/src/fftw3/rdft/scalar/r2cf/hc2cfdft_8.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Sun Sep 8 06:41:49 UTC 2024 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 8 -dit -name hc2cfdft_8 -include rdft/scalar/hc2cf.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 82 FP additions, 52 FP multiplications, |
32 | | * (or, 60 additions, 30 multiplications, 22 fused multiply/add), |
33 | | * 31 stack variables, 2 constants, and 32 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hc2cf.h" |
36 | | |
37 | | static void hc2cfdft_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
40 | | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
41 | | { |
42 | | INT m; |
43 | | for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) { |
44 | | E Ty, T14, TO, T1o, Tv, T16, TG, T1m, Ta, T19, TV, T1h, Tk, T1b, T11; |
45 | | E T1j; |
46 | | { |
47 | | E Tw, Tx, TN, TI, TJ, TK; |
48 | | Tw = Ip[0]; |
49 | | Tx = Im[0]; |
50 | | TN = Tw + Tx; |
51 | | TI = Rm[0]; |
52 | | TJ = Rp[0]; |
53 | | TK = TI - TJ; |
54 | | Ty = Tw - Tx; |
55 | | T14 = TJ + TI; |
56 | | { |
57 | | E TH, TL, TM, T1n; |
58 | | TH = W[0]; |
59 | | TL = TH * TK; |
60 | | TM = W[1]; |
61 | | T1n = TM * TK; |
62 | | TO = FNMS(TM, TN, TL); |
63 | | T1o = FMA(TH, TN, T1n); |
64 | | } |
65 | | } |
66 | | { |
67 | | E Tp, TF, Tu, TC; |
68 | | { |
69 | | E Tn, To, Ts, Tt; |
70 | | Tn = Ip[WS(rs, 2)]; |
71 | | To = Im[WS(rs, 2)]; |
72 | | Tp = Tn - To; |
73 | | TF = Tn + To; |
74 | | Ts = Rp[WS(rs, 2)]; |
75 | | Tt = Rm[WS(rs, 2)]; |
76 | | Tu = Ts + Tt; |
77 | | TC = Tt - Ts; |
78 | | } |
79 | | { |
80 | | E Tq, T15, Tm, Tr; |
81 | | Tm = W[6]; |
82 | | Tq = Tm * Tp; |
83 | | T15 = Tm * Tu; |
84 | | Tr = W[7]; |
85 | | Tv = FNMS(Tr, Tu, Tq); |
86 | | T16 = FMA(Tr, Tp, T15); |
87 | | } |
88 | | { |
89 | | E TB, TD, TE, T1l; |
90 | | TB = W[8]; |
91 | | TD = TB * TC; |
92 | | TE = W[9]; |
93 | | T1l = TE * TC; |
94 | | TG = FNMS(TE, TF, TD); |
95 | | T1m = FMA(TB, TF, T1l); |
96 | | } |
97 | | } |
98 | | { |
99 | | E T4, TU, T9, TR; |
100 | | { |
101 | | E T2, T3, T7, T8; |
102 | | T2 = Ip[WS(rs, 1)]; |
103 | | T3 = Im[WS(rs, 1)]; |
104 | | T4 = T2 - T3; |
105 | | TU = T2 + T3; |
106 | | T7 = Rp[WS(rs, 1)]; |
107 | | T8 = Rm[WS(rs, 1)]; |
108 | | T9 = T7 + T8; |
109 | | TR = T7 - T8; |
110 | | } |
111 | | { |
112 | | E T5, T18, T1, T6; |
113 | | T1 = W[2]; |
114 | | T5 = T1 * T4; |
115 | | T18 = T1 * T9; |
116 | | T6 = W[3]; |
