T4t + T4y; |
319 | | T6y = T4t - T4y; |
320 | | T4E = T4B - T4D; |
321 | | T4F = T1B - T1H; |
322 | | T4G = T4E - T4F; |
323 | | T6x = T4E + T4F; |
324 | | } |
325 | | } |
326 | | { |
327 | | E T1P, T4Q, T2i, T4M, T21, T4S, T28, T4K; |
328 | | { |
329 | | E T1L, T1M, T1O, T4P; |
330 | | T1L = Rp[WS(rs, 15)]; |
331 | | T1M = T1K * T1L; |
332 | | T1O = Rm[WS(rs, 15)]; |
333 | | T4P = T1K * T1O; |
334 | | T1P = FMA(T1N, T1O, T1M); |
335 | | T4Q = FNMS(T1N, T1L, T4P); |
336 | | } |
337 | | { |
338 | | E T2d, T2e, T2h, T4L; |
339 | | T2d = Rp[WS(rs, 11)]; |
340 | | T2e = T2c * T2d; |
341 | | T2h = Rm[WS(rs, 11)]; |
342 | | T4L = T2c * T2h; |
343 | | T2i = FMA(T2g, T2h, T2e); |
344 | | T4M = FNMS(T2g, T2d, T4L); |
345 | | } |
346 | | { |
347 | | E T1W, T1X, T20, T4R; |
348 | | T1W = Rp[WS(rs, 7)]; |
349 | | T1X = T1V * T1W; |
350 | | T20 = Rm[WS(rs, 7)]; |
351 | | T4R = T1V * T20; |
352 | | T21 = FMA(T1Z, T20, T1X); |
353 | | T4S = FNMS(T1Z, T1W, T4R); |
354 | | } |
355 | | { |
356 | | E T24, T25, T27, T4J; |
357 | | T24 = Rp[WS(rs, 3)]; |
358 | | T25 = T23 * T24; |
359 | | T27 = Rm[WS(rs, 3)]; |
360 | | T4J = T23 * T27; |
361 | | T28 = FMA(T26, T27, T25); |
362 | | T4K = FNMS(T26, T24, T4J); |
363 | | } |
364 | | T22 = T1P + T21; |
365 | | T2j = T28 + T2i; |
366 | | T7o = T22 - T2j; |
367 | | T7p = T4Q + T4S; |
368 | | T7q = T4K + T4M; |
369 | | T7r = T7p - T7q; |
370 | | { |
371 | | E T4I, T4N, T4T, T4U; |
372 | | T4I = T1P - T21; |
373 | | T4N = T4K - T4M; |
374 | | T4O = T4I + T4N; |
375 | | T6B = T4I - T4N; |
376 | | T4T = T4Q - T4S; |
377 | | T4U = T28 - T2i; |
378 | | T4V = T4T - T4U; |
379 | | T6A = T4T + T4U; |
380 | | } |
381 | | } |
382 | | { |
383 | | E T3l, T5W, T3E, T5C, T3t, T5Y, T3y, T5A; |
384 | | { |
385 | | E T3g, T3h, T3k, T5V; |
386 | | T3g = Ip[WS(rs, 15)]; |
387 | | T3h = T3f * T3g; |
388 | | T3k = Im[WS(rs, 15)]; |
389 | | T5V = T3f * T3k; |
390 | | T3l = FMA(T3j, T3k, T3h); |
391 | | T5W = FNMS(T3j, T3g, T5V); |
392 | | } |
393 | | { |
394 | | E T3A, T3B, T3D, T5B; |
395 | | T3A = Ip[WS(rs, 11)]; |
396 | | T3B = T3z * T3A; |
397 | | T3D = Im[WS(rs, 11)]; |
398 | | T5B = T3z * T3D; |
399 | | T3E = FMA(T3C, T3D, T3B); |
400 | | T5C = FNMS(T3C, T3A, T5B); |
401 | | } |
402 | | { |
403 | | E T3o, T3p, T3s, T5X; |
404 | | T3o = Ip[WS(rs, 7)]; |
405 | | T3p = T3n * T3o; |
406 | | T3s = Im[WS(rs, 7)]; |
407 | | T5X = T3n * T3s; |
408 | | T3t = FMA(T3r, T3s, T3p); |
409 | | T5Y = FNMS(T3r, T3o, T5X); |
410 | | } |
411 | | { |
412 | | E T3v, T3w, T3x, T5z; |
413 | | T3v = Ip[WS(rs, 3)]; |
414 | | T3w = TP * T3v; |
415 | | T3x = Im[WS(rs, 3)]; |
416 | | T5z = TP * T3x; |
417 | | T3y = FMA(TR, T3x, T3w); |
418 | | T5A = FNMS(TR, T3v, T5z); |
419 | | } |
420 | | { |
421 | | E T3u, T3F, T7H, T7I; |
422 | | T3u = T3l + T3t; |
423 | | T3F = T3y + T3E; |
424 | | T3G = T3u + T3F; |
425 | | T7L = T3u - T3F; |
426 | | T7H = T5W + T5Y; |
427 | | T7I = T5A + T5C; |
428 | | T7J = T7H - T7I; |
429 | | T8n = T7H + T7I; |
430 | | } |
431 | | { |
432 | | E T5y, T5D, T5Z, T60; |
433 | | T5y = T3l - T3t; |
434 | | T5D = T5A - T5C; |
435 | | T5E = T5y + T5D; |
436 | | T6M = T5y - T5D; |
437 | | T5Z = T5W - T5Y; |
438 | | T60 = T3E - T3y; |
439 | | T61 = T5Z + T60; |
440 | | T6P = T60 - T5Z; |
441 | | } |
442 | | } |
443 | | { |
444 | | E T2q, T5n, T2L, T53, T2y, T5p, T2D, T51; |
445 | | { |
446 | | E T2n, T2o, T2p, T5m; |
447 | | T2n = Ip[0]; |
448 | | T2o = T2 * T2n; |
449 | | T2p = Im[0]; |
450 | | T5m = T2 * T2p; |
451 | | T2q = FMA(T5, T2p, T2o); |
452 | | T5n = FNMS(T5, T2n, T5m); |
453 | | } |
454 | | { |
455 | | E T2G, T2H, T2K, T52; |
456 | | T2G = Ip[WS(rs, 12)]; |
457 | | T2H = T2F * T2G; |
458 | | T2K = Im[WS(rs, 12)]; |
459 | | T52 = T2F * T2K; |
460 | | T2L = FMA(T2J, T2K, T2H); |
461 | | T53 = FNMS(T2J, T2G, T52); |
462 | | } |
463 | | { |
464 | | E T2t, T2u, T2x, T5o; |
465 | | T2t = Ip[WS(rs, 8)]; |
466 | | T2u = T2s * T2t; |
467 | | T2x = Im[WS(rs, 8)]; |
468 | | T5o = T2s * T2x; |
469 | | T2y = FMA(T2w, T2x, T2u); |
470 | | T5p = FNMS(T2w, T2t, T5o); |
471 | | } |
472 | | { |
473 | | E T2A, T2B, T2C, T50; |
474 | | T2A = Ip[WS(rs, 4)]; |
475 | | T2B = T8 * T2A; |
476 | | T2C = Im[WS(rs, 4)]; |
477 | | T50 = T8 * T2C; |
478 | | T2D = FMA(Tc, T2C, T2B); |
479 | | T51 = FNMS(Tc, T2A, T50); |
480 | | } |
481 | | { |
482 | | E T2z, T2M, T7v, T7w; |
483 | | T2z = T2q + T2y; |
484 | | T2M = T2D + T2L; |
485 | | T2N = T2z + T2M; |
486 | | T7A = T2z - T2M; |
487 | | T7v = T5n + T5p; |
488 | | T7w = T51 + T53; |
489 | | T7x = T7v - T7w; |
490 | | T8i = T7v + T7w; |
491 | | } |
492 | | { |
493 | | E T4Z, T54, T5q, T5r; |
494 | | T4Z = T2q - T2y; |
495 | | T54 = T51 - T53; |
496 | | T55 = T4Z + T54; |
497 | | T6F = T4Z - T54; |
498 | | T5q = T5n - T5p; |
499 | | T5r = T2D - T2L; |
500 | | T5s = T5q - T5r; |
501 | | T6I = T5q + T5r; |
502 | | } |
503 | | } |
504 | | { |
505 | | E T3K, T5H, T41, T5Q, T3S, T5J, T3X, T5O; |
506 | | { |
507 | | E T3H, T3I, T3J, T5G; |
508 | | T3H = Ip[WS(rs, 1)]; |
509 | | T3I = T3 * T3H; |
510 | | T3J = Im[WS(rs, 1)]; |
511 | | T5G = T3 * T3J; |
512 | | T3K = FMA(T6, T3J, T3I); |
513 | | T5H = FNMS(T6, T3H, T5G); |
514 | | } |
515 | | { |
516 | | E T3Y, T3Z, T40, T5P; |
517 | | T3Y = Ip[WS(rs, 5)]; |
518 | | T3Z = Td * T3Y; |
519 | | T40 = Im[WS(rs, 5)]; |
520 | | T5P = Td * T40; |
521 | | T41 = FMA(Th, T40, T3Z); |
522 | | T5Q = FNMS(Th, T3Y, T5P); |
523 | | } |
524 | | { |
525 | | E T3N, T3O, T3R, T5I; |
526 | | T3N = Ip[WS(rs, 9)]; |
527 | | T3O = T3M * T3N; |
528 | | T3R = Im[WS(rs, 9)]; |
529 | | T5I = T3M * T3R; |
530 | | T3S = FMA(T3Q, T3R, T3O); |
531 | | T5J = FNMS(T3Q, T3N, T5I); |
532 | | } |
533 | | { |
534 | | E T3U, T3V, T3W, T5N; |
535 | | T3U = Ip[WS(rs, 13)]; |
536 | | T3V = Te * T3U; |
537 | | T3W = Im[WS(rs, 13)]; |
538 | | T5N = Te * T3W; |
539 | | T3X = FMA(Ti, T3W, T3V); |
540 | | T5O = FNMS(Ti, T3U, T5N); |
541 | | } |
542 | | { |
543 | | E T3T, T42, T7M, T7N; |
544 | | T3T = T3K + T3S; |
545 | | T42 = T3X + T41; |
546 | | T43 = T3T + T42; |
547 | | T7G = T42 - T3T; |
548 | | T7M = T5H + T5J; |
549 | | T7N = T5O + T5Q; |
550 | | T7O = T7M - T7N; |
551 | | T8o = T7M + T7N; |
552 | | } |
553 | | { |
554 | | E T5F, T5K, T5M, T5R; |
555 | | T5F = T3K - T3S; |
