Coverage Report

Created: 2024-09-08 06:43

/src/fftw3/rdft/scalar/r2cf/hc2cfdft_32.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Sun Sep  8 06:41:50 UTC 2024 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 32 -dit -name hc2cfdft_32 -include rdft/scalar/hc2cf.h */
29
30
/*
31
 * This function contains 498 FP additions, 324 FP multiplications,
32
 * (or, 300 additions, 126 multiplications, 198 fused multiply/add),
33
 * 113 stack variables, 8 constants, and 128 memory accesses
34
 */
35
#include "rdft/scalar/hc2cf.h"
36
37
static void hc2cfdft_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP831469612, +0.831469612302545237078788377617905756738560812);
40
     DK(KP980785280, +0.980785280403230449126182236134239036973933731);
41
     DK(KP198912367, +0.198912367379658006911597622644676228597850501);
42
     DK(KP668178637, +0.668178637919298919997757686523080761552472251);
43
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
44
     DK(KP414213562, +0.414213562373095048801688724209698078569671875);
45
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
46
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
47
     {
48
    INT m;
49
    for (m = mb, W = W + ((mb - 1) * 62); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 62, MAKE_VOLATILE_STRIDE(128, rs)) {
50
         E T3B, T89, T61, T8l, T2F, T8t, T4B, T7p, T1n, T7L, T5e, T7I, T4u, T82, T5E;
51
         E T7R, T3m, T8k, T5W, T8a, T2r, T8u, T4G, T7q, T12, T7K, T59, T7H, T4h, T81;
52
         E T5z, T7Q, Tl, T7D, T4Y, T7A, T3Q, T5o, T7V, T84, T1K, T7t, T4M, T7s, T2V;
53
         E T8n, T5L, T8e, T25, T7w, T4R, T7v, T38, T8o, T5Q, T8h, TG, T7E, T53, T7B;
54
         E T43, T5t, T7Y, T85;
55
         {
56
        E T2E, T3z, T4y, T3y, T5Z, T3t, T3x, T2v, T2A, T3r, T3q, T5X, T3n, T3p, T2w;
57
        E T4z, T3s, T3A;
58
        {
59
       E T2C, T2D, T3u, T3v, T3w;
60
       T2C = Ip[0];
61
       T2D = Im[0];
62
       T2E = T2C - T2D;
63
       T3z = T2C + T2D;
64
       T3u = Rm[0];
65
       T3v = Rp[0];
66
       T3w = T3u - T3v;
67
       T4y = T3v + T3u;
68
       T3y = W[1];
69
       T5Z = T3y * T3w;
70
       T3t = W[0];
71
       T3x = T3t * T3w;
72
       {
73
            E T2t, T2u, T3o, T2y, T2z, T2s;
74
            T2t = Ip[WS(rs, 8)];
75
            T2u = Im[WS(rs, 8)];
76
            T2v = T2t - T2u;
77
            T2y = Rp[WS(rs, 8)];
78
            T2z = Rm[WS(rs, 8)];
79
            T2A = T2y + T2z;
80
            T3o = T2z - T2y;
81
            T3r = T2t + T2u;
82
            T3q = W[33];
83
            T5X = T3q * T3o;
84
            T3n = W[32];
85
            T3p = T3n * T3o;
86
            T2s = W[30];
87
            T2w = T2s * T2v;
88
            T4z = T2s * T2A;
89
       }
90
        }
91
        T3s = FNMS(T3q, T3r, T3p);
92
        T3A = FNMS(T3y, T3z, T3x);
93
        T3B = T3s + T3A;
94
        T89 = T3A - T3s;
95
        {
96
       E T5Y, T60, T2B, T4A, T2x;
97
       T5Y = FMA(T3n, T3r, T5X);
98
       T60 = FMA(T3t, T3z, T5Z);
99
       T61 = T5Y + T60;
100
       T8l = T60 - T5Y;
101
       T2x = W[31];
102
       T2B = FNMS(T2x, T2A, T2w);
103
       T4A = FMA(T2x, T2v, T4z);
104
       T2F = T2B + T2E;
105
       T8t = T4y - T4A;
106
       T4B = T4y + T4A;
107
       T7p = T2E - T2B;
108
        }
109
         }
110
         {
111
        E T16, T4m, T1b, T4j, T17, T5a, T4k, T5A, T1g, T4s, T1l, T4p, T1h, T5c, T4q;
112
        E T5C;
113
        {
114
       E T13, T4i, T1d, T4o;
115
       {
116
            E T14, T15, T19, T1a;
117
            T14 = Ip[WS(rs, 3)];
118
            T15 = Im[WS(rs, 3)];
119
            T16 = T14 - T15;
120
            T4m = T14 + T15;
121
            T19 = Rp[WS(rs, 3)];
122
            T1a = Rm[WS(rs, 3)];
123
            T1b = T19 + T1a;
124
            T4j = T19 - T1a;
125
       }
126
       T13 = W[10];
127
       T17 = T13 * T16;
128
       T5a = T13 * T1b;
129
       T4i = W[12];
130
       T4k = T4i * T4j;
131
       T5A = T4i * T4m;
132
       {
133
            E T1e, T1f, T1j, T1k;
134
            T1e = Ip[WS(rs, 11)];
135
            T1f = Im[WS(rs, 11)];
136
            T1g = T1e - T1f;
137
            T4s = T1e + T1f;
138
            T1j = Rp[WS(rs, 11)];
139
            T1k = Rm[WS(rs, 11)];
140
            T1l = T1j + T1k;
141
            T4p = T1j - T1k;
142
       }
143
       T1d = W[42];
144
       T1h = T1d * T1g;
145
       T5c = T1d * T1l;
146
       T4o = W[44];
147
       T4q = T4o * T4p;
148
       T5C = T4o * T4s;
149
        }
150
        {
151
       E T1c, T5b, T1m, T5d, T18, T1i;
152
       T18 = W[11];
153
       T1c = FNMS(T18, T1b, T17);
154
       T5b = FMA(T18, T16, T5a);
155
       T1i = W[43];
156
       T1m = FNMS(T1i, T1l, T1h);
157
       T5d = FMA(T1i, T1g, T5c);
158
       T1n = T1c + T1m;
159
       T7L = T1c - T1m;
160
       T5e = T5b + T5d;
161
       T7I = T5b - T5d;
162
        }
163
        {
164
       E T4n, T5B, T4t, T5D, T4l, T4r;
165
       T4l = W[13];
166
       T4n = FMA(T4l, T4m, T4k);
167
       T5B = FNMS(T4l, T4j, T5A);
168
       T4r = W[45];
169
       T4t = FMA(T4r, T4s, T4q);
170
       T5D = FNMS(T4r, T4p, T5C);
171
       T4u = T4n + T4t;
172
       T82 = T4t - T4n;
173
       T5E = T5B + T5D;
174
       T7R = T5D - T5B;
175
        }
176
         }
177
         {
178
        E T2a, T2f, T3e, T3d, T5S, T3a, T3c, T2b, T4C, T2k, T2p, T3k, T3j, T5U, T3g;
179
        E T3i, T2l, T4E;
180
        {
181
       E T28, T29, T3b, T2d, T2e, T27;
182
       T28 = Ip[WS(rs, 4)];
183
       T29 = Im[WS(rs, 4)];
184
       T2a = T28 - T29;
185
       T2d = Rp[WS(rs, 4)];
186
       T2e = Rm[WS(rs, 4)];
187
       T2f = T2d + T2e;
188
       T3b = T2e - T2d;
189
       T3e = T28 + T29;
190
       T3d = W[17];
191
       T5S = T3d * T3b;
192
       T3a = W[16];
193
       T3c = T3a * T3b;
194
       T27 = W[14];
195
       T2b = T27 * T2a;
196
       T4C = T27 * T2f;
197
        }
198
        {
199
       E T2i, T2j, T3h, T2n, T2o, T2h;
200
       T2i = Ip[WS(rs, 12)];
201
       T2j = Im[WS(rs, 12)];
202
       T2k = T2i - T2j;
203
       T2n = Rp[WS(rs, 12)];
204
       T2o = Rm[WS(rs, 12)];
205
       T2p = T2n + T2o;
206
       T3h = T2o - T2n;
207
       T3k = T2i + T2j;
208
       T3j = W[49];
209
       T5U = T3j * T3h;
210
       T3g = W[48];
211
       T3i = T3g * T3h;
212
       T2h = W[46];
213
       T2l = T2h * T2k;
214
       T4E = T2h * T2p;
215
        }
216
        {
217
       E T3f, T3l, T5T, T5V;
218
       T3f = FNMS(T3d, T3e, T3c);
219
       T3l = FNMS(T3j, T3k, T3i);
220
       T3m = T3f + T3l;
221
       T8k = T3f - T3l;
222
       T5T = FMA(T3a, T3e, T5S);
223
       T5V = FMA(T3g, T3k, T5U);
224
       T5W = T5T + T5V;
225
       T8a = T5T - T5V;
226
       {
227
            E T2g, T4D, T2q, T4F, T2c, T2m;
228
            T2c = W[15];
229
            T2g = FNMS(T2c, T2f, T2b);
230
            T4D = FMA(T2c, T2a, T4C);
231
            T2m = W[47];
232
            T2q = FNMS(T2m, T2p, T2l);
233
            T4F = FMA(T2m, T2k, T4E);
234
            T2r = T2g + T2q;
235
            T8u = T2g - T2q;
236
            T4G = T4D + T4F;
237
            T7q = T4D - T4F;
238
       }
239
        }
240
         }
241
         {
242
        E TL, T49, TQ, T46, TM, T55, T47, T5v, TV, T4f, T10, T4c, TW, T57, T4d;
243
        E T5x;
244
        {
245
       E TI, T45, TS, T4b;
246
       {
247
            E TJ, TK, TO, TP;
248
            TJ = Ip[WS(rs, 15)];
249
            TK = Im[WS(rs, 15)];
250
            TL = TJ - TK;
251
            T49 = TJ + TK;
252
            TO = Rp[WS(rs, 15)];
253
            TP = Rm[WS(rs, 15)];
254
            TQ = TO + TP;
255
            T46 = TO - TP;
256
       }
257
       TI = W[58];
258
       TM = TI * TL;
259
       T55 = TI * TQ;
260
       T45 = W[60];
261
       T47 = T45 * T46;
262
       T5v = T45 * T49;
263
       {
264
            E TT, TU, TY, TZ;
265
            TT = Ip[WS(rs, 7)];
266
            TU = Im[WS(rs, 7)];
267
            TV = TT - TU;
268
            T4f = TT + TU;
269
            TY = Rp[WS(rs, 7)];
270
            TZ = Rm[WS(rs, 7)];
271
            T10 = TY + TZ;
272
            T4c = TY - TZ;
273
       }
274
       TS = W[26];
275
       TW = TS * TV;
276
       T57 = TS * T10;
277
       T4b = W[28];
278
       T4d = T4b * T4c;
279
       T5x = T4b * T4f;
280
        }
281
        {
282