117 | | Ta = FNMS(T6, T9, T5); |
118 | | T19 = FMA(T6, T4, T18); |
119 | | } |
120 | | { |
121 | | E TS, T1g, TQ, TT; |
122 | | TQ = W[4]; |
123 | | TS = TQ * TR; |
124 | | T1g = TQ * TU; |
125 | | TT = W[5]; |
126 | | TV = FMA(TT, TU, TS); |
127 | | T1h = FNMS(TT, TR, T1g); |
128 | | } |
129 | | } |
130 | | { |
131 | | E Te, T10, Tj, TX; |
132 | | { |
133 | | E Tc, Td, Th, Ti; |
134 | | Tc = Ip[WS(rs, 3)]; |
135 | | Td = Im[WS(rs, 3)]; |
136 | | Te = Tc - Td; |
137 | | T10 = Tc + Td; |
138 | | Th = Rp[WS(rs, 3)]; |
139 | | Ti = Rm[WS(rs, 3)]; |
140 | | Tj = Th + Ti; |
141 | | TX = Th - Ti; |
142 | | } |
143 | | { |
144 | | E Tf, T1a, Tb, Tg; |
145 | | Tb = W[10]; |
146 | | Tf = Tb * Te; |
147 | | T1a = Tb * Tj; |
148 | | Tg = W[11]; |
149 | | Tk = FNMS(Tg, Tj, Tf); |
150 | | T1b = FMA(Tg, Te, T1a); |
151 | | } |
152 | | { |
153 | | E TY, T1i, TW, TZ; |
154 | | TW = W[12]; |
155 | | TY = TW * TX; |
156 | | T1i = TW * T10; |
157 | | TZ = W[13]; |
158 | | T11 = FMA(TZ, T10, TY); |
159 | | T1j = FNMS(TZ, TX, T1i); |
160 | | } |
161 | | } |
162 | | { |
163 | | E TA, T1f, T1q, T1s, T13, T1e, T1d, T1r; |
164 | | { |
165 | | E Tl, Tz, T1k, T1p; |
166 | | Tl = Ta + Tk; |
167 | | Tz = Tv + Ty; |
168 | | TA = Tl + Tz; |
169 | | T1f = Tz - Tl; |
170 | | T1k = T1h + T1j; |
171 | | T1p = T1m + T1o; |
172 | | T1q = T1k - T1p; |
173 | | T1s = T1k + T1p; |
174 | | } |
175 | | { |
176 | | E TP, T12, T17, T1c; |
177 | | TP = TG + TO; |
178 | | T12 = TV + T11; |
179 | | T13 = TP - T12; |
180 | | T1e = T12 + TP; |
181 | | T17 = T14 + T16; |
182 | | T1c = T19 + T1b; |
183 | | T1d = T17 - T1c; |
184 | | T1r = T17 + T1c; |
185 | | } |
186 | | Ip[0] = KP500000000 * (TA + T13); |
187 | | Rp[0] = KP500000000 * (T1r + T1s); |
188 | | Im[WS(rs, 3)] = KP500000000 * (T13 - TA); |
189 | | Rm[WS(rs, 3)] = KP500000000 * (T1r - T1s); |
190 | | Rm[WS(rs, 1)] = KP500000000 * (T1d - T1e); |
191 | | Im[WS(rs, 1)] = KP500000000 * (T1q - T1f); |
192 | | Rp[WS(rs, 2)] = KP500000000 * (T1d + T1e); |
193 | | Ip[WS(rs, 2)] = KP500000000 * (T1f + T1q); |
194 | | } |
195 | | { |
196 | | E T1v, T1H, T1F, T1L, T1y, T1I, T1B, T1J; |
197 | | { |
198 | | E T1t, T1u, T1D, T1E; |
199 | | T1t = Ty - Tv; |
200 | | T1u = T19 - T1b; |
201 | | T1v = T1t - T1u; |
202 | | T1H = T1u + T1t; |
203 | | T1D = T14 - T16; |
204 | | T1E = Ta - Tk; |
205 | | T1F = T1D - T1E; |
206 | | T1L = T1D + T1E; |
207 | | } |
208 | | { |
209 | | E T1w, T1x, T1z, T1A; |