556 | | T5K = T5H - T5J; |
557 | | T5L = T5F + T5K; |
558 | | T62 = T5K - T5F; |
559 | | T5M = T3X - T41; |
560 | | T5R = T5O - T5Q; |
561 | | T5S = T5M - T5R; |
562 | | T63 = T5M + T5R; |
563 | | } |
564 | | } |
565 | | { |
566 | | E T2R, T58, T3a, T5h, T2Z, T5a, T36, T5f; |
567 | | { |
568 | | E T2O, T2P, T2Q, T57; |
569 | | T2O = Ip[WS(rs, 2)]; |
570 | | T2P = T29 * T2O; |
571 | | T2Q = Im[WS(rs, 2)]; |
572 | | T57 = T29 * T2Q; |
573 | | T2R = FMA(T2b, T2Q, T2P); |
574 | | T58 = FNMS(T2b, T2O, T57); |
575 | | } |
576 | | { |
577 | | E T37, T38, T39, T5g; |
578 | | T37 = Ip[WS(rs, 6)]; |
579 | | T38 = T1R * T37; |
580 | | T39 = Im[WS(rs, 6)]; |
581 | | T5g = T1R * T39; |
582 | | T3a = FMA(T1U, T39, T38); |
583 | | T5h = FNMS(T1U, T37, T5g); |
584 | | } |
585 | | { |
586 | | E T2U, T2V, T2Y, T59; |
587 | | T2U = Ip[WS(rs, 10)]; |
588 | | T2V = T2T * T2U; |
589 | | T2Y = Im[WS(rs, 10)]; |
590 | | T59 = T2T * T2Y; |
591 | | T2Z = FMA(T2X, T2Y, T2V); |
592 | | T5a = FNMS(T2X, T2U, T59); |
593 | | } |
594 | | { |
595 | | E T32, T33, T35, T5e; |
596 | | T32 = Ip[WS(rs, 14)]; |
597 | | T33 = T31 * T32; |
598 | | T35 = Im[WS(rs, 14)]; |
599 | | T5e = T31 * T35; |
600 | | T36 = FMA(T34, T35, T33); |
601 | | T5f = FNMS(T34, T32, T5e); |
602 | | } |
603 | | { |
604 | | E T30, T3b, T7B, T7C; |
605 | | T30 = T2R + T2Z; |
606 | | T3b = T36 + T3a; |
607 | | T3c = T30 + T3b; |
608 | | T7y = T3b - T30; |
609 | | T7B = T58 + T5a; |
610 | | T7C = T5f + T5h; |
611 | | T7D = T7B - T7C; |
612 | | T8j = T7B + T7C; |
613 | | } |
614 | | { |
615 | | E T56, T5b, T5d, T5i; |
616 | | T56 = T2R - T2Z; |
617 | | T5b = T58 - T5a; |
618 | | T5c = T56 + T5b; |
619 | | T5t = T5b - T56; |
620 | | T5d = T36 - T3a; |
621 | | T5i = T5f - T5h; |
622 | | T5j = T5d - T5i; |
623 | | T5u = T5d + T5i; |
624 | | } |
625 | | } |
626 | | { |
627 | | E T1i, T8c, T8z, T8A, T8J, T8O, T2l, T8N, T45, T8L, T8l, T8t, T8q, T8u, T8f; |
628 | | E T8B; |
629 | | { |
630 | | E TI, T1h, T8x, T8y; |
631 | | TI = Tq + TH; |
632 | | T1h = TZ + T1g; |
633 | | T1i = TI + T1h; |
634 | | T8c = TI - T1h; |
635 | | T8x = T8i + T8j; |
636 | | T8y = T8n + T8o; |
637 | | T8z = T8x - T8y; |
638 | | T8A = T8x + T8y; |
639 | | } |
640 | | { |
641 | | E T8C, T8I, T1J, T2k; |
642 | | T8C = T7f + T7g; |
643 | | T8I = T8D + T8H; |
644 | | T8J = T8C + T8I; |
645 | | T8O = T8I - T8C; |
646 | | T1J = T1v + T1I; |
647 | | T2k = T22 + T2j; |
648 | | T2l = T1J + T2k; |
649 | | T8N = T2k - T1J; |
650 | | } |
651 | | { |
652 | | E T3d, T44, T8h, T8k; |
653 | | T3d = T2N + T3c; |
654 | | T44 = T3G + T43; |
655 | | T45 = T3d + T44; |
656 | | T8L = T44 - T3d; |
657 | | T8h = T2N - T3c; |
658 | | T8k = T8i - T8j; |
659 | | T8l = T8h + T8k; |
660 | | T8t = T8k - T8h; |
661 | | } |
662 | | { |
663 | | E T8m, T8p, T8d, T8e; |
664 | | T8m = T3G - T43; |
665 | | T8p = T8n - T8o; |
666 | | T8q = T8m - T8p; |
667 | | T8u = T8m + T8p; |
668 | | T8d = T7j + T7k; |
669 | | T8e = T7p + T7q; |
670 | | T8f = T8d - T8e; |
671 | | T8B = T8d + T8e; |
672 | | } |
673 | | { |
674 | | E T2m, T8K, T8w, T8M; |
675 | | T2m = T1i + T2l; |
676 | | Rm[WS(rs, 15)] = T2m - T45; |
677 | | Rp[0] = T2m + T45; |
678 | | T8K = T8B + T8J; |
679 | | Im[WS(rs, 15)] = T8A - T8K; |
680 | | Ip[0] = T8A + T8K; |
681 | | T8w = T1i - T2l; |
682 | | Rm[WS(rs, 7)] = T8w - T8z; |
683 | | Rp[WS(rs, 8)] = T8w + T8z; |
684 | | T8M = T8J - T8B; |
685 | | Im[WS(rs, 7)] = T8L - T8M; |
686 | | Ip[WS(rs, 8)] = T8L + T8M; |
687 | | } |
688 | | { |
689 | | E T8g, T8r, T8P, T8Q; |
690 | | T8g = T8c + T8f; |
691 | | T8r = T8l + T8q; |
692 | | Rm[WS(rs, 11)] = FNMS(KP707106781, T8r, T8g); |
693 | | Rp[WS(rs, 4)] = FMA(KP707106781, T8r, T8g); |
694 | | T8P = T8N + T8O; |
695 | | T8Q = T8t + T8u; |
696 | | Im[WS(rs, 11)] = FMS(KP707106781, T8Q, T8P); |
697 | | Ip[WS(rs, 4)] = FMA(KP707106781, T8Q, T8P); |
698 | | } |
699 | | { |
700 | | E T8s, T8v, T8R, T8S; |
701 | | T8s = T8c - T8f; |
702 | | T8v = T8t - T8u; |
703 | | Rm[WS(rs, 3)] = FNMS(KP707106781, T8v, T8s); |
704 | | Rp[WS(rs, 12)] = FMA(KP707106781, T8v, T8s); |
705 | | T8R = T8O - T8N; |
706 | | T8S = T8q - T8l; |
707 | | Im[WS(rs, 3)] = FMS(KP707106781, T8S, T8R); |
708 | | Ip[WS(rs, 12)] = FMA(KP707106781, T8S, T8R); |
709 | | } |
710 | | } |
711 | | { |
712 | | E T7i, T7W, T86, T8a, T8V, T91, T7t, T8W, T7F, T7T, T7Z, T92, T83, T89, T7Q; |
713 | | E T7U; |
714 | | { |
715 | | E T7e, T7h, T84, T85; |
716 | | T7e = Tq - TH; |
717 | | T7h = T7f - T7g; |
718 | | T7i = T7e - T7h; |
719 | | T7W = T7e + T7h; |
720 | | T84 = T7L + T7O; |
721 | | T85 = T7J + T7G; |
722 | | T86 = FNMS(KP414213562, T85, T84); |
723 | | T8a = FMA(KP414213562, T84, T85); |
724 | | } |
725 | | { |
726 | | E T8T, T8U, T7n, T7s; |
727 | | T8T = T1g - TZ; |
728 | | T8U = T8H - T8D; |
729 | | T8V = T8T + T8U; |
730 | | T91 = T8U - T8T; |
731 | | T7n = T7l - T7m; |
732 | | T7s = T7o + T7r; |
733 | | T7t = T7n - T7s; |
734 | | T8W = T7n + T7s; |
735 | | } |
736 | | { |
737 | | E T7z, T7E, T7X, T7Y; |
738 | | T7z = T7x - T7y; |
739 | | T7E = T7A - T7D; |
740 | | T7F = FMA(KP414213562, T7E, T7z); |
741 | | T7T = FNMS(KP414213562, T7z, T7E); |
742 | | T7X = T7m + T7l; |
743 | | T7Y = T7o - T7r; |
744 | | T7Z = T7X + T7Y; |
745 | | T92 = T7Y - T7X; |
746 | | } |
747 | | { |
748 | | E T81, T82, T7K, T7P; |
749 | | T81 = T7A + T7D; |
750 | | T82 = T7x + T7y; |
751 | | T83 = FMA(KP414213562, T82, T81); |
752 | | T89 = FNMS(KP414213562, T81, T82); |
753 | | T7K = T7G - T7J; |
754 | | T7P = T7L - T7O; |
755 | | T7Q = FMA(KP414213562, T7P, T7K); |
756 | | T7U = FNMS(KP414213562, T7K, T7P); |
757 | | } |
758 | | { |
759 | | E T7u, T7R, T93, T94; |
760 | | T7u = FMA(KP707106781, T7t, T7i); |
761 | | T7R = T7F + T7Q; |
762 | | Rm[WS(rs, 9)] = FNMS(KP923879532, T7R, T7u); |
763 | | Rp[WS(rs, 6)] = FMA(KP923879532, T7R, T7u); |
764 | | T93 = FMA(KP707106781, T92, T91); |
765 | | T94 = T7U - T7T; |
766 | | Im[WS(rs, 9)] = FMS(KP923879532, T94, T93); |
767 | | Ip[WS(rs, 6)] = FMA(KP923879532, T94, T93); |
768 | | } |
769 | | { |
770 | | E T7S, T7V, T95, T96; |
771 | | T7S = FNMS(KP707106781, T7t, T7i); |
772 | | T7V = T7T + T7U; |
773 | | Rp[WS(rs, 14)] = FNMS(KP923879532, T7V, T7S); |
774 | | Rm[WS(rs, 1)] = FMA(KP923879532, T7V, T7S); |