       E TR, T56, T11, T58, TN, TX;
283
       TN = W[59];
284
       TR = FNMS(TN, TQ, TM);
285
       T56 = FMA(TN, TL, T55);
286
       TX = W[27];
287
       T11 = FNMS(TX, T10, TW);
288
       T58 = FMA(TX, TV, T57);
289
       T12 = TR + T11;
290
       T7K = T56 - T58;
291
       T59 = T56 + T58;
292
       T7H = TR - T11;
293
        }
294
        {
295
       E T4a, T5w, T4g, T5y, T48, T4e;
296
       T48 = W[61];
297
       T4a = FMA(T48, T49, T47);
298
       T5w = FNMS(T48, T46, T5v);
299
       T4e = W[29];
300
       T4g = FMA(T4e, T4f, T4d);
301
       T5y = FNMS(T4e, T4c, T5x);
302
       T4h = T4a + T4g;
303
       T81 = T5w - T5y;
304
       T5z = T5w + T5y;
305
       T7Q = T4g - T4a;
306
        }
307
         }
308
         {
309
        E T4, T3I, T9, T3F, T5, T4U, T3G, T5k, Te, T3O, Tj, T3L, Tf, T4W, T3M;
310
        E T5m;
311
        {
312
       E T1, T3E, Tb, T3K;
313
       {
314
            E T2, T3, T7, T8;
315
            T2 = Ip[WS(rs, 1)];
316
            T3 = Im[WS(rs, 1)];
317
            T4 = T2 - T3;
318
            T3I = T2 + T3;
319
            T7 = Rp[WS(rs, 1)];
320
            T8 = Rm[WS(rs, 1)];
321
            T9 = T7 + T8;
322
            T3F = T7 - T8;
323
       }
324
       T1 = W[2];
325
       T5 = T1 * T4;
326
       T4U = T1 * T9;
327
       T3E = W[4];
328
       T3G = T3E * T3F;
329
       T5k = T3E * T3I;
330
       {
331
            E Tc, Td, Th, Ti;
332
            Tc = Ip[WS(rs, 9)];
333
            Td = Im[WS(rs, 9)];
334
            Te = Tc - Td;
335
            T3O = Tc + Td;
336
            Th = Rp[WS(rs, 9)];
337
            Ti = Rm[WS(rs, 9)];
338
            Tj = Th + Ti;
339
            T3L = Th - Ti;
340
       }
341
       Tb = W[34];
342
       Tf = Tb * Te;
343
       T4W = Tb * Tj;
344
       T3K = W[36];
345
       T3M = T3K * T3L;
346
       T5m = T3K * T3O;
347
        }
348
        {
349
       E Ta, T4V, Tk, T4X, T6, Tg;
350
       T6 = W[3];
351
       Ta = FNMS(T6, T9, T5);
352
       T4V = FMA(T6, T4, T4U);
353
       Tg = W[35];
354
       Tk = FNMS(Tg, Tj, Tf);
355
       T4X = FMA(Tg, Te, T4W);
356
       Tl = Ta + Tk;
357
       T7D = T4V - T4X;
358
       T4Y = T4V + T4X;
359
       T7A = Ta - Tk;
360
        }
361
        {
362
       E T3J, T5l, T3P, T5n, T3H, T3N, T7T, T7U;
363
       T3H = W[5];
364
       T3J = FMA(T3H, T3I, T3G);
365
       T5l = FNMS(T3H, T3F, T5k);
366
       T3N = W[37];
367
       T3P = FMA(T3N, T3O, T3M);
368
       T5n = FNMS(T3N, T3L, T5m);
369
       T3Q = T3J + T3P;
370
       T5o = T5l + T5n;
371
       T7T = T3P - T3J;
372
       T7U = T5l - T5n;
373
       T7V = T7T - T7U;
374
       T84 = T7U + T7T;
375
        }
376
         }
377
         {
378
        E T1t, T1y, T2N, T2M, T5H, T2J, T2L, T1u, T4I, T1D, T1I, T2T, T2S, T5J, T2P;
379
        E T2R, T1E, T4K;
380
        {
381
       E T1r, T1s, T2K, T1w, T1x, T1q;
382
       T1r = Ip[WS(rs, 2)];
383
       T1s = Im[WS(rs, 2)];
384
       T1t = T1r - T1s;
385
       T1w = Rp[WS(rs, 2)];
386
       T1x = Rm[WS(rs, 2)];
387
       T1y = T1w + T1x;
388
       T2K = T1x - T1w;
389
       T2N = T1r + T1s;
390
       T2M = W[9];
391
       T5H = T2M * T2K;
392
       T2J = W[8];
393
       T2L = T2J * T2K;
394
       T1q = W[6];
395
       T1u = T1q * T1t;
396
       T4I = T1q * T1y;
397
        }
398
        {
399
       E T1B, T1C, T2Q, T1G, T1H, T1A;
400
       T1B = Ip[WS(rs, 10)];
401
       T1C = Im[WS(rs, 10)];
402
       T1D = T1B - T1C;
403
       T1G = Rp[WS(rs, 10)];
404
       T1H = Rm[WS(rs, 10)];
405
       T1I = T1G + T1H;
406
       T2Q = T1H - T1G;
407
       T2T = T1B + T1C;
408
       T2S = W[41];
409
       T5J = T2S * T2Q;
410
       T2P = W[40];
411
       T2R = T2P * T2Q;
412
       T1A = W[38];
413
       T1E = T1A * T1D;
414
       T4K = T1A * T1I;
415
        }
416
        {
417
       E T1z, T4J, T1J, T4L, T1v, T1F;
418
       T1v = W[7];
419
       T1z = FNMS(T1v, T1y, T1u);
420
       T4J = FMA(T1v, T1t, T4I);
421
       T1F = W[39];
422
       T1J = FNMS(T1F, T1I, T1E);
423
       T4L = FMA(T1F, T1D, T4K);
424
       T1K = T1z + T1J;
425
       T7t = T4J - T4L;
426
       T4M = T4J + T4L;
427
       T7s = T1z - T1J;
428
        }
429
        {
430
       E T2O, T2U, T8c, T5I, T5K, T8d;
431
       T2O = FNMS(T2M, T2N, T2L);
432
       T2U = FNMS(T2S, T2T, T2R);
433
       T8c = T2O - T2U;
434
       T5I = FMA(T2J, T2N, T5H);
435
       T5K = FMA(T2P, T2T, T5J);
436
       T8d = T5I - T5K;
437
       T2V = T2O + T2U;
438
       T8n = T8c + T8d;
439
       T5L = T5I + T5K;
440
       T8e = T8c - T8d;
441
        }
442
         }
443
         {
444
        E T1O, T1T, T30, T2Z, T5M, T2W, T2Y, T1P, T4N, T1Y, T23, T36, T35, T5O, T32;
445
        E T34, T1Z, T4P;
446
        {
447
       E T1M, T1N, T2X, T1R, T1S, T1L;
448
       T1M = Ip[WS(rs, 14)];
449
       T1N = Im[WS(rs, 14)];
450
       T1O = T1M - T1N;
451
       T1R = Rp[WS(rs, 14)];
452
       T1S = Rm[WS(rs, 14)];
453
       T1T = T1R + T1S;
454
       T2X = T1S - T1R;
455
       T30 = T1M + T1N;
456
       T2Z = W[57];
457
       T5M = T2Z * T2X;
458
       T2W = W[56];
459
       T2Y = T2W * T2X;
460
       T1L = W[54];
461
       T1P = T1L * T1O;
462
       T4N = T1L * T1T;
463
        }
464
        {
465
       E T1W, T1X, T33, T21, T22, T1V;
466
       T1W = Ip[WS(rs, 6)];
467
       T1X = Im[WS(rs, 6)];
468
       T1Y = T1W - T1X;
469
       T21 = Rp[WS(rs, 6)];
470
       T22 = Rm[WS(rs, 6)];
471
       T23 = T21 + T22;
472
       T33 = T22 - T21;
473
       T36 = T1W + T1X;
474
       T35 = W[25];
475
       T5O = T35 * T33;
476
       T32 = W[24];
477
       T34 = T32 * T33;
478
       T1V = W[22];
479
       T1Z = T1V * T1Y;
480
       T4P = T1V * T23;
481
        }
482
        {
483
       E T1U, T4O, T24, T4Q, T1Q, T20;
484
       T1Q = W[55];
485
       T1U = FNMS(T1Q, T1T, T1P);
486
       T4O = FMA(T1Q, T1O, T4N);
487
       T20 = W[23];
488
       T24 = FNMS(T20, T23, T1Z);
489
       T4Q = FMA(T20, T1Y, T4P);
490
       T25 = T1U + T24;
491
       T7w = T1U - T24;
492
       T4R = T4O + T4Q;
493
       T7v = T4O - T4Q;
494
        }
495
        {
496
       E T31, T37, T8f, T5N, T5P, T8g;
497
       T31 = FNMS(T2Z, T30, T2Y);
498
       T37 = FNMS(T35, T36, T34);
499
       T8f = T31 - T37;
500
       T5N = FMA(T2W, T30, T5M);
501
       T5P = FMA(T32, T36, T5O);
502
       T8g = T5N - T5P;
503
       T38 = T31 + T37;
504
       T8o = T8g - T8f;
505
       T5Q = T5N + T5P;
506
       T8h = T8f + T8g;
507
        }
508
         }
509
         {
510
        E Tp, T3V, Tu, T3S, Tq, T4Z, T3T, T5p, Tz, T41, TE, T3Y, TA, T51, T3Z;
511
        E T5r;
512
        {
513
       E Tm, T3R, Tw, T3X;
514
       {
515
            E Tn, To, Ts, Tt;
516
            Tn = Ip[WS(rs, 5)];
517
            To = Im[WS(rs, 5)];
518
            Tp = Tn - To;
519
            T3V = Tn + To;
520
            Ts = Rp[WS(rs, 5)];
521
            Tt = Rm[WS(rs, 5)];
522
            Tu = Ts + Tt;
523
            T3S = Ts - Tt;
524
       }
525
       Tm = W[18];
526
       Tq = Tm * Tp;
527
       T4Z = Tm * Tu;
528
       T3R = W[20];
529
       T3T = T3R * T3S;
530
       T5p = T3R * T3V;
531
       {
532
            E Tx, Ty, TC, TD;
533
            Tx = Ip[WS(rs, 13)];
534
            Ty = Im[WS(rs, 13)];
535
            Tz = Tx - Ty;
536
            T41 = Tx + Ty;
537
            TC = Rp[WS(rs, 13)];
538
            TD = Rm[WS(rs, 13)];
539
            TE = TC + TD;
540
            T3Y = TC - TD;
541
       }
542
       Tw = W[50];
543
       TA = Tw * Tz;
544
       T51 = Tw * TE;
545
       T3X = W[52];
546
       T3Z = T3X * T3Y;
547
       T5r = T3X * T41;
548
        }
549
        {
550
       E Tv, T50, TF, T52, Tr, TB;
551
       Tr = W[19];
552
       Tv = FNMS(Tr, Tu, Tq);
553
       T50 = FMA(Tr, Tp, T4Z);
554
       TB = W[51];
555
       TF = FNMS(TB, TE, TA);
556
       T52 = FMA(TB, Tz, T51);
557
       TG = Tv + TF;
558
       T7E = Tv - TF;
559
       T53 = T50 + T52;
560
       T7B = T50 - T52;
561
        }
562
        {
563
       E T3W, T5q, T42, T5s, T3U, T40, T7W, T7X;
564
       T3U = W[21];
565
       T3W = FMA(T3U, T3V, T3T);
566
       T5q = FNMS(T3U, T3S, T5p);
567
       T40 = W[53];
568
       T42 = FMA(T40, T41, T3Z);
569
       T5s = FNMS(T40, T3Y, T5r);
570
       T43 = T3W + T42;
571
       T5t = T5q + T5s;