210 | | T1w = T1j - T1h; |
211 | | T1x = TV - T11; |
212 | | T1y = T1w + T1x; |
213 | | T1I = T1w - T1x; |
214 | | T1z = TO - TG; |
215 | | T1A = T1o - T1m; |
216 | | T1B = T1z - T1A; |
217 | | T1J = T1z + T1A; |
218 | | } |
219 | | { |
220 | | E T1C, T1M, T1G, T1K; |
221 | | T1C = T1y + T1B; |
222 | | Ip[WS(rs, 1)] = KP500000000 * (FMA(KP707106781, T1C, T1v)); |
223 | | Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP707106781, T1C, T1v))); |
224 | | T1M = T1I + T1J; |
225 | | Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP707106781, T1M, T1L)); |
226 | | Rp[WS(rs, 1)] = KP500000000 * (FMA(KP707106781, T1M, T1L)); |
227 | | T1G = T1B - T1y; |
228 | | Rm[0] = KP500000000 * (FNMS(KP707106781, T1G, T1F)); |
229 | | Rp[WS(rs, 3)] = KP500000000 * (FMA(KP707106781, T1G, T1F)); |
230 | | T1K = T1I - T1J; |
231 | | Ip[WS(rs, 3)] = KP500000000 * (FMA(KP707106781, T1K, T1H)); |
232 | | Im[0] = -(KP500000000 * (FNMS(KP707106781, T1K, T1H))); |
233 | | } |
234 | | } |
235 | | } |
236 | | } |
237 | | } |
238 | | |
239 | | static const tw_instr twinstr[] = { |
240 | | { TW_FULL, 1, 8 }, |
241 | | { TW_NEXT, 1, 0 } |
242 | | }; |
243 | | |
244 | | static const hc2c_desc desc = { 8, "hc2cfdft_8", twinstr, &GENUS, { 60, 30, 22, 0 } }; |
245 | | |
246 | | void X(codelet_hc2cfdft_8) (planner *p) { |
247 | | X(khc2c_register) (p, hc2cfdft_8, &desc, HC2C_VIA_DFT); |
248 | | } |
249 | | #else |
250 | | |
251 | | /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 8 -dit -name hc2cfdft_8 -include rdft/scalar/hc2cf.h */ |
252 | | |
253 | | /* |
254 | | * This function contains 82 FP additions, 44 FP multiplications, |
255 | | * (or, 68 additions, 30 multiplications, 14 fused multiply/add), |
256 | | * 39 stack variables, 2 constants, and 32 memory accesses |
257 | | */ |
258 | | #include "rdft/scalar/hc2cf.h" |
259 | | |
260 | | static void hc2cfdft_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
261 | 0 | { |
262 | 0 | DK(KP353553390, +0.353553390593273762200422181052424519642417969); |
263 | 0 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
264 | 0 | { |
265 | 0 | INT m; |
266 | 0 | for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) { |
267 | 0 | E Tv, TX, Ts, TY, TE, T1a, TJ, T19, T1l, T1m, T9, T10, Ti, T11, TP; |
268 | 0 | E T16, TU, T17, T1i, T1j; |
269 | 0 | { |
270 | 0 | E Tt, Tu, TD, Tz, TA, TB, Tn, TI, Tr, TG, Tk, To; |
271 | 0 | Tt = Ip[0]; |
272 | 0 | Tu = Im[0]; |