775 | | T95 = FNMS(KP707106781, T92, T91); |
776 | | T96 = T7Q - T7F; |
777 | | Im[WS(rs, 1)] = FMS(KP923879532, T96, T95); |
778 | | Ip[WS(rs, 14)] = FMA(KP923879532, T96, T95); |
779 | | } |
780 | | { |
781 | | E T80, T87, T8X, T8Y; |
782 | | T80 = FMA(KP707106781, T7Z, T7W); |
783 | | T87 = T83 + T86; |
784 | | Rm[WS(rs, 13)] = FNMS(KP923879532, T87, T80); |
785 | | Rp[WS(rs, 2)] = FMA(KP923879532, T87, T80); |
786 | | T8X = FMA(KP707106781, T8W, T8V); |
787 | | T8Y = T89 + T8a; |
788 | | Im[WS(rs, 13)] = FMS(KP923879532, T8Y, T8X); |
789 | | Ip[WS(rs, 2)] = FMA(KP923879532, T8Y, T8X); |
790 | | } |
791 | | { |
792 | | E T88, T8b, T8Z, T90; |
793 | | T88 = FNMS(KP707106781, T7Z, T7W); |
794 | | T8b = T89 - T8a; |
795 | | Rm[WS(rs, 5)] = FNMS(KP923879532, T8b, T88); |
796 | | Rp[WS(rs, 10)] = FMA(KP923879532, T8b, T88); |
797 | | T8Z = FNMS(KP707106781, T8W, T8V); |
798 | | T90 = T86 - T83; |
799 | | Im[WS(rs, 5)] = FMS(KP923879532, T90, T8Z); |
800 | | Ip[WS(rs, 10)] = FMA(KP923879532, T90, T8Z); |
801 | | } |
802 | | } |
803 | | { |
804 | | E T4s, T6c, T4X, T9i, T9b, T9h, T6f, T9c, T66, T6q, T6a, T6m, T5x, T6p, T69; |
805 | | E T6j; |
806 | | { |
807 | | E T4c, T4r, T6d, T6e; |
808 | | T4c = T46 + T4b; |
809 | | T4r = T4j + T4q; |
810 | | T4s = FMA(KP707106781, T4r, T4c); |
811 | | T6c = FNMS(KP707106781, T4r, T4c); |
812 | | { |
813 | | E T4H, T4W, T99, T9a; |
814 | | T4H = FMA(KP414213562, T4G, T4z); |
815 | | T4W = FNMS(KP414213562, T4V, T4O); |
816 | | T4X = T4H + T4W; |
817 | | T9i = T4W - T4H; |
818 | | T99 = T97 - T98; |
819 | | T9a = T6t + T6u; |
820 | | T9b = FMA(KP707106781, T9a, T99); |
821 | | T9h = FNMS(KP707106781, T9a, T99); |
822 | | } |
823 | | T6d = FNMS(KP414213562, T4z, T4G); |
824 | | T6e = FMA(KP414213562, T4O, T4V); |
825 | | T6f = T6d - T6e; |
826 | | T9c = T6d + T6e; |
827 | | { |
828 | | E T5U, T6k, T65, T6l, T5T, T64; |
829 | | T5T = T5L + T5S; |
830 | | T5U = FMA(KP707106781, T5T, T5E); |
831 | | T6k = FNMS(KP707106781, T5T, T5E); |
832 | | T64 = T62 + T63; |
833 | | T65 = FMA(KP707106781, T64, T61); |
834 | | T6l = FNMS(KP707106781, T64, T61); |
835 | | T66 = FNMS(KP198912367, T65, T5U); |
836 | | T6q = FNMS(KP668178637, T6k, T6l); |
837 | | T6a = FMA(KP198912367, T5U, T65); |
838 | | T6m = FMA(KP668178637, T6l, T6k); |
839 | | } |
840 | | { |
841 | | E T5l, T6h, T5w, T6i, T5k, T5v; |
842 | | T5k = T5c + T5j; |
843 | | T5l = FMA(KP707106781, T5k, T55); |
844 | | T6h = FNMS(KP707106781, T5k, T55); |
845 | | T5v = T5t + T5u; |
846 | | T5w = FMA(KP707106781, T5v, T5s); |
847 | | T6i = FNMS(KP707106781, T5v, T5s); |
848 | | T5x = FMA(KP198912367, T5w, T5l); |
849 | | T6p = FMA(KP668178637, T6h, T6i); |
850 | | T69 = FNMS(KP198912367, T5l, T5w); |
851 | | T6j = FNMS(KP668178637, T6i, T6h); |
852 | | } |
853 | | } |
854 | | { |
855 | | E T4Y, T67, T9d, T9e; |
856 | | T4Y = FMA(KP923879532, T4X, T4s); |
857 | | T67 = T5x + T66; |
858 | | Rm[WS(rs, 14)] = FNMS(KP980785280, T67, T4Y); |
859 | | Rp[WS(rs, 1)] = FMA(KP980785280, T67, T4Y); |
860 | | T9d = FMA(KP923879532, T9c, T9b); |
861 | | T9e = T69 + T6a; |
862 | | Im[WS(rs, 14)] = FMS(KP980785280, T9e, T9d); |
863 | | Ip[WS(rs, 1)] = FMA(KP980785280, T9e, T9d); |
864 | | } |
865 | | { |
866 | | E T68, T6b, T9f, T9g; |
867 | | T68 = FNMS(KP923879532, T4X, T4s); |
868 | | T6b = T69 - T6a; |
869 | | Rm[WS(rs, 6)] = FNMS(KP980785280, T6b, T68); |
870 | | Rp[WS(rs, 9)] = FMA(KP980785280, T6b, T68); |
871 | | T9f = FNMS(KP923879532, T9c, T9b); |
872 | | T9g = T66 - T5x; |
873 | | Im[WS(rs, 6)] = FMS(KP980785280, T9g, T9f); |
874 | | Ip[WS(rs, 9)] = FMA(KP980785280, T9g, T9f); |
875 | | } |
876 | | { |
877 | | E T6g, T6n, T9l, T9m; |
878 | | T6g = FNMS(KP923879532, T6f, T6c); |
879 | | T6n = T6j + T6m; |
880 | | Rp[WS(rs, 13)] = FNMS(KP831469612, T6n, T6g); |
881 | | Rm[WS(rs, 2)] = FMA(KP831469612, T6n, T6g); |
882 | | T9l = FNMS(KP923879532, T9i, T9h); |
883 | | T9m = T6p + T6q; |
884 | | Im[WS(rs, 2)] = -(FMA(KP831469612, T9m, T9l)); |
885 | | Ip[WS(rs, 13)] = FNMS(KP831469612, T9m, T9l); |
886 | | } |
887 | | { |
888 | | E T6o, T6r, T9j, T9k; |
889 | | T6o = FMA(KP923879532, T6f, T6c); |
890 | | T6r = T6p - T6q; |
891 | | Rm[WS(rs, 10)] = FNMS(KP831469612, T6r, T6o); |
892 | | Rp[WS(rs, 5)] = FMA(KP831469612, T6r, T6o); |
893 | | T9j = FMA(KP923879532, T9i, T9h); |
894 | | T9k = T6m - T6j; |
895 | | Im[WS(rs, 10)] = FMS(KP831469612, T9k, T9j); |
896 | | Ip[WS(rs, 5)] = FMA(KP831469612, T9k, T9j); |
897 | | } |
898 | | } |
899 | | { |
900 | | E T6w, T6Y, T6D, T9w, T9p, T9v, T71, T9q, T6S, T7c, T6W, T78, T6L, T7b, T6V; |
901 | | E T75; |
902 | | { |
903 | | E T6s, T6v, T6Z, T70; |
904 | | T6s = T46 - T4b; |
905 | | T6v = T6t - T6u; |
906 | | T6w = FMA(KP707106781, T6v, T6s); |
907 | | T6Y = FNMS(KP707106781, T6v, T6s); |
908 | | { |
909 | | E T6z, T6C, T9n, T9o; |
910 | | T6z = FMA(KP414213562, T6y, T6x); |
911 | | T6C = FNMS(KP414213562, T6B, T6A); |
912 | | T6D = T6z - T6C; |
913 | | T9w = T6z + T6C; |
914 | | T9n = T98 + T97; |
915 | | T9o = T4q - T4j; |
916 | | T9p = FMA(KP707106781, T9o, T9n); |
917 | | T9v = FNMS(KP707106781, T9o, T9n); |
918 | | } |
919 | | T6Z = FNMS(KP414213562, T6x, T6y); |
920 | | T70 = FMA(KP414213562, T6A, T6B); |
921 | | T71 = T6Z + T70; |
922 | | T9q = T70 - T6Z; |
923 | | { |
924 | | E T6O, T77, T6R, T76, T6N, T6Q; |
925 | | T6N = T63 - T62; |
926 | | T6O = FNMS(KP707106781, T6N, T6M); |
927 | | T77 = FMA(KP707106781, T6N, T6M); |
928 | | T6Q = T5S - T5L; |
929 | | T6R = FNMS(KP707106781, T6Q, T6P); |
930 | | T76 = FMA(KP707106781, T6Q, T6P); |
931 | | T6S = FMA(KP668178637, T6R, T6O); |
932 | | T7c = FNMS(KP198912367, T76, T77); |
933 | | T6W = FNMS(KP668178637, T6O, T6R); |
934 | | T78 = FMA(KP198912367, T77, T76); |
935 | | } |
936 | | { |
937 | | E T6H, T74, T6K, T73, T6G, T6J; |
938 | | T6G = T5u - T5t; |
939 | | T6H = FNMS(KP707106781, T6G, T6F); |
940 | | T74 = FMA(KP707106781, T6G, T6F); |
941 | | T6J = T5c - T5j; |
942 | | T6K = FNMS(KP707106781, T6J, T6I); |
943 | | T73 = FMA(KP707106781, T6J, T6I); |
944 | | T6L = FMA(KP668178637, T6K, T6H); |
945 | | T7b = FNMS(KP198912367, T73, T74); |
946 | | T6V = FNMS(KP668178637, T6H, T6K); |
947 | | T75 = FMA(KP198912367, T74, T73); |
948 | | } |
949 | | } |
950 | | { |