572
       T7W = T5s - T5q;
573
       T7X = T3W - T42;
574
       T7Y = T7W + T7X;
575
       T85 = T7W - T7X;
576
        }
577
         }
578
         {
579
        E T1p, T6i, T2H, T68, T5g, T67, T4T, T6h, T4w, T6m, T5G, T6c, T3D, T6n, T63;
580
        E T6f;
581
        {
582
       E TH, T1o, T4H, T4S;
583
       TH = Tl + TG;
584
       T1o = T12 + T1n;
585
       T1p = TH + T1o;
586
       T6i = TH - T1o;
587
       {
588
            E T26, T2G, T54, T5f;
589
            T26 = T1K + T25;
590
            T2G = T2r + T2F;
591
            T2H = T26 + T2G;
592
            T68 = T2G - T26;
593
            T54 = T4Y + T53;
594
            T5f = T59 + T5e;
595
            T5g = T54 + T5f;
596
            T67 = T5f - T54;
597
       }
598
       T4H = T4B + T4G;
599
       T4S = T4M + T4R;
600
       T4T = T4H + T4S;
601
       T6h = T4H - T4S;
602
       {
603
            E T44, T4v, T6b, T5u, T5F, T6a;
604
            T44 = T3Q + T43;
605
            T4v = T4h + T4u;
606
            T6b = T44 - T4v;
607
            T5u = T5o + T5t;
608
            T5F = T5z + T5E;
609
            T6a = T5F - T5u;
610
            T4w = T44 + T4v;
611
            T6m = T6a - T6b;
612
            T5G = T5u + T5F;
613
            T6c = T6a + T6b;
614
       }
615
       {
616
            E T39, T3C, T6d, T5R, T62, T6e;
617
            T39 = T2V + T38;
618
            T3C = T3m + T3B;
619
            T6d = T3C - T39;
620
            T5R = T5L + T5Q;
621
            T62 = T5W + T61;
622
            T6e = T62 - T5R;
623
            T3D = T39 + T3C;
624
            T6n = T6d + T6e;
625
            T63 = T5R + T62;
626
            T6f = T6d - T6e;
627
       }
628
        }
629
        {
630
       E T2I, T4x, T65, T66;
631
       T2I = T1p + T2H;
632
       T4x = T3D - T4w;
633
       Ip[0] = KP500000000 * (T2I + T4x);
634
       Im[WS(rs, 15)] = KP500000000 * (T4x - T2I);
635
       T65 = T4T + T5g;
636
       T66 = T5G + T63;
637
       Rm[WS(rs, 15)] = KP500000000 * (T65 - T66);
638
       Rp[0] = KP500000000 * (T65 + T66);
639
        }
640
        {
641
       E T5h, T5i, T5j, T64;
642
       T5h = T4T - T5g;
643
       T5i = T4w + T3D;
644
       Rm[WS(rs, 7)] = KP500000000 * (T5h - T5i);
645
       Rp[WS(rs, 8)] = KP500000000 * (T5h + T5i);
646
       T5j = T2H - T1p;
647
       T64 = T5G - T63;
648
       Ip[WS(rs, 8)] = KP500000000 * (T5j + T64);
649
       Im[WS(rs, 7)] = KP500000000 * (T64 - T5j);
650
        }
651
        {
652
       E T69, T6g, T6p, T6q;
653
       T69 = T67 + T68;
654
       T6g = T6c + T6f;
655
       Ip[WS(rs, 4)] = KP500000000 * (FMA(KP707106781, T6g, T69));
656
       Im[WS(rs, 11)] = -(KP500000000 * (FNMS(KP707106781, T6g, T69)));
657
       T6p = T6h + T6i;
658
       T6q = T6m + T6n;
659
       Rm[WS(rs, 11)] = KP500000000 * (FNMS(KP707106781, T6q, T6p));
660
       Rp[WS(rs, 4)] = KP500000000 * (FMA(KP707106781, T6q, T6p));
661
        }
662
        {
663
       E T6j, T6k, T6l, T6o;
664
       T6j = T6h - T6i;
665
       T6k = T6f - T6c;
666
       Rm[WS(rs, 3)] = KP500000000 * (FNMS(KP707106781, T6k, T6j));
667
       Rp[WS(rs, 12)] = KP500000000 * (FMA(KP707106781, T6k, T6j));
668
       T6l = T68 - T67;
669
       T6o = T6m - T6n;
670
       Ip[WS(rs, 12)] = KP500000000 * (FMA(KP707106781, T6o, T6l));
671
       Im[WS(rs, 3)] = -(KP500000000 * (FNMS(KP707106781, T6o, T6l)));
672
        }
673
         }
674
         {
675
        E T6t, T75, T6T, T7f, T6A, T7g, T6W, T76, T6I, T7k, T70, T7a, T6P, T7l, T71;
676
        E T7d;
677
        {
678
       E T6r, T6s, T6R, T6S;
679
       T6r = T4R - T4M;
680
       T6s = T2F - T2r;
681
       T6t = T6r + T6s;
682
       T75 = T6s - T6r;
683
       T6R = T4B - T4G;
684
       T6S = T1K - T25;
685
       T6T = T6R + T6S;
686
       T7f = T6R - T6S;
687
        }
688
        {
689
       E T6w, T6U, T6z, T6V;
690
       {
691
            E T6u, T6v, T6x, T6y;
692
            T6u = Tl - TG;
693
            T6v = T4Y - T53;
694
            T6w = T6u - T6v;
695
            T6U = T6v + T6u;
696
            T6x = T59 - T5e;
697
            T6y = T12 - T1n;
698
            T6z = T6x + T6y;
699
            T6V = T6x - T6y;
700
       }
701
       T6A = T6w + T6z;
702
       T7g = T6w - T6z;
703
       T6W = T6U + T6V;
704
       T76 = T6V - T6U;
705
        }
706
        {
707
       E T6E, T78, T6H, T79;
708
       {
709
            E T6C, T6D, T6F, T6G;
710
            T6C = T5t - T5o;
711
            T6D = T4u - T4h;
712
            T6E = T6C + T6D;
713
            T78 = T6C - T6D;
714
            T6F = T43 - T3Q;
715
            T6G = T5z - T5E;
716
            T6H = T6F + T6G;
717
            T79 = T6G - T6F;
718
       }
719
       T6I = FMA(KP414213562, T6H, T6E);
720
       T7k = FNMS(KP414213562, T78, T79);
721
       T70 = FNMS(KP414213562, T6E, T6H);
722
       T7a = FMA(KP414213562, T79, T78);
723
        }
724
        {
725
       E T6L, T7b, T6O, T7c;
726
       {
727
            E T6J, T6K, T6M, T6N;
728
            T6J = T5Q - T5L;
729
            T6K = T3B - T3m;
730
            T6L = T6J + T6K;
731
            T7b = T6K - T6J;
732
            T6M = T2V - T38;
733
            T6N = T61 - T5W;
734
            T6O = T6M + T6N;
735
            T7c = T6N - T6M;
736
       }
737
       T6P = FNMS(KP414213562, T6O, T6L);
738
       T7l = FNMS(KP414213562, T7b, T7c);
739
       T71 = FMA(KP414213562, T6L, T6O);
740
       T7d = FMA(KP414213562, T7c, T7b);
741
        }
742
        {
743
       E T6B, T6Q, T73, T74;
744
       T6B = FMA(KP707106781, T6A, T6t);
745
       T6Q = T6I + T6P;
746
       Ip[WS(rs, 2)] = KP500000000 * (FMA(KP923879532, T6Q, T6B));
747
       Im[WS(rs, 13)] = -(KP500000000 * (FNMS(KP923879532, T6Q, T6B)));
748
       T73 = FMA(KP707106781, T6W, T6T);
749
       T74 = T70 + T71;
750
       Rm[WS(rs, 13)] = KP500000000 * (FNMS(KP923879532, T74, T73));
751
       Rp[WS(rs, 2)] = KP500000000 * (FMA(KP923879532, T74, T73));
752
        }
753
        {
754
       E T6X, T6Y, T6Z, T72;
755
       T6X = FNMS(KP707106781, T6W, T6T);
756
       T6Y = T6P - T6I;
757
       Rm[WS(rs, 5)] = KP500000000 * (FNMS(KP923879532, T6Y, T6X));
758
       Rp[WS(rs, 10)] = KP500000000 * (FMA(KP923879532, T6Y, T6X));
759
       T6Z = FNMS(KP707106781, T6A, T6t);
760
       T72 = T70 - T71;
761
       Ip[WS(rs, 10)] = KP500000000 * (FMA(KP923879532, T72, T6Z));
762
       Im[WS(rs, 5)] = -(KP500000000 * (FNMS(KP923879532, T72, T6Z)));
763
        }
764
        {
765
       E T77, T7e, T7n, T7o;
766
       T77 = FNMS(KP707106781, T76, T75);
767
       T7e = T7a - T7d;
768
       Ip[WS(rs, 14)] = KP500000000 * (FMA(KP923879532, T7e, T77));
769
       Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP923879532, T7e, T77)));
770
       T7n = FNMS(KP707106781, T7g, T7f);
771
       T7o = T7k + T7l;
772
       Rp[WS(rs, 14)] = KP500000000 * (FNMS(KP923879532, T7o, T7n));
773
       Rm[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T7o, T7n));
774
        }
775
        {
776
       E T7h, T7i, T7j, T7m;
777
       T7h = FMA(KP707106781, T7g, T7f);
778
       T7i = T7a + T7d;
779
       Rm[WS(rs, 9)] = KP500000000 * (FNMS(KP923879532, T7i, T7h));
780
       Rp[WS(rs, 6)] = KP500000000 * (FMA(KP923879532, T7i, T7h));
781
       T7j = FMA(KP707106781, T76, T75);
782
       T7m = T7k - T7l;
783
       Ip[WS(rs, 6)] = KP500000000 * (FMA(KP923879532, T7m, T7j));
784
       Im[WS(rs, 9)] = -(KP500000000 * (FNMS(KP923879532, T7m, T7j)));
785
        }
786
         }
787
         {
788
        E T7z, T9T, T8L, T9x, T8z, T9J, T8V, T97, T7O, T8W, T8C, T8M, T9t, T9Y, T9E;
789
        E T9O, T88, T90, T8G, T8Q, T9e, T9U, T9A, T9K, T9m, T9Z, T9F, T9R, T8r, T91;
790
        E T8H, T8T;
791
        {
792
       E T7r, T9v, T7y, T9w, T7u, T7x;
793
       T7r = T7p - T7q;
794
       T9v = T8t - T8u;
795
       T7u = T7s - T7t;
796
       T7x = T7v + T7w;
797
       T7y = T7u + T7x;
798
       T9w = T7u - T7x;
799
       T7z = FMA(KP707106781, T7y, T7r);
800
       T9T = FNMS(KP707106781, T9w, T9v);
801
       T8L = FNMS(KP707106781, T7y, T7r);
802
       T9x = FMA(KP707106781, T9w, T9v);
803
        }
804
        {
805
       E T8v, T95, T8y, T96, T8w, T8x;
806
       T8v = T8t + T8u;
807
       T95 = T7q + T7p;
808
       T8w = T7t + T7s;
809
       T8x = T7v - T7w;
810
       T8y = T8w + T8x;
811
       T96 = T8x - T8w;