273 | 0 | TD = Tt + Tu; |
274 | 0 | Tz = Rm[0]; |
275 | 0 | TA = Rp[0]; |
276 | 0 | TB = Tz - TA; |
277 | 0 | { |
278 | 0 | E Tl, Tm, Tp, Tq; |
279 | 0 | Tl = Ip[WS(rs, 2)]; |
280 | 0 | Tm = Im[WS(rs, 2)]; |
281 | 0 | Tn = Tl - Tm; |
282 | 0 | TI = Tl + Tm; |
283 | 0 | Tp = Rp[WS(rs, 2)]; |
284 | 0 | Tq = Rm[WS(rs, 2)]; |
285 | 0 | Tr = Tp + Tq; |
286 | 0 | TG = Tp - Tq; |
287 | 0 | } |
288 | 0 | Tv = Tt - Tu; |
289 | 0 | TX = TA + Tz; |
290 | 0 | Tk = W[6]; |
291 | 0 | To = W[7]; |
292 | 0 | Ts = FNMS(To, Tr, Tk * Tn); |
293 | 0 | TY = FMA(Tk, Tr, To * Tn); |
294 | 0 | { |
295 | 0 | E Ty, TC, TF, TH; |
296 | 0 | Ty = W[0]; |
297 | 0 | TC = W[1]; |
298 | 0 | TE = FNMS(TC, TD, Ty * TB); |
299 | 0 | T1a = FMA(TC, TB, Ty * TD); |
300 | 0 | TF = W[8]; |
301 | 0 | TH = W[9]; |
302 | 0 | TJ = FMA(TF, TG, TH * TI); |
303 | 0 | T19 = FNMS(TH, TG, TF * TI); |
304 | 0 | } |
305 | 0 | T1l = TJ + TE; |
306 | 0 | T1m = T1a - T19; |
307 | 0 | } |
308 | 0 | { |
309 | 0 | E T4, TO, T8, TM, Td, TT, Th, TR; |
310 | 0 | { |
311 | 0 | E T2, T3, T6, T7; |
312 | 0 | T2 = Ip[WS(rs, 1)]; |
313 | 0 | T3 = Im[WS(rs, 1)]; |
314 | 0 | T4 = T2 - T3; |
315 | 0 | TO = T2 + T3; |
316 | 0 | T6 = Rp[WS(rs, 1)]; |
317 | 0 | T7 = Rm[WS(rs, 1)]; |
318 | 0 | T8 = T6 + T7; |
319 | 0 | TM = T6 - T7; |
320 | 0 | } |
321 | 0 | { |
322 | 0 | E Tb, Tc, Tf, Tg; |
323 | 0 | Tb = Ip[WS(rs, 3)]; |
324 | 0 | Tc = Im[WS(rs, 3)]; |
325 | 0 | Td = Tb - Tc; |
326 | 0 | TT = Tb + Tc; |
327 | 0 | Tf = Rp[WS(rs, 3)]; |
328 | 0 | Tg = Rm[WS(rs, 3)]; |
329 | 0 | Th = Tf + Tg; |
330 | 0 | TR = Tf - Tg; |
331 | 0 | } |
332 | 0 | { |
333 | 0 | E T1, T5, Ta, Te; |
334 | 0 | T1 = W[2]; |
335 | 0 | T5 = W[3]; |
336 | 0 | T9 = FNMS(T5, T8, T1 * T4); |
337 | 0 | T10 = FMA(T1, T8, T5 * T4); |
338 | 0 | Ta = W[10]; |
339 | 0 | Te = W[11]; |
340 | 0 | Ti = FNMS(Te, Th, Ta * Td); |
341 | 0 | T11 = FMA(Ta, Th, Te * Td); |
342 | 0 | { |
343 | 0 | E TL, TN, TQ, TS; |
344 | 0 | TL = W[4]; |
345 | 0 | TN = W[5]; |
346 | 0 | TP = FMA(TL, TM, TN * TO); |
347 | 0 | T16 = FNMS(TN, TM, TL * TO); |
348 | 0 | TQ = W[12]; |
349 | 0 | TS = W[13]; |
350 | 0 | TU = FMA(TQ, TR, TS * TT); |
351 | 0 | T17 = FNMS(TS, TR, TQ * TT); |
352 | 0 | } |
353 | 0 | T1i = T17 - T16; |
354 | 0 | T1j = TP - TU; |
355 | 0 | } |
356 | 0 | } |
357 | 0 | { |
358 | 0 | E T1h, T1t, T1w, T1y, T1o, T1s, T1r, T1x; |
359 | 0 | { |
360 | 0 | E T1f, T1g, T1u, T1v; |
361 | 0 | T1f = Tv - Ts; |