951 | | E T6E, T6T, T9r, T9s; |
952 | | T6E = FMA(KP923879532, T6D, T6w); |
953 | | T6T = T6L + T6S; |
954 | | Rm[WS(rs, 12)] = FNMS(KP831469612, T6T, T6E); |
955 | | Rp[WS(rs, 3)] = FMA(KP831469612, T6T, T6E); |
956 | | T9r = FMA(KP923879532, T9q, T9p); |
957 | | T9s = T6V - T6W; |
958 | | Im[WS(rs, 12)] = FMS(KP831469612, T9s, T9r); |
959 | | Ip[WS(rs, 3)] = FMA(KP831469612, T9s, T9r); |
960 | | } |
961 | | { |
962 | | E T6U, T6X, T9t, T9u; |
963 | | T6U = FNMS(KP923879532, T6D, T6w); |
964 | | T6X = T6V + T6W; |
965 | | Rm[WS(rs, 4)] = FNMS(KP831469612, T6X, T6U); |
966 | | Rp[WS(rs, 11)] = FMA(KP831469612, T6X, T6U); |
967 | | T9t = FNMS(KP923879532, T9q, T9p); |
968 | | T9u = T6S - T6L; |
969 | | Im[WS(rs, 4)] = FMS(KP831469612, T9u, T9t); |
970 | | Ip[WS(rs, 11)] = FMA(KP831469612, T9u, T9t); |
971 | | } |
972 | | { |
973 | | E T72, T79, T9x, T9y; |
974 | | T72 = FNMS(KP923879532, T71, T6Y); |
975 | | T79 = T75 + T78; |
976 | | Rm[WS(rs, 8)] = FNMS(KP980785280, T79, T72); |
977 | | Rp[WS(rs, 7)] = FMA(KP980785280, T79, T72); |
978 | | T9x = FNMS(KP923879532, T9w, T9v); |
979 | | T9y = T7c - T7b; |
980 | | Im[WS(rs, 8)] = FMS(KP980785280, T9y, T9x); |
981 | | Ip[WS(rs, 7)] = FMA(KP980785280, T9y, T9x); |
982 | | } |
983 | | { |
984 | | E T7a, T7d, T9z, T9A; |
985 | | T7a = FMA(KP923879532, T71, T6Y); |
986 | | T7d = T7b + T7c; |
987 | | Rp[WS(rs, 15)] = FNMS(KP980785280, T7d, T7a); |
988 | | Rm[0] = FMA(KP980785280, T7d, T7a); |
989 | | T9z = FMA(KP923879532, T9w, T9v); |
990 | | T9A = T78 - T75; |
991 | | Im[0] = FMS(KP980785280, T9A, T9z); |
992 | | Ip[WS(rs, 15)] = FMA(KP980785280, T9A, T9z); |
993 | | } |
994 | | } |
995 | | } |
996 | | } |
997 | | } |
998 | | } |
999 | | |
1000 | | static const tw_instr twinstr[] = { |
1001 | | { TW_CEXP, 1, 1 }, |
1002 | | { TW_CEXP, 1, 3 }, |
1003 | | { TW_CEXP, 1, 9 }, |
1004 | | { TW_CEXP, 1, 27 }, |
1005 | | { TW_NEXT, 1, 0 } |
1006 | | }; |
1007 | | |
1008 | | static const hc2c_desc desc = { 32, "hc2cf2_32", twinstr, &GENUS, { 236, 98, 252, 0 } }; |
1009 | | |
1010 | | void X(codelet_hc2cf2_32) (planner *p) { |
1011 | | X(khc2c_register) (p, hc2cf2_32, &desc, HC2C_VIA_RDFT); |
1012 | | } |
1013 | | #else |
1014 | | |
1015 | | /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 32 -dit -name hc2cf2_32 -include rdft/scalar/hc2cf.h */ |
1016 | | |
1017 | | /* |
1018 | | * This function contains 488 FP additions, 280 FP multiplications, |
1019 | | * (or, 376 additions, 168 multiplications, 112 fused multiply/add), |
1020 | | * 158 stack variables, 7 constants, and 128 memory accesses |
1021 | | */ |
1022 | | #include "rdft/scalar/hc2cf.h" |
1023 | | |
1024 | | static void hc2cf2_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
1025 | 0 | { |
1026 | 0 | DK(KP195090322, +0.195090322016128267848284868477022240927691618); |
1027 | 0 | DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
1028 | 0 | DK(KP555570233, +0.555570233019602224742830813948532874374937191); |
1029 | 0 | DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
1030 | 0 | DK(KP382683432, +0.382683432365089771728459984030398866761344562); |
1031 | 0 | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
1032 | 0 | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
1033 | 0 | { |
1034 | 0 | INT m; |
1035 | 0 | for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(128, rs)) { |
1036 | 0 | E T2, T5, T3, T6, T8, TM, TO, Td, T9, Te, Th, Tl, TD, TH, T1y; |
1037 | 0 | E T1H, T15, T1A, T11, T1F, T1n, T1p, T2q, T2I, T2u, T2K, T2V, T3b, T2Z, T3d; |
1038 | 0 | E Tu, Ty, T3l, T3n, T1t, T1v, T2f, T2h, T1a, T1e, T32, T34, T1W, T1Y, T2C; |
1039 | 0 | E T2E, Tg, TR, Tk, TS, Tm, TV, To, TT, T1M, T21, T1P, T22, T1Q, T25; |
1040 | 0 | E T1S, T23; |
1041 | 0 | { |
1042 | 0 | E Ts, T1d, Tx, T18, Tt, T1c, Tw, T19, TB, T14, TG, TZ, TC, T13, TF; |
1043 | 0 | E T10; |
1044 | 0 | { |
1045 | 0 | E T4, Tc, T7, Tb; |
1046 | 0 | T2 = W[0]; |
1047 | 0 | T5 = W[1]; |
1048 | 0 | T3 = W[2]; |
1049 | 0 | T6 = W[3]; |
1050 | 0 | T4 = T2 * T3; |
1051 | 0 | Tc = T5 * T3; |
1052 | 0 | T7 = T5 * T6; |
1053 | 0 | Tb = T2 * T6; |
1054 | 0 | T8 = T4 + T7; |
1055 | 0 | TM = T4 - T7; |
1056 | 0 | TO = Tb + Tc; |
1057 | 0 | Td = Tb - Tc; |
1058 | 0 | T9 = W[4]; |
1059 | 0 | Ts = T2 * T9; |
1060 | 0 | T1d = T6 * T9; |
1061 | 0 | Tx = T5 * T9; |
1062 | 0 | T18 = T3 * T9; |
1063 | 0 | Te = W[5]; |
1064 | 0 | Tt = T5 * Te; |
1065 | 0 | T1c = T3 * Te; |
1066 | 0 | Tw = T2 * Te; |
1067 | 0 | T19 = T6 * Te; |
1068 | 0 | Th = W[6]; |
1069 | 0 | TB = T3 * Th; |
1070 | 0 | T14 = T5 * Th; |
1071 | 0 | TG = T6 * Th; |
1072 | 0 | TZ = T2 * Th; |
1073 | 0 | Tl = W[7]; |
1074 | 0 | TC = T6 * Tl; |
1075 | 0 | T13 = T2 * Tl; |
1076 | 0 | TF = T3 * Tl; |
1077 | 0 | T10 = T5 * Tl; |
1078 | 0 | } |
1079 | 0 | TD = TB + TC; |
1080 | 0 | TH = TF - TG; |
1081 | 0 | T1y = TZ + T10; |
1082 | 0 | T1H = TF + TG; |
1083 | 0 | T15 = T13 + T14; |
1084 | 0 | T1A = T13 - T14; |
1085 | 0 | T11 = TZ - T10; |
1086 | 0 | T1F = TB - TC; |
1087 | 0 | T1n = FMA(T9, Th, Te * Tl); |
1088 | 0 | T1p = FNMS(Te, Th, T9 * Tl); |
1089 | 0 | { |
1090 | 0 | E T2o, T2p, T2s, T2t; |
1091 | 0 | T2o = T8 * Th; |
1092 | 0 | T2p = Td * Tl; |
1093 | 0 | T2q = T2o + T2p; |
1094 | 0 | T2I = T2o - T2p; |
1095 | 0 | T2s = T8 * Tl; |
1096 | 0 | T2t = Td * Th; |
1097 | 0 | T2u = T2s - T2t; |
1098 | 0 | T2K = T2s + T2t; |
1099 | 0 | } |
1100 | 0 | { |
1101 | 0 | E T2T, T2U, T2X, T2Y; |
1102 | 0 | T2T = TM * Th; |
1103 | 0 | T2U = TO * Tl; |
1104 | 0 | T2V = T2T - T2U; |
1105 | 0 | T3b = T2T + T2U; |
1106 | 0 | T2X = TM * Tl; |
1107 | 0 | T2Y = TO * Th; |
1108 | 0 | T2Z = T2X + T2Y; |
1109 | 0 | T3d = T2X - T2Y; |
1110 | 0 | Tu = Ts + Tt; |
1111 | 0 | Ty = Tw - Tx; |
1112 | 0 | T3l = FMA(Tu, Th, Ty * Tl); |
1113 | 0 | T3n = FNMS(Ty, Th, Tu * Tl); |
1114 | 0 | } |
1115 | 0 | T1t = Ts - Tt; |
1116 | 0 | T1v = Tw + Tx; |
1117 | 0 | T2f = FMA(T1t, Th, T1v * Tl); |
1118 | 0 | T2h = FNMS(T1v, Th, T1t * Tl); |
1119 | 0 | T1a = T18 - T19; |
1120 | 0 | T1e = T1c + T1d; |
1121 | 0 | T32 = FMA(T1a, Th, T1e * Tl); |
1122 | 0 | T34 = FNMS(T1e, Th, T1a * Tl); |
1123 | 0 | T1W = T18 + T19; |
1124 | 0 | T1Y = T1c - T1d; |
1125 | 0 | T2C = FMA(T1W, Th, T1Y * Tl); |
1126 | 0 | T2E = FNMS(T1Y, Th, T1W * Tl); |