812
       T8z = FMA(KP707106781, T8y, T8v);
813
       T9J = FNMS(KP707106781, T96, T95);
814
       T8V = FNMS(KP707106781, T8y, T8v);
815
       T97 = FMA(KP707106781, T96, T95);
816
        }
817
        {
818
       E T7G, T8A, T7N, T8B;
819
       {
820
            E T7C, T7F, T7J, T7M;
821
            T7C = T7A - T7B;
822
            T7F = T7D + T7E;
823
            T7G = FNMS(KP414213562, T7F, T7C);
824
            T8A = FMA(KP414213562, T7C, T7F);
825
            T7J = T7H - T7I;
826
            T7M = T7K + T7L;
827
            T7N = FMA(KP414213562, T7M, T7J);
828
            T8B = FNMS(KP414213562, T7J, T7M);
829
       }
830
       T7O = T7G + T7N;
831
       T8W = T7G - T7N;
832
       T8C = T8A + T8B;
833
       T8M = T8B - T8A;
834
        }
835
        {
836
       E T9p, T9M, T9s, T9N;
837
       {
838
            E T9n, T9o, T9q, T9r;
839
            T9n = T7R - T7Q;
840
            T9o = T85 - T84;
841
            T9p = FNMS(KP707106781, T9o, T9n);
842
            T9M = FMA(KP707106781, T9o, T9n);
843
            T9q = T81 - T82;
844
            T9r = T7Y - T7V;
845
            T9s = FNMS(KP707106781, T9r, T9q);
846
            T9N = FMA(KP707106781, T9r, T9q);
847
       }
848
       T9t = FNMS(KP668178637, T9s, T9p);
849
       T9Y = FNMS(KP198912367, T9M, T9N);
850
       T9E = FMA(KP668178637, T9p, T9s);
851
       T9O = FMA(KP198912367, T9N, T9M);
852
        }
853
        {
854
       E T80, T8O, T87, T8P;
855
       {
856
            E T7S, T7Z, T83, T86;
857
            T7S = T7Q + T7R;
858
            T7Z = T7V + T7Y;
859
            T80 = FMA(KP707106781, T7Z, T7S);
860
            T8O = FNMS(KP707106781, T7Z, T7S);
861
            T83 = T81 + T82;
862
            T86 = T84 + T85;
863
            T87 = FMA(KP707106781, T86, T83);
864
            T8P = FNMS(KP707106781, T86, T83);
865
       }
866
       T88 = FMA(KP198912367, T87, T80);
867
       T90 = FMA(KP668178637, T8O, T8P);
868
       T8G = FNMS(KP198912367, T80, T87);
869
       T8Q = FNMS(KP668178637, T8P, T8O);
870
        }
871
        {
872
       E T9a, T9z, T9d, T9y;
873
       {
874
            E T98, T99, T9b, T9c;
875
            T98 = T7K - T7L;
876
            T99 = T7H + T7I;
877
            T9a = FMA(KP414213562, T99, T98);
878
            T9z = FNMS(KP414213562, T98, T99);
879
            T9b = T7D - T7E;
880
            T9c = T7A + T7B;
881
            T9d = FNMS(KP414213562, T9c, T9b);
882
            T9y = FMA(KP414213562, T9b, T9c);
883
       }
884
       T9e = T9a - T9d;
885
       T9U = T9d + T9a;
886
       T9A = T9y - T9z;
887
       T9K = T9y + T9z;
888
        }
889
        {
890
       E T9i, T9P, T9l, T9Q;
891
       {
892
            E T9g, T9h, T9j, T9k;
893
            T9g = T8a + T89;
894
            T9h = T8n - T8o;
895
            T9i = FNMS(KP707106781, T9h, T9g);
896
            T9P = FMA(KP707106781, T9h, T9g);
897
            T9j = T8l - T8k;
898
            T9k = T8h - T8e;
899
            T9l = FNMS(KP707106781, T9k, T9j);
900
            T9Q = FMA(KP707106781, T9k, T9j);
901
       }
902
       T9m = FNMS(KP668178637, T9l, T9i);
903
       T9Z = FNMS(KP198912367, T9P, T9Q);
904
       T9F = FMA(KP668178637, T9i, T9l);
905
       T9R = FMA(KP198912367, T9Q, T9P);
906
        }
907
        {
908
       E T8j, T8R, T8q, T8S;
909
       {
910
            E T8b, T8i, T8m, T8p;
911
            T8b = T89 - T8a;
912
            T8i = T8e + T8h;
913
            T8j = FMA(KP707106781, T8i, T8b);
914
            T8R = FNMS(KP707106781, T8i, T8b);
915
            T8m = T8k + T8l;
916
            T8p = T8n + T8o;
917
            T8q = FMA(KP707106781, T8p, T8m);
918
            T8S = FNMS(KP707106781, T8p, T8m);
919
       }
920
       T8r = FNMS(KP198912367, T8q, T8j);
921
       T91 = FNMS(KP668178637, T8R, T8S);
922
       T8H = FMA(KP198912367, T8j, T8q);
923
       T8T = FMA(KP668178637, T8S, T8R);
924
        }
925
        {
926
       E T7P, T8s, T8J, T8K;
927
       T7P = FMA(KP923879532, T7O, T7z);
928
       T8s = T88 + T8r;
929
       Ip[WS(rs, 1)] = KP500000000 * (FMA(KP980785280, T8s, T7P));
930
       Im[WS(rs, 14)] = -(KP500000000 * (FNMS(KP980785280, T8s, T7P)));
931
       T8J = FMA(KP923879532, T8C, T8z);
932
       T8K = T8G + T8H;
933
       Rm[WS(rs, 14)] = KP500000000 * (FNMS(KP980785280, T8K, T8J));
934
       Rp[WS(rs, 1)] = KP500000000 * (FMA(KP980785280, T8K, T8J));
935
        }
936
        {
937
       E T8D, T8E, T8F, T8I;
938
       T8D = FNMS(KP923879532, T8C, T8z);
939
       T8E = T8r - T88;
940
       Rm[WS(rs, 6)] = KP500000000 * (FNMS(KP980785280, T8E, T8D));
941
       Rp[WS(rs, 9)] = KP500000000 * (FMA(KP980785280, T8E, T8D));
942
       T8F = FNMS(KP923879532, T7O, T7z);
943
       T8I = T8G - T8H;
944
       Ip[WS(rs, 9)] = KP500000000 * (FMA(KP980785280, T8I, T8F));
945
       Im[WS(rs, 6)] = -(KP500000000 * (FNMS(KP980785280, T8I, T8F)));
946
        }
947
        {
948
       E T8N, T8U, T93, T94;
949
       T8N = FNMS(KP923879532, T8M, T8L);
950
       T8U = T8Q + T8T;
951
       Ip[WS(rs, 13)] = KP500000000 * (FNMS(KP831469612, T8U, T8N));
952
       Im[WS(rs, 2)] = -(KP500000000 * (FMA(KP831469612, T8U, T8N)));
953
       T93 = FNMS(KP923879532, T8W, T8V);
954
       T94 = T90 + T91;
955
       Rp[WS(rs, 13)] = KP500000000 * (FNMS(KP831469612, T94, T93));
956
       Rm[WS(rs, 2)] = KP500000000 * (FMA(KP831469612, T94, T93));
957
        }
958
        {
959
       E T8X, T8Y, T8Z, T92;
960
       T8X = FMA(KP923879532, T8W, T8V);
961
       T8Y = T8T - T8Q;
962
       Rm[WS(rs, 10)] = KP500000000 * (FNMS(KP831469612, T8Y, T8X));
963
       Rp[WS(rs, 5)] = KP500000000 * (FMA(KP831469612, T8Y, T8X));
964
       T8Z = FMA(KP923879532, T8M, T8L);
965
       T92 = T90 - T91;
966
       Ip[WS(rs, 5)] = KP500000000 * (FMA(KP831469612, T92, T8Z));
967
       Im[WS(rs, 10)] = -(KP500000000 * (FNMS(KP831469612, T92, T8Z)));
968
        }
969
        {
970
       E T9f, T9u, T9H, T9I;
971
       T9f = FMA(KP923879532, T9e, T97);
972
       T9u = T9m - T9t;
973
       Ip[WS(rs, 3)] = KP500000000 * (FMA(KP831469612, T9u, T9f));
974
       Im[WS(rs, 12)] = -(KP500000000 * (FNMS(KP831469612, T9u, T9f)));
975
       T9H = FMA(KP923879532, T9A, T9x);
976
       T9I = T9E + T9F;
977
       Rm[WS(rs, 12)] = KP500000000 * (FNMS(KP831469612, T9I, T9H));
978
       Rp[WS(rs, 3)] = KP500000000 * (FMA(KP831469612, T9I, T9H));
979
        }
980
        {
981
       E T9B, T9C, T9D, T9G;
982
       T9B = FNMS(KP923879532, T9A, T9x);
983
       T9C = T9t + T9m;
984
       Rm[WS(rs, 4)] = KP500000000 * (FNMS(KP831469612, T9C, T9B));
985
       Rp[WS(rs, 11)] = KP500000000 * (FMA(KP831469612, T9C, T9B));
986
       T9D = FNMS(KP923879532, T9e, T97);
987
       T9G = T9E - T9F;
988
       Ip[WS(rs, 11)] = KP500000000 * (FMA(KP831469612, T9G, T9D));
989
       Im[WS(rs, 4)] = -(KP500000000 * (FNMS(KP831469612, T9G, T9D)));
990
        }
991
        {
992
       E T9L, T9S, Ta1, Ta2;
993
       T9L = FMA(KP923879532, T9K, T9J);
994
       T9S = T9O - T9R;
995
       Ip[WS(rs, 15)] = KP500000000 * (FMA(KP980785280, T9S, T9L));
996
       Im[0] = -(KP500000000 * (FNMS(KP980785280, T9S, T9L)));
997
       Ta1 = FMA(KP923879532, T9U, T9T);
998
       Ta2 = T9Y + T9Z;
999
       Rp[WS(rs, 15)] = KP500000000 * (FNMS(KP980785280, Ta2, Ta1));
1000
       Rm[0] = KP500000000 * (FMA(KP980785280, Ta2, Ta1));
1001
        }
1002
        {
1003
       E T9V, T9W, T9X, Ta0;
1004
       T9V = FNMS(KP923879532, T9U, T9T);
1005
       T9W = T9O + T9R;
1006
       Rm[WS(rs, 8)] = KP500000000 * (FNMS(KP980785280, T9W, T9V));
1007
       Rp[WS(rs, 7)] = KP500000000 * (FMA(KP980785280, T9W, T9V));
1008
       T9X = FNMS(KP923879532, T9K, T9J);
1009
       Ta0 = T9Y - T9Z;
1010
       Ip[WS(rs, 7)] = KP500000000 * (FMA(KP980785280, Ta0, T9X));
1011
       Im[WS(rs, 8)] = -(KP500000000 * (FNMS(KP980785280, Ta0, T9X)));
1012
        }
1013
         }
1014
    }
1015
     }
1016
}
1017
1018
static const tw_instr twinstr[] = {
1019
     { TW_FULL, 1, 32 },
1020
     { TW_NEXT, 1, 0 }
1021
};
1022
1023
static const hc2c_desc desc = { 32, "hc2cfdft_32", twinstr, &GENUS, { 300, 126, 198, 0 } };
1024
1025
void X(codelet_hc2cfdft_32) (planner *p) {
1026
     X(khc2c_register) (p, hc2cfdft_32, &desc, HC2C_VIA_DFT);
1027
}
1028
#else
1029
1030