362 | 0 | T1g = T10 - T11; |
363 | 0 | T1h = KP500000000 * (T1f - T1g); |
364 | 0 | T1t = KP500000000 * (T1g + T1f); |
365 | 0 | T1u = T1i - T1j; |
366 | 0 | T1v = T1l + T1m; |
367 | 0 | T1w = KP353553390 * (T1u - T1v); |
368 | 0 | T1y = KP353553390 * (T1u + T1v); |
369 | 0 | } |
370 | 0 | { |
371 | 0 | E T1k, T1n, T1p, T1q; |
372 | 0 | T1k = T1i + T1j; |
373 | 0 | T1n = T1l - T1m; |
374 | 0 | T1o = KP353553390 * (T1k + T1n); |
375 | 0 | T1s = KP353553390 * (T1n - T1k); |
376 | 0 | T1p = TX - TY; |
377 | 0 | T1q = T9 - Ti; |
378 | 0 | T1r = KP500000000 * (T1p - T1q); |
379 | 0 | T1x = KP500000000 * (T1p + T1q); |
380 | 0 | } |
381 | 0 | Ip[WS(rs, 1)] = T1h + T1o; |
382 | 0 | Rp[WS(rs, 1)] = T1x + T1y; |
383 | 0 | Im[WS(rs, 2)] = T1o - T1h; |
384 | 0 | Rm[WS(rs, 2)] = T1x - T1y; |
385 | 0 | Rm[0] = T1r - T1s; |
386 | 0 | Im[0] = T1w - T1t; |
387 | 0 | Rp[WS(rs, 3)] = T1r + T1s; |
388 | 0 | Ip[WS(rs, 3)] = T1t + T1w; |
389 | 0 | } |
390 | 0 | { |
391 | 0 | E Tx, T15, T1c, T1e, TW, T14, T13, T1d; |
392 | 0 | { |
393 | 0 | E Tj, Tw, T18, T1b; |
394 | 0 | Tj = T9 + Ti; |
395 | 0 | Tw = Ts + Tv; |
396 | 0 | Tx = Tj + Tw; |
397 | 0 | T15 = Tw - Tj; |
398 | 0 | T18 = T16 + T17; |
399 | 0 | T1b = T19 + T1a; |
400 | 0 | T1c = T18 - T1b; |
401 | 0 | T1e = T18 + T1b; |
402 | 0 | } |
403 | 0 | { |
404 | 0 | E TK, TV, TZ, T12; |
405 | 0 | TK = TE - TJ; |
406 | 0 | TV = TP + TU; |
407 | 0 | TW = TK - TV; |
408 | 0 | T14 = TV + TK; |
409 | 0 | TZ = TX + TY; |
410 | 0 | T12 = T10 + T11; |
411 | 0 | T13 = TZ - T12; |
412 | 0 | T1d = TZ + T12; |
413 | 0 | } |
414 | 0 | Ip[0] = KP500000000 * (Tx + TW); |
415 | 0 | Rp[0] = KP500000000 * (T1d + T1e); |
416 | 0 | Im[WS(rs, 3)] = KP500000000 * (TW - Tx); |
417 | 0 | Rm[WS(rs, 3)] = KP500000000 * (T1d - T1e); |
418 | 0 | Rm[WS(rs, 1)] = KP500000000 * (T13 - T14); |
419 | 0 | Im[WS(rs, 1)] = KP500000000 * (T1c - T15); |
420 | 0 | Rp[WS(rs, 2)] = KP500000000 * (T13 + T14); |
421 | 0 | Ip[WS(rs, 2)] = KP500000000 * (T15 + T1c); |
422 | 0 | } |
423 | 0 | } |
424 | 0 | } |
425 | 0 | } |
426 | | |
427 | | static const tw_instr twinstr[] = { |
428 | | { TW_FULL, 1, 8 }, |
429 | | { TW_NEXT, 1, 0 } |
430 | | }; |
431 | | |
432 | | static const hc2c_desc desc = { 8, "hc2cfdft_8", twinstr, &GENUS, { 68, 30, 14, 0 } }; |
433 | | |
434 | 1 | void X(codelet_hc2cfdft_8) (planner *p) { |
435 | 1 | X(khc2c_register) (p, hc2cfdft_8, &desc, HC2C_VIA_DFT); |
436 | 1 | } |
437 | | #endif |