1127 | 0 | { |
1128 | 0 | E Ta, Tf, Ti, Tj; |
1129 | 0 | Ta = T8 * T9; |
1130 | 0 | Tf = Td * Te; |
1131 | 0 | Tg = Ta - Tf; |
1132 | 0 | TR = Ta + Tf; |
1133 | 0 | Ti = T8 * Te; |
1134 | 0 | Tj = Td * T9; |
1135 | 0 | Tk = Ti + Tj; |
1136 | 0 | TS = Ti - Tj; |
1137 | 0 | } |
1138 | 0 | Tm = FMA(Tg, Th, Tk * Tl); |
1139 | 0 | TV = FNMS(TS, Th, TR * Tl); |
1140 | 0 | To = FNMS(Tk, Th, Tg * Tl); |
1141 | 0 | TT = FMA(TR, Th, TS * Tl); |
1142 | 0 | { |
1143 | 0 | E T1K, T1L, T1N, T1O; |
1144 | 0 | T1K = TM * T9; |
1145 | 0 | T1L = TO * Te; |
1146 | 0 | T1M = T1K - T1L; |
1147 | 0 | T21 = T1K + T1L; |
1148 | 0 | T1N = TM * Te; |
1149 | 0 | T1O = TO * T9; |
1150 | 0 | T1P = T1N + T1O; |
1151 | 0 | T22 = T1N - T1O; |
1152 | 0 | } |
1153 | 0 | T1Q = FMA(T1M, Th, T1P * Tl); |
1154 | 0 | T25 = FNMS(T22, Th, T21 * Tl); |
1155 | 0 | T1S = FNMS(T1P, Th, T1M * Tl); |
1156 | 0 | T23 = FMA(T21, Th, T22 * Tl); |
1157 | 0 | } |
1158 | 0 | { |
1159 | 0 | E TL, T6f, T8c, T8q, T3F, T5t, T7I, T7W, T2y, T6B, T6y, T7j, T4k, T5J, T4B; |
1160 | 0 | E T5G, T3h, T6H, T6O, T7o, T4L, T5N, T52, T5Q, T1i, T7V, T6i, T7D, T3K, T5u; |
1161 | 0 | E T3P, T5v, T1E, T6n, T6m, T7e, T3W, T5y, T41, T5z, T29, T6p, T6s, T7f, T47; |
1162 | 0 | E T5B, T4c, T5C, T2R, T6z, T6E, T7k, T4v, T5H, T4E, T5K, T3y, T6P, T6K, T7p; |
1163 | 0 | E T4W, T5R, T55, T5O; |
1164 | 0 | { |
1165 | 0 | E T1, T7G, Tq, T7F, TA, T3C, TJ, T3D, Tn, Tp; |
1166 | 0 | T1 = Rp[0]; |
1167 | 0 | T7G = Rm[0]; |
1168 | 0 | Tn = Rp[WS(rs, 8)]; |
1169 | 0 | Tp = Rm[WS(rs, 8)]; |
1170 | 0 | Tq = FMA(Tm, Tn, To * Tp); |
1171 | 0 | T7F = FNMS(To, Tn, Tm * Tp); |
1172 | 0 | { |
1173 | 0 | E Tv, Tz, TE, TI; |
1174 | 0 | Tv = Rp[WS(rs, 4)]; |
1175 | 0 | Tz = Rm[WS(rs, 4)]; |
1176 | 0 | TA = FMA(Tu, Tv, Ty * Tz); |
1177 | 0 | T3C = FNMS(Ty, Tv, Tu * Tz); |
1178 | 0 | TE = Rp[WS(rs, 12)]; |
1179 | 0 | TI = Rm[WS(rs, 12)]; |
1180 | 0 | TJ = FMA(TD, TE, TH * TI); |
1181 | 0 | T3D = FNMS(TH, TE, TD * TI); |
1182 | 0 | } |
1183 | 0 | { |
1184 | 0 | E Tr, TK, T8a, T8b; |
1185 | 0 | Tr = T1 + Tq; |
1186 | 0 | TK = TA + TJ; |
1187 | 0 | TL = Tr + TK; |
1188 | 0 | T6f = Tr - TK; |
1189 | 0 | T8a = T7G - T7F; |
1190 | 0 | T8b = TA - TJ; |
1191 | 0 | T8c = T8a - T8b; |
1192 | 0 | T8q = T8b + T8a; |
1193 | 0 | } |
1194 | 0 | { |
1195 | 0 | E T3B, T3E, T7E, T7H; |
1196 | 0 | T3B = T1 - Tq; |
1197 | 0 | T3E = T3C - T3D; |
1198 | 0 | T3F = T3B - T3E; |
1199 | 0 | T5t = T3B + T3E; |
1200 | 0 | T7E = T3C + T3D; |
1201 | 0 | T7H = T7F + T7G; |
1202 | 0 | T7I = T7E + T7H; |
1203 | 0 | T7W = T7H - T7E; |
1204 | 0 | } |
1205 | 0 | } |
1206 | 0 | { |
1207 | 0 | E T2e, T4g, T2w, T4z, T2j, T4h, T2n, T4y; |
1208 | 0 | { |
1209 | 0 | E T2c, T2d, T2r, T2v; |
1210 | 0 | T2c = Ip[0]; |
1211 | 0 | T2d = Im[0]; |
1212 | 0 | T2e = FMA(T2, T2c, T5 * T2d); |
1213 | 0 | T4g = FNMS(T5, T2c, T2 * T2d); |
1214 | 0 | T2r = Ip[WS(rs, 12)]; |
1215 | 0 | T2v = Im[WS(rs, 12)]; |
1216 | 0 | T2w = FMA(T2q, T2r, T2u * T2v); |
1217 | 0 | T4z = FNMS(T2u, T2r, T2q * T2v); |
1218 | 0 | } |
1219 | 0 | { |
1220 | 0 | E T2g, T2i, T2l, T2m; |
1221 | 0 | T2g = Ip[WS(rs, 8)]; |
1222 | 0 | T2i = Im[WS(rs, 8)]; |
1223 | 0 | T2j = FMA(T2f, T2g, T2h * T2i); |
1224 | 0 | T4h = FNMS(T2h, T2g, T2f * T2i); |
1225 | 0 | T2l = Ip[WS(rs, 4)]; |
1226 | 0 | T2m = Im[WS(rs, 4)]; |
1227 | 0 | T2n = FMA(T9, T2l, Te * T2m); |
1228 | 0 | T4y = FNMS(Te, T2l, T9 * T2m); |
1229 | 0 | } |
1230 | 0 | { |
1231 | 0 | E T2k, T2x, T6w, T6x; |
1232 | 0 | T2k = T2e + T2j; |
1233 | 0 | T2x = T2n + T2w; |
1234 | 0 | T2y = T2k + T2x; |
1235 | 0 | T6B = T2k - T2x; |
1236 | 0 | T6w = T4g + T4h; |
1237 | 0 | T6x = T4y + T4z; |
1238 | 0 | T6y = T6w - T6x; |
1239 | 0 | T7j = T6w + T6x; |
1240 | 0 | } |
1241 | 0 | { |
1242 | 0 | E T4i, T4j, T4x, T4A; |
1243 | 0 | T4i = T4g - T4h; |
1244 | 0 | T4j = T2n - T2w; |
1245 | 0 | T4k = T4i + T4j; |
1246 | 0 | T5J = T4i - T4j; |
1247 | 0 | T4x = T2e - T2j; |
1248 | 0 | T4A = T4y - T4z; |
1249 | 0 | T4B = T4x - T4A; |
1250 | 0 | T5G = T4x + T4A; |
1251 | 0 | } |
1252 | 0 | } |
1253 | 0 | { |
1254 | 0 | E T31, T4Y, T3f, T4J, T36, T4Z, T3a, T4I; |
1255 | 0 | { |
1256 | 0 | E T2W, T30, T3c, T3e; |
1257 | 0 | T2W = Ip[WS(rs, 15)]; |
1258 | 0 | T30 = Im[WS(rs, 15)]; |
1259 | 0 | T31 = FMA(T2V, T2W, T2Z * T30); |
1260 | 0 | T4Y = FNMS(T2Z, T2W, T2V * T30); |
1261 | 0 | T3c = Ip[WS(rs, 11)]; |
1262 | 0 | T3e = Im[WS(rs, 11)]; |
1263 | 0 | T3f = FMA(T3b, T3c, T3d * T3e); |
1264 | 0 | T4J = FNMS(T3d, T3c, T3b * T3e); |
1265 | 0 | } |
1266 | 0 | { |
1267 | 0 | E T33, T35, T38, T39; |
1268 | 0 | T33 = Ip[WS(rs, 7)]; |
1269 | 0 | T35 = Im[WS(rs, 7)]; |
1270 | 0 | T36 = FMA(T32, T33, T34 * T35); |
1271 | 0 | T4Z = FNMS(T34, T33, T32 * T35); |
1272 | 0 | T38 = Ip[WS(rs, 3)]; |
1273 | 0 | T39 = Im[WS(rs, 3)]; |
1274 | 0 | T3a = FMA(TR, T38, TS * T39); |
1275 | 0 | T4I = FNMS(TS, T38, TR * T39); |
1276 | 0 | } |
1277 | 0 | { |
1278 | 0 | E T37, T3g, T6M, T6N; |
1279 | 0 | T37 = T31 + T36; |
1280 | 0 | T3g = T3a + T3f; |
1281 | 0 | T3h = T37 + T3g; |
1282 | 0 | T6H = T37 - T3g; |
1283 | 0 | T6M = T4Y + T4Z; |
1284 | 0 | T6N = T4I + T4J; |
1285 | 0 | T6O = T6M - T6N; |
1286 | 0 | T7o = T6M + T6N; |
1287 | 0 | } |
1288 | 0 | { |
1289 | 0 | E T4H, T4K, T50, T51; |
1290 | 0 | T4H = T31 - T36; |
1291 | 0 | T4K = T4I - T4J; |
1292 | 0 | T4L = T4H - T4K; |
1293 | 0 | T5N = T4H + T4K; |
1294 | 0 | T50 = T4Y - T4Z; |
1295 | 0 | T51 = T3a - T3f; |
1296 | 0 | T52 = T50 + T51; |
1297 | 0 | T5Q = T50 - T51; |
1298 | 0 | } |
1299 | 0 | } |
1300 | 0 | { |
1301 | 0 | E TQ, T3G, T1g, T3N, TX, T3H, T17, T3M; |
1302 | 0 | { |
1303 | 0 | E TN, TP, T1b, T1f; |
1304 | 0 | TN = Rp[WS(rs, 2)]; |
1305 | 0 | TP = Rm[WS(rs, 2)]; |
1306 | 0 | TQ = FMA(TM, TN, TO * TP); |
1307 | 0 | T3G = FNMS(TO, TN, TM * TP); |
1308 | 0 | T1b = Rp[WS(rs, 6)]; |
1309 | 0 | T1f = Rm[WS(rs, 6)]; |
1310 | 0 | T1g = FMA(T1a, T1b, T1e * T1f); |
1311 | 0 | T3N = FNMS(T1e, T1b, T1a * T1f); |
1312 | 0 | } |
1313 | 0 | { |
1314 | 0 | E TU, TW, T12, T16; |
1315 | 0 | TU = Rp[WS(rs, 10)]; |
1316 | 0 | TW = Rm[WS(rs, 10)]; |
1317 | 0 | TX = FMA(TT, TU, TV * TW); |
1318 | 0 | T3H = FNMS(TV, TU, TT * TW); |
1319 | 0 | T12 = Rp[WS(rs, 14)]; |
1320 | 0 | T16 = Rm[WS(rs, 14)]; |
1321 | 0 | T17 = FMA(T11, T12, T15 * T16); |