/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 32 -dit -name hc2cfdft_32 -include rdft/scalar/hc2cf.h */
1031
1032
/*
1033
 * This function contains 498 FP additions, 228 FP multiplications,
1034
 * (or, 404 additions, 134 multiplications, 94 fused multiply/add),
1035
 * 106 stack variables, 9 constants, and 128 memory accesses
1036
 */
1037
#include "rdft/scalar/hc2cf.h"
1038
1039
static void hc2cfdft_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
1040
0
{
1041
0
     DK(KP277785116, +0.277785116509801112371415406974266437187468595);
1042
0
     DK(KP415734806, +0.415734806151272618539394188808952878369280406);
1043
0
     DK(KP097545161, +0.097545161008064133924142434238511120463845809);
1044
0
     DK(KP490392640, +0.490392640201615224563091118067119518486966865);
1045
0
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
1046
0
     DK(KP191341716, +0.191341716182544885864229992015199433380672281);
1047
0
     DK(KP461939766, +0.461939766255643378064091594698394143411208313);
1048
0
     DK(KP353553390, +0.353553390593273762200422181052424519642417969);
1049
0
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
1050
0
     {
1051
0
    INT m;
1052
0
    for (m = mb, W = W + ((mb - 1) * 62); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 62, MAKE_VOLATILE_STRIDE(128, rs)) {
1053
0
         E T2S, T5K, T52, T5N, T7p, T8r, T7i, T8o, T2q, T7t, T45, T6L, T2d, T7u, T48;
1054
0
         E T6M, T1A, T4c, T4f, T1T, T3f, T5M, T7e, T7l, T6J, T7x, T4V, T5J, T7b, T7k;
1055
0
         E T6G, T7w, Tj, TC, T5r, T4k, T4n, T5s, T3D, T5C, T6V, T72, T4G, T5F, T6u;
1056
0
         E T86, T6S, T71, T6r, T85, TW, T1f, T5v, T4r, T4u, T5u, T40, T5G, T76, T8k;
1057
0
         E T4N, T5D, T6B, T89, T6Z, T8h, T6y, T88;
1058
0
         {
1059
0
        E T1Y, T22, T2L, T4W, T2p, T43, T2A, T50, T27, T2b, T2Q, T4X, T2h, T2l, T2F;
1060
0
        E T4Z;
1061
0
        {
1062
0
       E T1W, T1X, T2K, T20, T21, T2I, T2H, T2J;
1063
0
       T1W = Ip[WS(rs, 4)];
1064
0
       T1X = Im[WS(rs, 4)];
1065
0
       T2K = T1W + T1X;
1066
0
       T20 = Rp[WS(rs, 4)];
1067
0
       T21 = Rm[WS(rs, 4)];
1068
0
       T2I = T20 - T21;
1069
0
       T1Y = T1W - T1X;
1070
0
       T22 = T20 + T21;
1071
0
       T2H = W[16];
1072
0
       T2J = W[17];
1073
0
       T2L = FMA(T2H, T2I, T2J * T2K);
1074
0
       T4W = FNMS(T2J, T2I, T2H * T2K);
1075
0
        }
1076
0
        {
1077
0
       E T2n, T2o, T2z, T2v, T2w, T2x, T2u, T2y;
1078
0
       T2n = Ip[0];
1079
0
       T2o = Im[0];
1080
0
       T2z = T2n + T2o;
1081
0
       T2v = Rm[0];
1082
0
       T2w = Rp[0];
1083
0
       T2x = T2v - T2w;
1084
0
       T2p = T2n - T2o;
1085
0
       T43 = T2w + T2v;
1086
0
       T2u = W[0];
1087
0
       T2y = W[1];
1088
0
       T2A = FNMS(T2y, T2z, T2u * T2x);
1089
0
       T50 = FMA(T2y, T2x, T2u * T2z);
1090
0
        }
1091
0
        {
1092
0
       E T25, T26, T2P, T29, T2a, T2N, T2M, T2O;
1093
0
       T25 = Ip[WS(rs, 12)];
1094
0
       T26 = Im[WS(rs, 12)];
1095
0
       T2P = T25 + T26;
1096
0
       T29 = Rp[WS(rs, 12)];
1097
0
       T2a = Rm[WS(rs, 12)];
1098
0
       T2N = T29 - T2a;
1099
0
       T27 = T25 - T26;
1100
0
       T2b = T29 + T2a;
1101
0
       T2M = W[48];
1102
0
       T2O = W[49];
1103
0
       T2Q = FMA(T2M, T2N, T2O * T2P);
1104
0
       T4X = FNMS(T2O, T2N, T2M * T2P);
1105
0
        }
1106
0
        {
1107
0
       E T2f, T2g, T2E, T2j, T2k, T2C, T2B, T2D;
1108
0
       T2f = Ip[WS(rs, 8)];
1109
0
       T2g = Im[WS(rs, 8)];
1110
0
       T2E = T2f + T2g;
1111
0
       T2j = Rp[WS(rs, 8)];
1112
0
       T2k = Rm[WS(rs, 8)];
1113
0
       T2C = T2j - T2k;
1114
0
       T2h = T2f - T2g;
1115
0
       T2l = T2j + T2k;
1116
0
       T2B = W[32];
1117
0
       T2D = W[33];
1118
0
       T2F = FMA(T2B, T2C, T2D * T2E);
1119
0
       T4Z = FNMS(T2D, T2C, T2B * T2E);
1120
0
        }
1121
0
        {
1122
0
       E T2G, T2R, T7g, T7h;
1123
0
       T2G = T2A - T2F;
1124
0
       T2R = T2L + T2Q;
1125
0
       T2S = T2G - T2R;
1126
0
       T5K = T2R + T2G;
1127
0
       {
1128
0
            E T4Y, T51, T7n, T7o;
1129
0
            T4Y = T4W + T4X;
1130
0
            T51 = T4Z + T50;
1131
0
            T52 = T4Y + T51;
1132
0
            T5N = T51 - T4Y;
1133
0
            T7n = T2Q - T2L;
1134
0
            T7o = T50 - T4Z;
1135
0
            T7p = T7n + T7o;
1136
0
            T8r = T7o - T7n;
1137
0
       }
1138
0
       T7g = T2F + T2A;
1139
0
       T7h = T4W - T4X;
1140
0
       T7i = T7g - T7h;
1141
0
       T8o = T7h + T7g;
1142
0
       {
1143
0
            E T2m, T44, T2e, T2i;
1144
0
            T2e = W[30];
1145
0
            T2i = W[31];
1146
0
            T2m = FNMS(T2i, T2l, T2e * T2h);
1147
0
            T44 = FMA(T2e, T2l, T2i * T2h);
1148
0
            T2q = T2m + T2p;
1149
0
            T7t = T43 - T44;
1150
0
            T45 = T43 + T44;
1151
0
            T6L = T2p - T2m;
1152
0
       }
1153
0
       {
1154
0
            E T23, T46, T2c, T47;
1155
0
            {
1156
0
           E T1V, T1Z, T24, T28;
1157
0
           T1V = W[14];
1158
0
           T1Z = W[15];
1159
0
           T23 = FNMS(T1Z, T22, T1V * T1Y);
1160
0
           T46 = FMA(T1V, T22, T1Z * T1Y);
1161
0
           T24 = W[46];
1162
0
           T28 = W[47];
1163
0
           T2c = FNMS(T28, T2b, T24 * T27);
1164
0
           T47 = FMA(T24, T2b, T28 * T27);
1165
0
            }
1166
0
            T2d = T23 + T2c;
1167
0
            T7u = T23 - T2c;
1168
0
            T48 = T46 + T47;
1169
0
            T6M = T46 - T47;
1170
0
       }
1171
0
        }
1172
0
         }
1173
0
         {
1174
0
        E T1q, T4a, T2X, T4P, T1S, T4e, T3d, T4T, T1z, T4b, T32, T4Q, T1J, T4d, T38;
1175
0
        E T4S;
1176
0
        {
1177
0
       E T1l, T2W, T1p, T2U;
1178
0
       {
1179
0
            E T1j, T1k, T1n, T1o;
1180
0
            T1j = Ip[WS(rs, 2)];
1181
0
            T1k = Im[WS(rs, 2)];
1182
0
            T1l = T1j - T1k;
1183
0
            T2W = T1j + T1k;
1184
0
            T1n = Rp[WS(rs, 2)];
1185
0
            T1o = Rm[WS(rs, 2)];
1186
0
            T1p = T1n + T1o;
1187
0
            T2U = T1n - T1o;
1188
0
       }
1189
0
       {
1190
0
            E T1i, T1m, T2T, T2V;
1191
0
            T1i = W[6];
1192
0
            T1m = W[7];
1193
0
            T1q = FNMS(T1m, T1p, T1i * T1l);
1194
0
            T4a = FMA(T1i, T1p, T1m * T1l);
1195
0
            T2T = W[8];
1196
0
            T2V = W[9];
1197
0
            T2X = FMA(T2T, T2U, T2V * T2W);
1198
0
            T4P = FNMS(T2V, T2U, T2T * T2W);
1199
0
       }
1200
0
        }
1201
0
        {
1202
0
       E T1N, T3c, T1R, T3a;
1203
0
       {
1204
0
            E T1L, T1M, T1P, T1Q;
1205
0
            T1L = Ip[WS(rs, 6)];
1206
0
            T1M = Im[WS(rs, 6)];
1207
0
            T1N = T1L - T1M;
1208
0
            T3c = T1L + T1M;
1209
0
            T1P = Rp[WS(rs, 6)];
1210
0
            T1Q = Rm[WS(rs, 6)];
1211
0
            T1R = T1P + T1Q;
1212
0
            T3a = T1P - T1Q;
1213
0
       }
1214
0
       {
1215
0
            E T1K, T1O, T39, T3b;
1216
0
            T1K = W[22];
1217
0
            T1O = W[23];
1218
0
            T1S = FNMS(T1O, T1R, T1K * T1N);
1219
0
            T4e = FMA(T1K, T1R, T1O * T1N);
1220
0
            T39 = W[24];
1221
0
            T3b = W[25];
1222
0
            T3d = FMA(T39, T3a, T3b * T3c);
1223
0
            T4T = FNMS(T3b, T3a, T39 * T3c);
1224
0
       }
1225
0
        }
1226
0
        {
1227
0
       E T1u, T31, T1y, T2Z;
1228
0
       {
1229
0
            E T1s, T1t, T1w, T1x;
1230
0
            T1s = Ip[WS(rs, 10)];
1231
0
            T1t = Im[WS(rs, 10)];
1232
0
            T1u = T1s - T1t;
1233
0
            T31 = T1s + T1t;
1234
0
            T1w = Rp[WS(rs, 10)];
1235
0
            T1x = Rm[WS(rs, 10)];
1236
0
            T1y = T1w + T1x;
1237
0
            T2Z = T1w - T1x;
1238
0
       }
1239
0
       {
1240
0
            E T1r, T1v, T2Y, T30;
1241
0
            T1r = W[38];
1242
0
            T1v = W[39];
1243
0
            T1z = FNMS(T1v, T1y, T1r * T1u);
1244
0
            T4b = FMA(T1r, T1y, T1v * T1u);
1245
0
            T2Y = W[40];
1246
0
            T30 = W[41];
1247
0
            T32 = FMA(T2Y, T2Z, T30 * T31);
1248
0
            T4Q = FNMS(T30, T2Z, T2Y * T31);
1249
0
       }
1250
0
        }
1251
0
        {
1252
0
       E T1E, T37, T1I, T35;
1253
0
       {
1254
0
            E T1C, T1D, T1G, T1H;