1322 | 0 | T3M = FNMS(T15, T12, T11 * T16); |
1323 | 0 | } |
1324 | 0 | { |
1325 | 0 | E TY, T1h, T6g, T6h; |
1326 | 0 | TY = TQ + TX; |
1327 | 0 | T1h = T17 + T1g; |
1328 | 0 | T1i = TY + T1h; |
1329 | 0 | T7V = T1h - TY; |
1330 | 0 | T6g = T3G + T3H; |
1331 | 0 | T6h = T3M + T3N; |
1332 | 0 | T6i = T6g - T6h; |
1333 | 0 | T7D = T6g + T6h; |
1334 | 0 | } |
1335 | 0 | { |
1336 | 0 | E T3I, T3J, T3L, T3O; |
1337 | 0 | T3I = T3G - T3H; |
1338 | 0 | T3J = TQ - TX; |
1339 | 0 | T3K = T3I - T3J; |
1340 | 0 | T5u = T3J + T3I; |
1341 | 0 | T3L = T17 - T1g; |
1342 | 0 | T3O = T3M - T3N; |
1343 | 0 | T3P = T3L + T3O; |
1344 | 0 | T5v = T3L - T3O; |
1345 | 0 | } |
1346 | 0 | } |
1347 | 0 | { |
1348 | 0 | E T1m, T3S, T1C, T3Z, T1r, T3T, T1x, T3Y; |
1349 | 0 | { |
1350 | 0 | E T1k, T1l, T1z, T1B; |
1351 | 0 | T1k = Rp[WS(rs, 1)]; |
1352 | 0 | T1l = Rm[WS(rs, 1)]; |
1353 | 0 | T1m = FMA(T8, T1k, Td * T1l); |
1354 | 0 | T3S = FNMS(Td, T1k, T8 * T1l); |
1355 | 0 | T1z = Rp[WS(rs, 13)]; |
1356 | 0 | T1B = Rm[WS(rs, 13)]; |
1357 | 0 | T1C = FMA(T1y, T1z, T1A * T1B); |
1358 | 0 | T3Z = FNMS(T1A, T1z, T1y * T1B); |
1359 | 0 | } |
1360 | 0 | { |
1361 | 0 | E T1o, T1q, T1u, T1w; |
1362 | 0 | T1o = Rp[WS(rs, 9)]; |
1363 | 0 | T1q = Rm[WS(rs, 9)]; |
1364 | 0 | T1r = FMA(T1n, T1o, T1p * T1q); |
1365 | 0 | T3T = FNMS(T1p, T1o, T1n * T1q); |
1366 | 0 | T1u = Rp[WS(rs, 5)]; |
1367 | 0 | T1w = Rm[WS(rs, 5)]; |
1368 | 0 | T1x = FMA(T1t, T1u, T1v * T1w); |
1369 | 0 | T3Y = FNMS(T1v, T1u, T1t * T1w); |
1370 | 0 | } |
1371 | 0 | { |
1372 | 0 | E T1s, T1D, T6k, T6l; |
1373 | 0 | T1s = T1m + T1r; |
1374 | 0 | T1D = T1x + T1C; |
1375 | 0 | T1E = T1s + T1D; |
1376 | 0 | T6n = T1s - T1D; |
1377 | 0 | T6k = T3S + T3T; |
1378 | 0 | T6l = T3Y + T3Z; |
1379 | 0 | T6m = T6k - T6l; |
1380 | 0 | T7e = T6k + T6l; |
1381 | 0 | } |
1382 | 0 | { |
1383 | 0 | E T3U, T3V, T3X, T40; |
1384 | 0 | T3U = T3S - T3T; |
1385 | 0 | T3V = T1x - T1C; |
1386 | 0 | T3W = T3U + T3V; |
1387 | 0 | T5y = T3U - T3V; |
1388 | 0 | T3X = T1m - T1r; |
1389 | 0 | T40 = T3Y - T3Z; |
1390 | 0 | T41 = T3X - T40; |
1391 | 0 | T5z = T3X + T40; |
1392 | 0 | } |
1393 | 0 | } |
1394 | 0 | { |
1395 | 0 | E T1J, T43, T27, T4a, T1U, T44, T20, T49; |
1396 | 0 | { |
1397 | 0 | E T1G, T1I, T24, T26; |
1398 | 0 | T1G = Rp[WS(rs, 15)]; |
1399 | 0 | T1I = Rm[WS(rs, 15)]; |
1400 | 0 | T1J = FMA(T1F, T1G, T1H * T1I); |
1401 | 0 | T43 = FNMS(T1H, T1G, T1F * T1I); |
1402 | 0 | T24 = Rp[WS(rs, 11)]; |
1403 | 0 | T26 = Rm[WS(rs, 11)]; |
1404 | 0 | T27 = FMA(T23, T24, T25 * T26); |
1405 | 0 | T4a = FNMS(T25, T24, T23 * T26); |
1406 | 0 | } |
1407 | 0 | { |
1408 | 0 | E T1R, T1T, T1X, T1Z; |
1409 | 0 | T1R = Rp[WS(rs, 7)]; |
1410 | 0 | T1T = Rm[WS(rs, 7)]; |
1411 | 0 | T1U = FMA(T1Q, T1R, T1S * T1T); |
1412 | 0 | T44 = FNMS(T1S, T1R, T1Q * T1T); |
1413 | 0 | T1X = Rp[WS(rs, 3)]; |
1414 | 0 | T1Z = Rm[WS(rs, 3)]; |
1415 | 0 | T20 = FMA(T1W, T1X, T1Y * T1Z); |
1416 | 0 | T49 = FNMS(T1Y, T1X, T1W * T1Z); |
1417 | 0 | } |
1418 | 0 | { |
1419 | 0 | E T1V, T28, T6q, T6r; |
1420 | 0 | T1V = T1J + T1U; |
1421 | 0 | T28 = T20 + T27; |
1422 | 0 | T29 = T1V + T28; |
1423 | 0 | T6p = T1V - T28; |
1424 | 0 | T6q = T43 + T44; |
1425 | 0 | T6r = T49 + T4a; |
1426 | 0 | T6s = T6q - T6r; |
1427 | 0 | T7f = T6q + T6r; |
1428 | 0 | } |
1429 | 0 | { |
1430 | 0 | E T45, T46, T48, T4b; |
1431 | 0 | T45 = T43 - T44; |
1432 | 0 | T46 = T20 - T27; |
1433 | 0 | T47 = T45 + T46; |
1434 | 0 | T5B = T45 - T46; |
1435 | 0 | T48 = T1J - T1U; |
1436 | 0 | T4b = T49 - T4a; |
1437 | 0 | T4c = T48 - T4b; |
1438 | 0 | T5C = T48 + T4b; |
1439 | 0 | } |
1440 | 0 | } |
1441 | 0 | { |
1442 | 0 | E T2B, T4r, T2G, T4s, T4q, T4t, T2M, T4m, T2P, T4n, T4l, T4o; |
1443 | 0 | { |
1444 | 0 | E T2z, T2A, T2D, T2F; |
1445 | 0 | T2z = Ip[WS(rs, 2)]; |
1446 | 0 | T2A = Im[WS(rs, 2)]; |
1447 | 0 | T2B = FMA(T21, T2z, T22 * T2A); |
1448 | 0 | T4r = FNMS(T22, T2z, T21 * T2A); |
1449 | 0 | T2D = Ip[WS(rs, 10)]; |
1450 | 0 | T2F = Im[WS(rs, 10)]; |
1451 | 0 | T2G = FMA(T2C, T2D, T2E * T2F); |
1452 | 0 | T4s = FNMS(T2E, T2D, T2C * T2F); |
1453 | 0 | } |
1454 | 0 | T4q = T2B - T2G; |
1455 | 0 | T4t = T4r - T4s; |
1456 | 0 | { |
1457 | 0 | E T2J, T2L, T2N, T2O; |
1458 | 0 | T2J = Ip[WS(rs, 14)]; |
1459 | 0 | T2L = Im[WS(rs, 14)]; |
1460 | 0 | T2M = FMA(T2I, T2J, T2K * T2L); |
1461 | 0 | T4m = FNMS(T2K, T2J, T2I * T2L); |
1462 | 0 | T2N = Ip[WS(rs, 6)]; |
1463 | 0 | T2O = Im[WS(rs, 6)]; |
1464 | 0 | T2P = FMA(T1M, T2N, T1P * T2O); |
1465 | 0 | T4n = FNMS(T1P, T2N, T1M * T2O); |
1466 | 0 | } |
1467 | 0 | T4l = T2M - T2P; |
1468 | 0 | T4o = T4m - T4n; |
1469 | 0 | { |
1470 | 0 | E T2H, T2Q, T6C, T6D; |
1471 | 0 | T2H = T2B + T2G; |
1472 | 0 | T2Q = T2M + T2P; |
1473 | 0 | T2R = T2H + T2Q; |
1474 | 0 | T6z = T2Q - T2H; |
1475 | 0 | T6C = T4r + T4s; |
1476 | 0 | T6D = T4m + T4n; |
1477 | 0 | T6E = T6C - T6D; |
1478 | 0 | T7k = T6C + T6D; |
1479 | 0 | } |
1480 | 0 | { |
1481 | 0 | E T4p, T4u, T4C, T4D; |
1482 | 0 | T4p = T4l - T4o; |
1483 | 0 | T4u = T4q + T4t; |
1484 | 0 | T4v = KP707106781 * (T4p - T4u); |
1485 | 0 | T5H = KP707106781 * (T4u + T4p); |
1486 | 0 | T4C = T4t - T4q; |
1487 | 0 | T4D = T4l + T4o; |
1488 | 0 | T4E = KP707106781 * (T4C - T4D); |
1489 | 0 | T5K = KP707106781 * (T4C + T4D); |
1490 | 0 | } |
1491 | 0 | } |
1492 | 0 | { |
1493 | 0 | E T3k, T4M, T3p, T4N, T4O, T4P, T3t, T4S, T3w, T4T, T4R, T4U; |
1494 | 0 | { |
1495 | 0 | E T3i, T3j, T3m, T3o; |
1496 | 0 | T3i = Ip[WS(rs, 1)]; |
1497 | 0 | T3j = Im[WS(rs, 1)]; |
1498 | 0 | T3k = FMA(T3, T3i, T6 * T3j); |
1499 | 0 | T4M = FNMS(T6, T3i, T3 * T3j); |
1500 | 0 | T3m = Ip[WS(rs, 9)]; |
1501 | 0 | T3o = Im[WS(rs, 9)]; |
1502 | 0 | T3p = FMA(T3l, T3m, T3n * T3o); |
1503 | 0 | T4N = FNMS(T3n, T3m, T3l * T3o); |
1504 | 0 | } |
1505 | 0 | T4O = T4M - T4N; |
1506 | 0 | T4P = T3k - T3p; |
1507 | 0 | { |
1508 | 0 | E T3r, T3s, T3u, T3v; |
1509 | 0 | T3r = Ip[WS(rs, 13)]; |
1510 | 0 | T3s = Im[WS(rs, 13)]; |
1511 | 0 | T3t = FMA(Th, T3r, Tl * T3s); |
1512 | 0 | T4S = FNMS(Tl, T3r, Th * T3s); |
1513 | 0 | T3u = Ip[WS(rs, 5)]; |
1514 | 0 | T3v = Im[WS(rs, 5)]; |
1515 | 0 | T3w = FMA(Tg, T3u, Tk * T3v); |
1516 | 0 | T4T = FNMS(Tk, T3u, Tg * T3v); |
1517 | 0 | } |
1518 | 0 | T4R = T3t - T3w; |
1519 | 0 | T4U = T4S - T4T; |
1520 | 0 | { |
1521 | 0 | E T3q, T3x, T6I, T6J; |
1522 | 0 | T3q = T3k + T3p; |
1523 | 0 | T3x = T3t + T3w; |
1524 | 0 | T3y = T3q + T3x; |
1525 | 0 | T6P = T3x - T3q; |
1526 | 0 | T6I = T4M + T4N; |
1527 | 0 | T6J = T4S + T4T; |
1528 | 0 | T6K = T6I - T6J; |
1529 | 0 | T7p = T6I + T6J; |
1530 | 0 | } |
1531 | 0 | { |
1532 | 0 | E T4Q, T4V, T53, T54; |
1533 | 0 | T4Q = T4O - T4P; |
1534 | 0 | T4V = T4R + T4U; |
1535 | 0 | T4W = KP707106781 * (T4Q - T4V); |
1536 | 0 | T5R = KP707106781 * (T4Q + T4V); |
1537 | 0 | T53 = T4R - T4U; |
1538 | 0 | T54 = T4P + T4O; |
1539 | 0 | T55 = KP707106781 * (T53 - T54); |
1540 | 0 | T5O = KP707106781 * (T54 + T53); |
1541 | 0 | } |
1542 | 0 | } |
1543 | 0 | { |
1544 | 0 | E T2b, T7x, T7K, T7M, T3A, T7L, T7A, T7B; |
1545 | 0 | { |
1546 | 0 | E T1j, T2a, T7C, T7J; |
1547 | 0 | T1j = TL + T1i; |
1548 | 0 | T2a = T1E + T29; |
1549 | 0 | T2b = T1j + T2a; |
1550 | 0 | T7x = T1j - T2a; |
1551 | 0 | T7C = T7e + T7f; |
1552 | 0 | T7J = T7D + T7I; |
1553 | 0 | T7K = T7C + T7J; |
1554 | 0 | T7M = T7J - T7C; |
1555 | 0 | } |
1556 | 0 | { |
1557 | 0 | E T2S, T3z, T7y, T7z; |
1558 | 0 | T2S = T2y + T2R; |
1559 | 0 | T3z = T3h + T3y; |
1560 | 0 | T3A = T2S + T3z; |
1561 | 0 | T7L = T3z - T2S; |
1562 | 0 | T7y = T7j + T7k; |
1563 | 0 | T7z = T7o + T7p; |
1564 | 0 | T7A = T7y - T7z; |
1565 | 0 | T7B = T7y + T7z; |
1566 | 0 | } |
1567 | 0 | Rm[WS(rs, 15)] = T2b - T3A; |
1568 | 0 | Im[WS(rs, 15)] = T7B - T7K; |
1569 | 0 | Rp[0] = T2b + T3A; |
1570 | 0 | Ip[0] = T7B + T7K; |
1571 | 0 | Rm[WS(rs, 7)] = T7x - T7A; |
1572 | 0 | Im[WS(rs, 7)] = T7L - T7M; |
1573 | 0 | Rp[WS(rs, 8)] = T7x + T7A; |
1574 | 0 | Ip[WS(rs, 8)] = T7L + T7M; |
1575 | 0 | } |
1576 | 0 | { |
1577 | 0 | E T7h, T7t, T7Q, T7S, T7m, T7u, T7r, T7v; |
1578 | 0 | { |
1579 | 0 | E T7d, T7g, T7O, T7P; |
1580 | 0 | T7d = TL - T1i; |
1581 | 0 | T7g = T7e - T7f; |
1582 | 0 | T7h = T7d + T7g; |
1583 | 0 | T7t = T7d - T7g; |
1584 | 0 | T7O = T29 - T1E; |
1585 | 0 | T7P = T7I - T7D; |
1586 | 0 | T7Q = T7O + T7P; |
1587 | 0 | T7S = T7P - T7O; |
1588 | 0 | } |
1589 | 0 | { |
1590 | 0 | E T7i, T7l, T7n, T7q; |
1591 | 0 | T7i = T2y - T2R; |
1592 | 0 | T7l = T7j - T7k; |
1593 | 0 | T7m = T7i + T7l; |
1594 | 0 | T7u = T7l - T7i; |
1595 | 0 | T7n = T3h - T3y; |
1596 | 0 | T7q = T7o - T7p; |
1597 | 0 | T7r = T7n - T7q; |
1598 | 0 | T7v = T7n + T7q; |
1599 | 0 | } |
1600 | 0 | { |
1601 | 0 | E T7s, T7N, T7w, T7R; |
1602 | 0 | T7s = KP707106781 * (T7m + T7r); |
1603 | 0 | Rm[WS(rs, 11)] = T7h - T7s; |
1604 | 0 | Rp[WS(rs, 4)] = T7h + T7s; |
1605 | 0 | T7N = KP707106781 * (T7u + T7v); |
1606 | 0 | Im[WS(rs, 11)] = T7N - T7Q; |
1607 | 0 | Ip[WS(rs, 4)] = T7N + T7Q; |
1608 | 0 | T7w = KP707106781 * (T7u - T7v); |
1609 | 0 | Rm[WS(rs, 3)] = T7t - T7w; |
1610 | 0 | Rp[WS(rs, 12)] = T7t + T7w; |
1611 | 0 | T7R = KP707106781 * (T7r - T7m); |
1612 | 0 | Im[WS(rs, 3)] = T7R - T7S; |
1613 | 0 | Ip[WS(rs, 12)] = T7R + T7S; |
1614 | 0 | } |
1615 | 0 | } |
1616 | 0 | { |
1617 | 0 | E T6j, T7X, T83, T6X, T6u, T7U, T77, T7b, T70, T82, T6G, T6U, T74, T7a, T6R; |
1618 | 0 | E T6V; |
1619 | 0 | { |
1620 | 0 | E T6o, T6t, T6A, T6F; |
1621 | 0 | T6j = T6f - T6i; |
1622 | 0 | T7X = T7V + T7W; |
1623 | 0 | T83 = T7W - T7V; |
1624 | 0 | T6X = T6f + T6i; |
1625 | 0 | T6o = T6m - T6n; |
1626 | 0 | T6t = T6p + T6s; |
1627 | 0 | T6u = KP707106781 * (T6o - T6t); |
1628 | 0 | T7U = KP707106781 * (T6o + T6t); |
1629 | 0 | { |
1630 | 0 | E T75, T76, T6Y, T6Z; |
1631 | 0 | T75 = T6H + T6K; |
1632 | 0 | T76 = T6O + T6P; |
1633 | 0 | T77 = FNMS(KP382683432, T76, KP923879532 * T75); |
1634 | 0 | T7b = FMA(KP923879532, T76, KP382683432 * T75); |
1635 | 0 | T6Y = T6n + T6m; |
1636 | 0 | T6Z = T6p - T6s; |
1637 | 0 | T70 = KP707106781 * (T6Y + T6Z); |
1638 | 0 | T82 = KP707106781 * (T6Z - T6Y); |
1639 | 0 | } |
1640 | 0 | T6A = T6y - T6z; |
1641 | 0 | T6F = T6B - T6E; |
1642 | 0 | T6G = FMA(KP923879532, T6A, KP382683432 * T6F); |
1643 | 0 | T6U = FNMS(KP923879532, T6F, KP382683432 * T6A); |
1644 | 0 | { |
1645 | 0 | E T72, T73, T6L, T6Q; |
1646 | 0 | T72 = T6y + T6z; |
1647 | 0 | T73 = T6B + T6E; |
1648 | 0 | T74 = FMA(KP382683432, T72, KP923879532 * T73); |
1649 | 0 | T7a = FNMS(KP382683432, T73, KP923879532 * T72); |
1650 | 0 | T6L = T6H - T6K; |
1651 | 0 | T6Q = T6O - T6P; |
1652 | 0 | T6R = FNMS(KP923879532, T6Q, KP382683432 * T6L); |
1653 | 0 | T6V = FMA(KP382683432, T6Q, KP923879532 * T6L); |
1654 | 0 | } |
1655 | 0 | } |
1656 | 0 | { |
1657 | 0 | E T6v, T6S, T81, T84; |
1658 | 0 | T6v = T6j + T6u; |
1659 | 0 | T6S = T6G + T6R; |
1660 | 0 | Rm[WS(rs, 9)] = T6v - T6S; |
1661 | 0 | Rp[WS(rs, 6)] = T6v + T6S; |
1662 | 0 | T81 = T6U + T6V; |
1663 | 0 | T84 = T82 + T83; |
1664 | 0 | Im[WS(rs, 9)] = T81 - T84; |
1665 | 0 | Ip[WS(rs, 6)] = T81 + T84; |
1666 | 0 | } |
1667 | 0 | { |
1668 | 0 | E T6T, T6W, T85, T86; |
1669 | 0 | T6T = T6j - T6u; |
1670 | 0 | T6W = T6U - T6V; |
1671 | 0 | Rm[WS(rs, 1)] = T6T - T6W; |
1672 | 0 | Rp[WS(rs, 14)] = T6T + T6W; |
1673 | 0 | T85 = T6R - T6G; |
1674 | 0 | T86 = T83 - T82; |
1675 | 0 | Im[WS(rs, 1)] = T85 - T86; |
1676 | 0 | Ip[WS(rs, 14)] = T85 + T86; |
1677 | 0 | } |
1678 | 0 | { |
1679 | 0 | E T71, T78, T7T, T7Y; |
1680 | 0 | T71 = T6X + T70; |
1681 | 0 | T78 = T74 + T77; |
1682 | 0 | Rm[WS(rs, 13)] = T71 - T78; |
1683 | 0 | Rp[WS(rs, 2)] = T71 + T78; |
1684 | 0 | T7T = T7a + T7b; |
1685 | 0 | T7Y = T7U + T7X; |
1686 | 0 | Im[WS(rs, 13)] = T7T - T7Y; |
1687 | 0 | Ip[WS(rs, 2)] = T7T + T7Y; |
1688 | 0 | } |
1689 | 0 | { |
1690 | 0 | E T79, T7c, T7Z, T80; |
1691 | 0 | T79 = T6X - T70; |
1692 | 0 | T7c = T7a - T7b; |
1693 | 0 | Rm[WS(rs, 5)] = T79 - T7c; |
1694 | 0 | Rp[WS(rs, 10)] = T79 + T7c; |
1695 | 0 | T7Z = T77 - T74; |
1696 | 0 | T80 = T7X - T7U; |
1697 | 0 | Im[WS(rs, 5)] = T7Z - T80; |
1698 | 0 | Ip[WS(rs, 10)] = T7Z + T80; |
1699 | 0 | } |
1700 | 0 | } |
1701 | 0 | { |
1702 | 0 | E T3R, T5d, T8r, T8x, T4e, T8o, T5n, T5r, T4G, T5a, T5g, T8w, T5k, T5q, T57; |
1703 | 0 | E T5b, T3Q, T8p; |
1704 | 0 | T3Q = KP707106781 * (T3K - T3P); |
1705 | 0 | T3R = T3F - T3Q; |
1706 | 0 | T5d = T3F + T3Q; |
1707 | 0 | T8p = KP707106781 * (T5v - T5u); |
1708 | 0 | T8r = T8p + T8q; |
1709 | 0 | T8x = T8q - T8p; |
1710 | 0 | { |
1711 | 0 | E T42, T4d, T5l, T5m; |