1255
0
            T1C = Ip[WS(rs, 14)];
1256
0
            T1D = Im[WS(rs, 14)];
1257
0
            T1E = T1C - T1D;
1258
0
            T37 = T1C + T1D;
1259
0
            T1G = Rp[WS(rs, 14)];
1260
0
            T1H = Rm[WS(rs, 14)];
1261
0
            T1I = T1G + T1H;
1262
0
            T35 = T1G - T1H;
1263
0
       }
1264
0
       {
1265
0
            E T1B, T1F, T34, T36;
1266
0
            T1B = W[54];
1267
0
            T1F = W[55];
1268
0
            T1J = FNMS(T1F, T1I, T1B * T1E);
1269
0
            T4d = FMA(T1B, T1I, T1F * T1E);
1270
0
            T34 = W[56];
1271
0
            T36 = W[57];
1272
0
            T38 = FMA(T34, T35, T36 * T37);
1273
0
            T4S = FNMS(T36, T35, T34 * T37);
1274
0
       }
1275
0
        }
1276
0
        {
1277
0
       E T33, T3e, T4R, T4U;
1278
0
       T1A = T1q + T1z;
1279
0
       T4c = T4a + T4b;
1280
0
       T4f = T4d + T4e;
1281
0
       T1T = T1J + T1S;
1282
0
       T33 = T2X + T32;
1283
0
       T3e = T38 + T3d;
1284
0
       T3f = T33 + T3e;
1285
0
       T5M = T3e - T33;
1286
0
       {
1287
0
            E T7c, T7d, T6H, T6I;
1288
0
            T7c = T4S - T4T;
1289
0
            T7d = T3d - T38;
1290
0
            T7e = T7c + T7d;
1291
0
            T7l = T7c - T7d;
1292
0
            T6H = T4d - T4e;
1293
0
            T6I = T1J - T1S;
1294
0
            T6J = T6H + T6I;
1295
0
            T7x = T6H - T6I;
1296
0
       }
1297
0
       T4R = T4P + T4Q;
1298
0
       T4U = T4S + T4T;
1299
0
       T4V = T4R + T4U;
1300
0
       T5J = T4U - T4R;
1301
0
       {
1302
0
            E T79, T7a, T6E, T6F;
1303
0
            T79 = T32 - T2X;
1304
0
            T7a = T4P - T4Q;
1305
0
            T7b = T79 - T7a;
1306
0
            T7k = T7a + T79;
1307
0
            T6E = T1q - T1z;
1308
0
            T6F = T4a - T4b;
1309
0
            T6G = T6E - T6F;
1310
0
            T7w = T6F + T6E;
1311
0
       }
1312
0
        }
1313
0
         }
1314
0
         {
1315
0
        E T9, T4i, T3l, T4A, TB, T4m, T3B, T4E, Ti, T4j, T3q, T4B, Ts, T4l, T3w;
1316
0
        E T4D;
1317
0
        {
1318
0
       E T4, T3k, T8, T3i;
1319
0
       {
1320
0
            E T2, T3, T6, T7;
1321
0
            T2 = Ip[WS(rs, 1)];
1322
0
            T3 = Im[WS(rs, 1)];
1323
0
            T4 = T2 - T3;
1324
0
            T3k = T2 + T3;
1325
0
            T6 = Rp[WS(rs, 1)];
1326
0
            T7 = Rm[WS(rs, 1)];
1327
0
            T8 = T6 + T7;
1328
0
            T3i = T6 - T7;
1329
0
       }
1330
0
       {
1331
0
            E T1, T5, T3h, T3j;
1332
0
            T1 = W[2];
1333
0
            T5 = W[3];
1334
0
            T9 = FNMS(T5, T8, T1 * T4);
1335
0
            T4i = FMA(T1, T8, T5 * T4);
1336
0
            T3h = W[4];
1337
0
            T3j = W[5];
1338
0
            T3l = FMA(T3h, T3i, T3j * T3k);
1339
0
            T4A = FNMS(T3j, T3i, T3h * T3k);
1340
0
       }
1341
0
        }
1342
0
        {
1343
0
       E Tw, T3A, TA, T3y;
1344
0
       {
1345
0
            E Tu, Tv, Ty, Tz;
1346
0
            Tu = Ip[WS(rs, 13)];
1347
0
            Tv = Im[WS(rs, 13)];
1348
0
            Tw = Tu - Tv;
1349
0
            T3A = Tu + Tv;
1350
0
            Ty = Rp[WS(rs, 13)];
1351
0
            Tz = Rm[WS(rs, 13)];
1352
0
            TA = Ty + Tz;
1353
0
            T3y = Ty - Tz;
1354
0
       }
1355
0
       {
1356
0
            E Tt, Tx, T3x, T3z;
1357
0
            Tt = W[50];
1358
0
            Tx = W[51];
1359
0
            TB = FNMS(Tx, TA, Tt * Tw);
1360
0
            T4m = FMA(Tt, TA, Tx * Tw);
1361
0
            T3x = W[52];
1362
0
            T3z = W[53];
1363
0
            T3B = FMA(T3x, T3y, T3z * T3A);
1364
0
            T4E = FNMS(T3z, T3y, T3x * T3A);
1365
0
       }
1366
0
        }
1367
0
        {
1368
0
       E Td, T3p, Th, T3n;
1369
0
       {
1370
0
            E Tb, Tc, Tf, Tg;
1371
0
            Tb = Ip[WS(rs, 9)];
1372
0
            Tc = Im[WS(rs, 9)];
1373
0
            Td = Tb - Tc;
1374
0
            T3p = Tb + Tc;
1375
0
            Tf = Rp[WS(rs, 9)];
1376
0
            Tg = Rm[WS(rs, 9)];
1377
0
            Th = Tf + Tg;
1378
0
            T3n = Tf - Tg;
1379
0
       }
1380
0
       {
1381
0
            E Ta, Te, T3m, T3o;
1382
0
            Ta = W[34];
1383
0
            Te = W[35];
1384
0
            Ti = FNMS(Te, Th, Ta * Td);
1385
0
            T4j = FMA(Ta, Th, Te * Td);
1386
0
            T3m = W[36];
1387
0
            T3o = W[37];
1388
0
            T3q = FMA(T3m, T3n, T3o * T3p);
1389
0
            T4B = FNMS(T3o, T3n, T3m * T3p);
1390
0
       }
1391
0
        }
1392
0
        {
1393
0
       E Tn, T3v, Tr, T3t;
1394
0
       {
1395
0
            E Tl, Tm, Tp, Tq;
1396
0
            Tl = Ip[WS(rs, 5)];
1397
0
            Tm = Im[WS(rs, 5)];
1398
0
            Tn = Tl - Tm;
1399
0
            T3v = Tl + Tm;
1400
0
            Tp = Rp[WS(rs, 5)];
1401
0
            Tq = Rm[WS(rs, 5)];
1402
0
            Tr = Tp + Tq;
1403
0
            T3t = Tp - Tq;
1404
0
       }
1405
0
       {
1406
0
            E Tk, To, T3s, T3u;
1407
0
            Tk = W[18];
1408
0
            To = W[19];
1409
0
            Ts = FNMS(To, Tr, Tk * Tn);
1410
0
            T4l = FMA(Tk, Tr, To * Tn);
1411
0
            T3s = W[20];
1412
0
            T3u = W[21];
1413
0
            T3w = FMA(T3s, T3t, T3u * T3v);
1414
0
            T4D = FNMS(T3u, T3t, T3s * T3v);
1415
0
       }
1416
0
        }
1417
0
        Tj = T9 + Ti;
1418
0
        TC = Ts + TB;
1419
0
        T5r = Tj - TC;
1420
0
        T4k = T4i + T4j;
1421
0
        T4n = T4l + T4m;
1422
0
        T5s = T4k - T4n;
1423
0
        {
1424
0
       E T3r, T3C, T6T, T6U;
1425
0
       T3r = T3l + T3q;
1426
0
       T3C = T3w + T3B;
1427
0
       T3D = T3r + T3C;
1428
0
       T5C = T3C - T3r;
1429
0
       T6T = T4E - T4D;
1430
0
       T6U = T3w - T3B;
1431
0
       T6V = T6T + T6U;
1432
0
       T72 = T6T - T6U;
1433
0
        }
1434
0
        {
1435
0
       E T4C, T4F, T6s, T6t;
1436
0
       T4C = T4A + T4B;
1437
0
       T4F = T4D + T4E;
1438
0
       T4G = T4C + T4F;
1439
0
       T5F = T4F - T4C;
1440
0
       T6s = T4i - T4j;
1441
0
       T6t = Ts - TB;
1442
0
       T6u = T6s + T6t;
1443
0
       T86 = T6s - T6t;
1444
0
        }
1445
0
        {
1446
0
       E T6Q, T6R, T6p, T6q;
1447
0
       T6Q = T3q - T3l;
1448
0
       T6R = T4A - T4B;
1449
0
       T6S = T6Q - T6R;
1450
0
       T71 = T6R + T6Q;
1451
0
       T6p = T9 - Ti;
1452
0
       T6q = T4l - T4m;
1453
0
       T6r = T6p - T6q;
1454
0
       T85 = T6p + T6q;
1455
0
        }
1456
0
         }
1457
0
         {
1458
0
        E TM, T4p, T3I, T4H, T1e, T4t, T3Y, T4L, TV, T4q, T3N, T4I, T15, T4s, T3T;
1459
0
        E T4K;
1460
0
        {
1461
0
       E TH, T3H, TL, T3F;
1462
0
       {
1463
0
            E TF, TG, TJ, TK;
1464
0
            TF = Ip[WS(rs, 15)];
1465
0
            TG = Im[WS(rs, 15)];
1466
0
            TH = TF - TG;
1467
0
            T3H = TF + TG;
1468
0
            TJ = Rp[WS(rs, 15)];
1469
0
            TK = Rm[WS(rs, 15)];
1470
0
            TL = TJ + TK;
1471
0
            T3F = TJ - TK;
1472
0
       }
1473
0
       {
1474
0
            E TE, TI, T3E, T3G;
1475
0
            TE = W[58];
1476
0
            TI = W[59];
1477
0
            TM = FNMS(TI, TL, TE * TH);
1478
0
            T4p = FMA(TE, TL, TI * TH);
1479
0
            T3E = W[60];
1480
0
            T3G = W[61];
1481
0
            T3I = FMA(T3E, T3F, T3G * T3H);
1482
0
            T4H = FNMS(T3G, T3F, T3E * T3H);
1483
0
       }
1484
0
        }
1485
0
        {
1486
0
       E T19, T3X, T1d, T3V;
1487
0
       {
1488
0
            E T17, T18, T1b, T1c;
1489
0
            T17 = Ip[WS(rs, 11)];
1490
0
            T18 = Im[WS(rs, 11)];
1491
0
            T19 = T17 - T18;
1492
0
            T3X = T17 + T18;
1493
0
            T1b = Rp[WS(rs, 11)];
1494
0
            T1c = Rm[WS(rs, 11)];
1495
0
            T1d = T1b + T1c;
1496
0
            T3V = T1b - T1c;
1497
0
       }
1498
0
       {
1499
0
            E T16, T1a, T3U, T3W;
1500
0
            T16 = W[42];
1501
0
            T1a = W[43];
1502
0
            T1e = FNMS(T1a, T1d, T16 * T19);
1503
0
            T4t = FMA(T16, T1d, T1a * T19);
1504
0
            T3U = W[44];
1505
0
            T3W = W[45];
1506
0
            T3Y = FMA(T3U, T3V, T3W * T3X);
1507
0
            T4L = FNMS(T3W, T3V, T3U * T3X);
1508
0
       }
1509
0
        }
1510