1712 | 0 | T42 = FNMS(KP923879532, T41, KP382683432 * T3W); |
1713 | 0 | T4d = FMA(KP382683432, T47, KP923879532 * T4c); |
1714 | 0 | T4e = T42 - T4d; |
1715 | 0 | T8o = T42 + T4d; |
1716 | 0 | T5l = T4L + T4W; |
1717 | 0 | T5m = T52 + T55; |
1718 | 0 | T5n = FNMS(KP555570233, T5m, KP831469612 * T5l); |
1719 | 0 | T5r = FMA(KP831469612, T5m, KP555570233 * T5l); |
1720 | 0 | } |
1721 | 0 | { |
1722 | 0 | E T4w, T4F, T5e, T5f; |
1723 | 0 | T4w = T4k - T4v; |
1724 | 0 | T4F = T4B - T4E; |
1725 | 0 | T4G = FMA(KP980785280, T4w, KP195090322 * T4F); |
1726 | 0 | T5a = FNMS(KP980785280, T4F, KP195090322 * T4w); |
1727 | 0 | T5e = FMA(KP923879532, T3W, KP382683432 * T41); |
1728 | 0 | T5f = FNMS(KP923879532, T47, KP382683432 * T4c); |
1729 | 0 | T5g = T5e + T5f; |
1730 | 0 | T8w = T5f - T5e; |
1731 | 0 | } |
1732 | 0 | { |
1733 | 0 | E T5i, T5j, T4X, T56; |
1734 | 0 | T5i = T4k + T4v; |
1735 | 0 | T5j = T4B + T4E; |
1736 | 0 | T5k = FMA(KP555570233, T5i, KP831469612 * T5j); |
1737 | 0 | T5q = FNMS(KP555570233, T5j, KP831469612 * T5i); |
1738 | 0 | T4X = T4L - T4W; |
1739 | 0 | T56 = T52 - T55; |
1740 | 0 | T57 = FNMS(KP980785280, T56, KP195090322 * T4X); |
1741 | 0 | T5b = FMA(KP195090322, T56, KP980785280 * T4X); |
1742 | 0 | } |
1743 | 0 | { |
1744 | 0 | E T4f, T58, T8v, T8y; |
1745 | 0 | T4f = T3R + T4e; |
1746 | 0 | T58 = T4G + T57; |
1747 | 0 | Rm[WS(rs, 8)] = T4f - T58; |
1748 | 0 | Rp[WS(rs, 7)] = T4f + T58; |
1749 | 0 | T8v = T5a + T5b; |
1750 | 0 | T8y = T8w + T8x; |
1751 | 0 | Im[WS(rs, 8)] = T8v - T8y; |
1752 | 0 | Ip[WS(rs, 7)] = T8v + T8y; |
1753 | 0 | } |
1754 | 0 | { |
1755 | 0 | E T59, T5c, T8z, T8A; |
1756 | 0 | T59 = T3R - T4e; |
1757 | 0 | T5c = T5a - T5b; |
1758 | 0 | Rm[0] = T59 - T5c; |
1759 | 0 | Rp[WS(rs, 15)] = T59 + T5c; |
1760 | 0 | T8z = T57 - T4G; |
1761 | 0 | T8A = T8x - T8w; |
1762 | 0 | Im[0] = T8z - T8A; |
1763 | 0 | Ip[WS(rs, 15)] = T8z + T8A; |
1764 | 0 | } |
1765 | 0 | { |
1766 | 0 | E T5h, T5o, T8n, T8s; |
1767 | 0 | T5h = T5d + T5g; |
1768 | 0 | T5o = T5k + T5n; |
1769 | 0 | Rm[WS(rs, 12)] = T5h - T5o; |
1770 | 0 | Rp[WS(rs, 3)] = T5h + T5o; |
1771 | 0 | T8n = T5q + T5r; |
1772 | 0 | T8s = T8o + T8r; |
1773 | 0 | Im[WS(rs, 12)] = T8n - T8s; |
1774 | 0 | Ip[WS(rs, 3)] = T8n + T8s; |
1775 | 0 | } |
1776 | 0 | { |
1777 | 0 | E T5p, T5s, T8t, T8u; |
1778 | 0 | T5p = T5d - T5g; |
1779 | 0 | T5s = T5q - T5r; |
1780 | 0 | Rm[WS(rs, 4)] = T5p - T5s; |
1781 | 0 | Rp[WS(rs, 11)] = T5p + T5s; |
1782 | 0 | T8t = T5n - T5k; |
1783 | 0 | T8u = T8r - T8o; |
1784 | 0 | Im[WS(rs, 4)] = T8t - T8u; |
1785 | 0 | Ip[WS(rs, 11)] = T8t + T8u; |
1786 | 0 | } |
1787 | 0 | } |
1788 | 0 | { |
1789 | 0 | E T5x, T5Z, T8d, T8j, T5E, T88, T69, T6d, T5M, T5W, T62, T8i, T66, T6c, T5T; |
1790 | 0 | E T5X, T5w, T89; |
1791 | 0 | T5w = KP707106781 * (T5u + T5v); |
1792 | 0 | T5x = T5t - T5w; |
1793 | 0 | T5Z = T5t + T5w; |
1794 | 0 | T89 = KP707106781 * (T3K + T3P); |
1795 | 0 | T8d = T89 + T8c; |
1796 | 0 | T8j = T8c - T89; |
1797 | 0 | { |
1798 | 0 | E T5A, T5D, T67, T68; |
1799 | 0 | T5A = FNMS(KP382683432, T5z, KP923879532 * T5y); |
1800 | 0 | T5D = FMA(KP923879532, T5B, KP382683432 * T5C); |
1801 | 0 | T5E = T5A - T5D; |
1802 | 0 | T88 = T5A + T5D; |
1803 | 0 | T67 = T5N + T5O; |
1804 | 0 | T68 = T5Q + T5R; |
1805 | 0 | T69 = FNMS(KP195090322, T68, KP980785280 * T67); |
1806 | 0 | T6d = FMA(KP195090322, T67, KP980785280 * T68); |
1807 | 0 | } |
1808 | 0 | { |
1809 | 0 | E T5I, T5L, T60, T61; |
1810 | 0 | T5I = T5G - T5H; |
1811 | 0 | T5L = T5J - T5K; |
1812 | 0 | T5M = FMA(KP555570233, T5I, KP831469612 * T5L); |
1813 | 0 | T5W = FNMS(KP831469612, T5I, KP555570233 * T5L); |
1814 | 0 | T60 = FMA(KP382683432, T5y, KP923879532 * T5z); |
1815 | 0 | T61 = FNMS(KP382683432, T5B, KP923879532 * T5C); |
1816 | 0 | T62 = T60 + T61; |
1817 | 0 | T8i = T61 - T60; |
1818 | 0 | } |
1819 | 0 | { |
1820 | 0 | E T64, T65, T5P, T5S; |
1821 | 0 | T64 = T5G + T5H; |
1822 | 0 | T65 = T5J + T5K; |
1823 | 0 | T66 = FMA(KP980785280, T64, KP195090322 * T65); |
1824 | 0 | T6c = FNMS(KP195090322, T64, KP980785280 * T65); |
1825 | 0 | T5P = T5N - T5O; |
1826 | 0 | T5S = T5Q - T5R; |
1827 | 0 | T5T = FNMS(KP831469612, T5S, KP555570233 * T5P); |
1828 | 0 | T5X = FMA(KP831469612, T5P, KP555570233 * T5S); |
1829 | 0 | } |
1830 | 0 | { |
1831 | 0 | E T5F, T5U, T8h, T8k; |
1832 | 0 | T5F = T5x + T5E; |
1833 | 0 | T5U = T5M + T5T; |
1834 | 0 | Rm[WS(rs, 10)] = T5F - T5U; |
1835 | 0 | Rp[WS(rs, 5)] = T5F + T5U; |
1836 | 0 | T8h = T5W + T5X; |
1837 | 0 | T8k = T8i + T8j; |
1838 | 0 | Im[WS(rs, 10)] = T8h - T8k; |
1839 | 0 | Ip[WS(rs, 5)] = T8h + T8k; |
1840 | 0 | } |
1841 | 0 | { |
1842 | 0 | E T5V, T5Y, T8l, T8m; |
1843 | 0 | T5V = T5x - T5E; |
1844 | 0 | T5Y = T5W - T5X; |
1845 | 0 | Rm[WS(rs, 2)] = T5V - T5Y; |
1846 | 0 | Rp[WS(rs, 13)] = T5V + T5Y; |
1847 | 0 | T8l = T5T - T5M; |
1848 | 0 | T8m = T8j - T8i; |
1849 | 0 | Im[WS(rs, 2)] = T8l - T8m; |
1850 | 0 | Ip[WS(rs, 13)] = T8l + T8m; |
1851 | 0 | } |
1852 | 0 | { |
1853 | 0 | E T63, T6a, T87, T8e; |
1854 | 0 | T63 = T5Z + T62; |
1855 | 0 | T6a = T66 + T69; |
1856 | 0 | Rm[WS(rs, 14)] = T63 - T6a; |
1857 | 0 | Rp[WS(rs, 1)] = T63 + T6a; |
1858 | 0 | T87 = T6c + T6d; |
1859 | 0 | T8e = T88 + T8d; |
1860 | 0 | Im[WS(rs, 14)] = T87 - T8e; |
1861 | 0 | Ip[WS(rs, 1)] = T87 + T8e; |
1862 | 0 | } |
1863 | 0 | { |
1864 | 0 | E T6b, T6e, T8f, T8g; |
1865 | 0 | T6b = T5Z - T62; |
1866 | 0 | T6e = T6c - T6d; |
1867 | 0 | Rm[WS(rs, 6)] = T6b - T6e; |
1868 | 0 | Rp[WS(rs, 9)] = T6b + T6e; |
1869 | 0 | T8f = T69 - T66; |
1870 | 0 | T8g = T8d - T88; |
1871 | 0 | Im[WS(rs, 6)] = T8f - T8g; |
1872 | 0 | Ip[WS(rs, 9)] = T8f + T8g; |
1873 | 0 | } |
1874 | 0 | } |
1875 | 0 | } |
1876 | 0 | } |
1877 | 0 | } |
1878 | 0 | } |
1879 | | |
1880 | | static const tw_instr twinstr[] = { |
1881 | | { TW_CEXP, 1, 1 }, |
1882 | | { TW_CEXP, 1, 3 }, |
1883 | | { TW_CEXP, 1, 9 }, |
1884 | | { TW_CEXP, 1, 27 }, |
1885 | | { TW_NEXT, 1, 0 } |
1886 | | }; |
1887 | | |
1888 | | static const hc2c_desc desc = { 32, "hc2cf2_32", twinstr, &GENUS, { 376, 168, 112, 0 } }; |
1889 | | |
1890 | 1 | void X(codelet_hc2cf2_32) (planner *p) { |
1891 | 1 | X(khc2c_register) (p, hc2cf2_32, &desc, HC2C_VIA_RDFT); |
1892 | 1 | } |
1893 | | #endif |