0
        {
1511
0
       E TQ, T3M, TU, T3K;
1512
0
       {
1513
0
            E TO, TP, TS, TT;
1514
0
            TO = Ip[WS(rs, 7)];
1515
0
            TP = Im[WS(rs, 7)];
1516
0
            TQ = TO - TP;
1517
0
            T3M = TO + TP;
1518
0
            TS = Rp[WS(rs, 7)];
1519
0
            TT = Rm[WS(rs, 7)];
1520
0
            TU = TS + TT;
1521
0
            T3K = TS - TT;
1522
0
       }
1523
0
       {
1524
0
            E TN, TR, T3J, T3L;
1525
0
            TN = W[26];
1526
0
            TR = W[27];
1527
0
            TV = FNMS(TR, TU, TN * TQ);
1528
0
            T4q = FMA(TN, TU, TR * TQ);
1529
0
            T3J = W[28];
1530
0
            T3L = W[29];
1531
0
            T3N = FMA(T3J, T3K, T3L * T3M);
1532
0
            T4I = FNMS(T3L, T3K, T3J * T3M);
1533
0
       }
1534
0
        }
1535
0
        {
1536
0
       E T10, T3S, T14, T3Q;
1537
0
       {
1538
0
            E TY, TZ, T12, T13;
1539
0
            TY = Ip[WS(rs, 3)];
1540
0
            TZ = Im[WS(rs, 3)];
1541
0
            T10 = TY - TZ;
1542
0
            T3S = TY + TZ;
1543
0
            T12 = Rp[WS(rs, 3)];
1544
0
            T13 = Rm[WS(rs, 3)];
1545
0
            T14 = T12 + T13;
1546
0
            T3Q = T12 - T13;
1547
0
       }
1548
0
       {
1549
0
            E TX, T11, T3P, T3R;
1550
0
            TX = W[10];
1551
0
            T11 = W[11];
1552
0
            T15 = FNMS(T11, T14, TX * T10);
1553
0
            T4s = FMA(TX, T14, T11 * T10);
1554
0
            T3P = W[12];
1555
0
            T3R = W[13];
1556
0
            T3T = FMA(T3P, T3Q, T3R * T3S);
1557
0
            T4K = FNMS(T3R, T3Q, T3P * T3S);
1558
0
       }
1559
0
        }
1560
0
        TW = TM + TV;
1561
0
        T1f = T15 + T1e;
1562
0
        T5v = TW - T1f;
1563
0
        T4r = T4p + T4q;
1564
0
        T4u = T4s + T4t;
1565
0
        T5u = T4r - T4u;
1566
0
        {
1567
0
       E T3O, T3Z, T74, T75;
1568
0
       T3O = T3I + T3N;
1569
0
       T3Z = T3T + T3Y;
1570
0
       T40 = T3O + T3Z;
1571
0
       T5G = T3Z - T3O;
1572
0
       T74 = T4H - T4I;
1573
0
       T75 = T3Y - T3T;
1574
0
       T76 = T74 + T75;
1575
0
       T8k = T74 - T75;
1576
0
        }
1577
0
        {
1578
0
       E T4J, T4M, T6z, T6A;
1579
0
       T4J = T4H + T4I;
1580
0
       T4M = T4K + T4L;
1581
0
       T4N = T4J + T4M;
1582
0
       T5D = T4J - T4M;
1583
0
       T6z = T4p - T4q;
1584
0
       T6A = T15 - T1e;
1585
0
       T6B = T6z + T6A;
1586
0
       T89 = T6z - T6A;
1587
0
        }
1588
0
        {
1589
0
       E T6X, T6Y, T6w, T6x;
1590
0
       T6X = T3N - T3I;
1591
0
       T6Y = T4K - T4L;
1592
0
       T6Z = T6X - T6Y;
1593
0
       T8h = T6X + T6Y;
1594
0
       T6w = TM - TV;
1595
0
       T6x = T4s - T4t;
1596
0
       T6y = T6w - T6x;
1597
0
       T88 = T6w + T6x;
1598
0
        }
1599
0
         }
1600
0
         {
1601
0
        E T1h, T5i, T5c, T5m, T5f, T5n, T2s, T58, T42, T4y, T4w, T57, T54, T56, T4h;
1602
0
        E T5h;
1603
0
        {
1604
0
       E TD, T1g, T5a, T5b;
1605
0
       TD = Tj + TC;
1606
0
       T1g = TW + T1f;
1607
0
       T1h = TD + T1g;
1608
0
       T5i = TD - T1g;
1609
0
       T5a = T4N - T4G;
1610
0
       T5b = T3D - T40;
1611
0
       T5c = T5a + T5b;
1612
0
       T5m = T5a - T5b;
1613
0
        }
1614
0
        {
1615
0
       E T5d, T5e, T1U, T2r;
1616
0
       T5d = T3f + T2S;
1617
0
       T5e = T52 - T4V;
1618
0
       T5f = T5d - T5e;
1619
0
       T5n = T5d + T5e;
1620
0
       T1U = T1A + T1T;
1621
0
       T2r = T2d + T2q;
1622
0
       T2s = T1U + T2r;
1623
0
       T58 = T2r - T1U;
1624
0
        }
1625
0
        {
1626
0
       E T3g, T41, T4o, T4v;
1627
0
       T3g = T2S - T3f;
1628
0
       T41 = T3D + T40;
1629
0
       T42 = T3g - T41;
1630
0
       T4y = T41 + T3g;
1631
0
       T4o = T4k + T4n;
1632
0
       T4v = T4r + T4u;
1633
0
       T4w = T4o + T4v;
1634
0
       T57 = T4v - T4o;
1635
0
        }
1636
0
        {
1637
0
       E T4O, T53, T49, T4g;
1638
0
       T4O = T4G + T4N;
1639
0
       T53 = T4V + T52;
1640
0
       T54 = T4O - T53;
1641
0
       T56 = T4O + T53;
1642
0
       T49 = T45 + T48;
1643
0
       T4g = T4c + T4f;
1644
0
       T4h = T49 + T4g;
1645
0
       T5h = T49 - T4g;
1646
0
        }
1647
0
        {
1648
0
       E T2t, T55, T4x, T4z;
1649
0
       T2t = T1h + T2s;
1650
0
       Ip[0] = KP500000000 * (T2t + T42);
1651
0
       Im[WS(rs, 15)] = KP500000000 * (T42 - T2t);
1652
0
       T55 = T4h + T4w;
1653
0
       Rm[WS(rs, 15)] = KP500000000 * (T55 - T56);
1654
0
       Rp[0] = KP500000000 * (T55 + T56);
1655
0
       T4x = T4h - T4w;
1656
0
       Rm[WS(rs, 7)] = KP500000000 * (T4x - T4y);
1657
0
       Rp[WS(rs, 8)] = KP500000000 * (T4x + T4y);
1658
0
       T4z = T2s - T1h;
1659
0
       Ip[WS(rs, 8)] = KP500000000 * (T4z + T54);
1660
0
       Im[WS(rs, 7)] = KP500000000 * (T54 - T4z);
1661
0
        }
1662
0
        {
1663
0
       E T59, T5g, T5p, T5q;
1664
0
       T59 = KP500000000 * (T57 + T58);
1665
0
       T5g = KP353553390 * (T5c + T5f);
1666
0
       Ip[WS(rs, 4)] = T59 + T5g;
1667
0
       Im[WS(rs, 11)] = T5g - T59;
1668
0
       T5p = KP500000000 * (T5h + T5i);
1669
0
       T5q = KP353553390 * (T5m + T5n);
1670
0
       Rm[WS(rs, 11)] = T5p - T5q;
1671
0
       Rp[WS(rs, 4)] = T5p + T5q;
1672
0
        }
1673
0
        {
1674
0
       E T5j, T5k, T5l, T5o;
1675
0
       T5j = KP500000000 * (T5h - T5i);
1676
0
       T5k = KP353553390 * (T5f - T5c);
1677
0
       Rm[WS(rs, 3)] = T5j - T5k;
1678
0
       Rp[WS(rs, 12)] = T5j + T5k;
1679
0
       T5l = KP500000000 * (T58 - T57);
1680
0
       T5o = KP353553390 * (T5m - T5n);
1681
0
       Ip[WS(rs, 12)] = T5l + T5o;
1682
0
       Im[WS(rs, 3)] = T5o - T5l;
1683
0
        }
1684
0
         }
1685
0
         {
1686
0
        E T5x, T6g, T6a, T6k, T6d, T6l, T5A, T66, T5I, T60, T5T, T6f, T5W, T65, T5P;
1687
0
        E T61;
1688
0
        {
1689
0
       E T5t, T5w, T68, T69;
1690
0
       T5t = T5r - T5s;
1691
0
       T5w = T5u + T5v;
1692
0
       T5x = KP353553390 * (T5t + T5w);
1693
0
       T6g = KP353553390 * (T5t - T5w);
1694
0
       T68 = T5D - T5C;
1695
0
       T69 = T5G - T5F;
1696
0
       T6a = FMA(KP461939766, T68, KP191341716 * T69);
1697
0
       T6k = FNMS(KP461939766, T69, KP191341716 * T68);
1698
0
        }
1699
0
        {
1700
0
       E T6b, T6c, T5y, T5z;
1701
0
       T6b = T5K - T5J;
1702
0
       T6c = T5N - T5M;
1703
0
       T6d = FNMS(KP461939766, T6c, KP191341716 * T6b);
1704
0
       T6l = FMA(KP461939766, T6b, KP191341716 * T6c);
1705
0
       T5y = T4f - T4c;
1706
0
       T5z = T2q - T2d;
1707
0
       T5A = KP500000000 * (T5y + T5z);
1708
0
       T66 = KP500000000 * (T5z - T5y);
1709
0
        }
1710
0
        {
1711
0
       E T5E, T5H, T5R, T5S;
1712
0
       T5E = T5C + T5D;
1713
0
       T5H = T5F + T5G;
1714
0
       T5I = FMA(KP191341716, T5E, KP461939766 * T5H);
1715
0
       T60 = FNMS(KP191341716, T5H, KP461939766 * T5E);
1716
0
       T5R = T45 - T48;
1717
0
       T5S = T1A - T1T;
1718
0
       T5T = KP500000000 * (T5R + T5S);
1719
0
       T6f = KP500000000 * (T5R - T5S);
1720
0
        }
1721
0
        {
1722
0
       E T5U, T5V, T5L, T5O;
1723
0
       T5U = T5s + T5r;
1724
0
       T5V = T5u - T5v;
1725
0
       T5W = KP353553390 * (T5U + T5V);
1726
0
       T65 = KP353553390 * (T5V - T5U);
1727
0
       T5L = T5J + T5K;
1728
0
       T5O = T5M + T5N;
1729
0
       T5P = FNMS(KP191341716, T5O, KP461939766 * T5L);
1730
0
       T61 = FMA(KP191341716, T5L, KP461939766 * T5O);
1731
0
        }
1732
0
        {
1733
0
       E T5B, T5Q, T63, T64;
1734
0
       T5B = T5x + T5A;
1735
0
       T5Q = T5I + T5P;
1736
0
       Ip[WS(rs, 2)] = T5B + T5Q;
1737
0
       Im[WS(rs, 13)] = T5Q - T5B;
1738
0
       T63 = T5T + T5W;
1739
0
       T64 = T60 + T61;
1740
0
       Rm[WS(rs, 13)] = T63 - T64;
1741
0
       Rp[WS(rs, 2)] = T63 + T64;
1742
0
        }
1743
0
        {
1744
0
       E T5X, T5Y, T5Z, T62;
1745
0
       T5X = T5T - T5W;
1746
0
       T5Y = T5P - T5I;
1747
0
       Rm[WS(rs, 5)] = T5X - T5Y;
1748
0
       Rp[WS(rs, 10)] = T5X + T5Y;
1749
0
       T5Z = T5A - T5x;
1750
0
       T62 = T60 - T61;
1751
0
       Ip[WS(rs, 10)] = T5Z + T62;
1752
0
       Im[WS(rs, 5)] = T62 - T5Z;
1753
0
        }
1754
0
        {
1755
0
       E T67, T6e, T6n, T6o;
1756
0
       T67 = T65 + T66;
1757
0
       T6e = T6a + T6d;
1758
0
       Ip[WS(rs, 6)] = T67 + T6e;
1759
0
       Im[WS(rs, 9)] = T6e - T67;
1760
0
       T6n = T6f + T6g;
1761
0
       T6o = T6k + T6l;
1762
0
       Rm[WS(rs, 9)] = T6n - T6o;
1763
0
       Rp[WS(rs, 6)] = T6n + T6o;
1764
0
        }
1765
0
        {
1766
0
       E T6h, T6i, T6j, T6m;
1767
0
       T6h = T6f - T6g;
1768
0
       T6i = T6d - T6a;
1769
0
       Rm[WS(rs, 1)] = T6h - T6i;
1770
0
       Rp[WS(rs, 14)] = T6h + T6i;
1771
0
       T6j = T66 - T65;
1772
0
       T6m = T6k - T6l;
1773
0
       Ip[WS(rs, 14)] = T6j + T6m;
1774
0
       Im[WS(rs, 1)] = T6m - T6j;
1775
0
        }
1776
0
         }
1777
0
         {
1778
0
        E T6D, T7W, T6O, T7M, T7C, T7L, T7z, T7V, T7r, T81, T7H, T7T, T78, T80, T7G;
1779
0
        E T7Q;
1780
0
        {
1781
0
       E T6v, T6C, T7v, T7y;
1782
0
       T6v = FNMS(KP191341716, T6u, KP461939766 * T6r);
1783
0
       T6C = FMA(KP461939766, T6y, KP191341716 * T6B);
1784
0
       T6D = T6v + T6C;
1785
0
       T7W = T6v - T6C;
1786
0
       {
1787
0
            E T6K, T6N, T7A, T7B;
1788
0
            T6K = KP353553390 * (T6G + T6J);
1789
0
            T6N = KP500000000 * (T6L - T6M);
1790
0
            T6O = T6K + T6N;
1791
0
            T7M = T6N - T6K;
1792
0
            T7A = FMA(KP191341716, T6r, KP461939766 * T6u);
1793
0
            T7B = FNMS(KP191341716, T6y, KP461939766 * T6B);
1794
0
            T7C = T7A + T7B;
1795
0
            T7L = T7B - T7A;
1796
0
       }
1797
0
       T7v = KP500000000 * (T7t + T7u);
1798
0
       T7y = KP353553390 * (T7w + T7x);
1799
0
       T7z = T7v + T7y;
1800
0
       T7V = T7v - T7y;
1801
0
       {
1802
0
            E T7j, T7R, T7q, T7S, T7f, T7m;
1803
0
            T7f = KP707106781 * (T7b + T7e);
1804
0
            T7j = T7f + T7i;
1805
0
            T7R = T7i - T7f;
1806
0
            T7m = KP707106781 * (T7k + T7l);
1807
0
            T7q = T7m + T7p;
1808
0
            T7S = T7p - T7m;
1809
0
            T7r = FNMS(KP097545161, T7q, KP490392640 * T7j);
1810
0
            T81 = FMA(KP415734806, T7R, KP277785116 * T7S);
1811
0
            T7H = FMA(KP097545161, T7j, KP490392640 * T7q);
1812
0
            T7T = FNMS(KP415734806, T7S, KP277785116 * T7R);
1813
0
       }
1814
0
       {
1815
0
            E T70, T7O, T77, T7P, T6W, T73;
1816
0
            T6W = KP707106781 * (T6S + T6V);
1817
0
            T70 = T6W + T6Z;
1818
0
            T7O = T6Z - T6W;
1819
0
            T73 = KP707106781 * (T71 + T72);
1820
0
            T77 = T73 + T76;
1821
0
            T7P = T76 - T73;
1822
0
            T78 = FMA(KP490392640, T70, KP097545161 * T77);
1823
0
            T80 = FNMS(KP415734806, T7O, KP277785116 * T7P);
1824
0
            T7G = FNMS(KP097545161, T70, KP490392640 * T77);
1825
0
            T7Q = FMA(KP277785116, T7O, KP415734806 * T7P);
1826
0
       }
1827
0
        }
1828
0
        {
1829
0
       E T6P, T7s, T7J, T7K;
1830
0
       T6P = T6D + T6O;
1831
0
       T7s = T78 + T7r;
1832
0
       Ip[WS(rs, 1)] = T6P + T7s;
1833
0
       Im[WS(rs, 14)] = T7s - T6P;
1834
0
       T7J = T7z + T7C;
1835
0
       T7K = T7G + T7H;
1836
0
       Rm[WS(rs, 14)] = T7J - T7K;
1837
0
       Rp[WS(rs, 1)] = T7J + T7K;
1838
0
        }
1839
0
        {
1840
0
       E T7D, T7E, T7F, T7I;
1841
0
       T7D = T7z - T7C;
1842
0
       T7E = T7r - T78;
1843
0
       Rm[WS(rs, 6)] = T7D - T7E;
1844
0
       Rp[WS(rs, 9)] = T7D + T7E;
1845
0
       T7F = T6O - T6D;
1846
0
       T7I = T7G - T7H;
1847
0
       Ip[WS(rs, 9)] = T7F + T7I;
1848
0
       Im[WS(rs, 6)] = T7I - T7F;
1849
0
        }
1850
0
        {
1851
0
       E T7N, T7U, T83, T84;
1852
0
       T7N = T7L + T7M;
1853
0
       T7U = T7Q + T7T;
1854
0
       Ip[WS(rs, 5)] = T7N + T7U;
1855
0
       Im[WS(rs, 10)] = T7U - T7N;
1856
0
       T83 = T7V + T7W;
1857
0
       T84 = T80 + T81;
1858
0
       Rm[WS(rs, 10)] = T83 - T84;
1859
0
       Rp[WS(rs, 5)] = T83 + T84;
1860
0
        }
1861
0
        {
1862
0
       E T7X, T7Y, T7Z, T82;
1863
0
       T7X = T7V - T7W;
1864
0
       T7Y = T7T - T7Q;
1865
0
       Rm[WS(rs, 2)] = T7X - T7Y;
1866
0
       Rp[WS(rs, 13)] = T7X + T7Y;
1867
0
       T7Z = T7M - T7L;
1868
0
       T82 = T80 - T81;
1869
0
       Ip[WS(rs, 13)] = T7Z + T82;
1870
0
       Im[WS(rs, 2)] = T82 - T7Z;
1871
0
        }
1872
0
         }
1873
0
         {
1874
0
        E T8b, T8U, T8e, T8K, T8A, T8J, T8x, T8T, T8t, T8Z, T8F, T8R, T8m, T8Y, T8E;
1875
0
        E T8O;
1876
0
        {
1877
0
       E T87, T8a, T8v, T8w;
1878
0
       T87 = FNMS(KP461939766, T86, KP191341716 * T85);
1879
0
       T8a = FMA(KP191341716, T88, KP461939766 * T89);
1880
0
       T8b = T87 + T8a;
1881
0
       T8U = T87 - T8a;
1882
0
       {
1883
0
            E T8c, T8d, T8y, T8z;
1884
0
            T8c = KP353553390 * (T7x - T7w);
1885
0
            T8d = KP500000000 * (T6M + T6L);
1886
0
            T8e = T8c + T8d;
1887
0
            T8K = T8d - T8c;
1888
0
            T8y = FMA(KP461939766, T85, KP191341716 * T86);
1889
0
            T8z = FNMS(KP461939766, T88, KP191341716 * T89);
1890
0
            T8A = T8y + T8z;
1891
0
            T8J = T8z - T8y;
1892
0
       }
1893
0
       T8v = KP500000000 * (T7t - T7u);
1894
0
       T8w = KP353553390 * (T6G - T6J);
1895
0
       T8x = T8v + T8w;
1896
0
       T8T = T8v - T8w;
1897
0
       {
1898
0
            E T8p, T8P, T8s, T8Q, T8n, T8q;
1899
0
            T8n = KP707106781 * (T7l - T7k);
1900
0
            T8p = T8n + T8o;
1901
0
            T8P = T8o - T8n;
1902
0
            T8q = KP707106781 * (T7b - T7e);
1903
0
            T8s = T8q + T8r;
1904
0
            T8Q = T8r - T8q;
1905
0
            T8t = FNMS(KP277785116, T8s, KP415734806 * T8p);
1906
0
            T8Z = FMA(KP490392640, T8P, KP097545161 * T8Q);
1907
0
            T8F = FMA(KP277785116, T8p, KP415734806 * T8s);
1908
0
            T8R = FNMS(KP490392640, T8Q, KP097545161 * T8P);
1909
0
       }
1910
0
       {
1911
0
            E T8i, T8M, T8l, T8N, T8g, T8j;
1912
0
            T8g = KP707106781 * (T72 - T71);
1913
0
            T8i = T8g + T8h;
1914
0
            T8M = T8h - T8g;
1915
0
            T8j = KP707106781 * (T6S - T6V);
1916
0
            T8l = T8j + T8k;
1917
0
            T8N = T8k - T8j;
1918
0
            T8m = FMA(KP415734806, T8i, KP277785116 * T8l);
1919
0
            T8Y = FNMS(KP490392640, T8M, KP097545161 * T8N);
1920
0
            T8E = FNMS(KP277785116, T8i, KP415734806 * T8l);
1921
0
            T8O = FMA(KP097545161, T8M, KP490392640 * T8N);
1922
0
       }
1923
0
        }
1924
0
        {
1925
0
       E T8f, T8u, T8H, T8I;
1926
0
       T8f = T8b + T8e;
1927
0
       T8u = T8m + T8t;
1928
0
       Ip[WS(rs, 3)] = T8f + T8u;
1929
0
       Im[WS(rs, 12)] = T8u - T8f;
1930
0
       T8H = T8x + T8A;
1931
0
       T8I = T8E + T8F;
1932
0
       Rm[WS(rs, 12)] = T8H - T8I;
1933
0
       Rp[WS(rs, 3)] = T8H + T8I;
1934
0
        }
1935
0
        {
1936
0
       E T8B, T8C, T8D, T8G;
1937
0
       T8B = T8x - T8A;
1938
0
       T8C = T8t - T8m;
1939
0
       Rm[WS(rs, 4)] = T8B - T8C;
1940
0
       Rp[WS(rs, 11)] = T8B + T8C;
1941
0
       T8D = T8e - T8b;
1942
0
       T8G = T8E - T8F;
1943
0
       Ip[WS(rs, 11)] = T8D + T8G;
1944
0
       Im[WS(rs, 4)] = T8G - T8D;
1945
0
        }
1946
0
        {
1947
0
       E T8L, T8S, T91, T92;
1948
0
       T8L = T8J + T8K;
1949
0
       T8S = T8O + T8R;
1950
0
       Ip[WS(rs, 7)] = T8L + T8S;
1951
0
       Im[WS(rs, 8)] = T8S - T8L;
1952
0
       T91 = T8T + T8U;
1953
0
       T92 = T8Y + T8Z;
1954
0
       Rm[WS(rs, 8)] = T91 - T92;
1955
0
       Rp[WS(rs, 7)] = T91 + T92;
1956
0
        }
1957
0
        {
1958
0
       E T8V, T8W, T8X, T90;
1959
0
       T8V = T8T - T8U;
1960
0
       T8W = T8R - T8O;
1961
0
       Rm[0] = T8V - T8W;
1962
0
       Rp[WS(rs, 15)] = T8V + T8W;
1963
0
       T8X = T8K - T8J;
1964
0
       T90 = T8Y - T8Z;
1965
0
       Ip[WS(rs, 15)] = T8X + T90;
1966
0
       Im[0] = T90 - T8X;
1967
0
        }
1968
0
         }
1969
0
    }
1970
0
     }
1971
0
}
1972
1973
static const tw_instr twinstr[] = {
1974
     { TW_FULL, 1, 32 },
1975
     { TW_NEXT, 1, 0 }
1976
};
1977
1978
static const hc2c_desc desc = { 32, "hc2cfdft_32", twinstr, &GENUS, { 404, 134, 94, 0 } };
1979
1980
1
void X(codelet_hc2cfdft_32) (planner *p) {
1981
1
     X(khc2c_register) (p, hc2cfdft_32, &desc, HC2C_VIA_DFT);
1982
1
}
1983
#endif