Coverage Report

Created: 2024-09-08 06:43

/src/fftw3/rdft/scalar/r2cf/hc2cfdft_8.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Sun Sep  8 06:41:49 UTC 2024 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 8 -dit -name hc2cfdft_8 -include rdft/scalar/hc2cf.h */
29
30
/*
31
 * This function contains 82 FP additions, 52 FP multiplications,
32
 * (or, 60 additions, 30 multiplications, 22 fused multiply/add),
33
 * 31 stack variables, 2 constants, and 32 memory accesses
34
 */
35
#include "rdft/scalar/hc2cf.h"
36
37
static void hc2cfdft_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
40
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
41
     {
42
    INT m;
43
    for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) {
44
         E Ty, T14, TO, T1o, Tv, T16, TG, T1m, Ta, T19, TV, T1h, Tk, T1b, T11;
45
         E T1j;
46
         {
47
        E Tw, Tx, TN, TI, TJ, TK;
48
        Tw = Ip[0];
49
        Tx = Im[0];
50
        TN = Tw + Tx;
51
        TI = Rm[0];
52
        TJ = Rp[0];
53
        TK = TI - TJ;
54
        Ty = Tw - Tx;
55
        T14 = TJ + TI;
56
        {
57
       E TH, TL, TM, T1n;
58
       TH = W[0];
59
       TL = TH * TK;
60
       TM = W[1];
61
       T1n = TM * TK;
62
       TO = FNMS(TM, TN, TL);
63
       T1o = FMA(TH, TN, T1n);
64
        }
65
         }
66
         {
67
        E Tp, TF, Tu, TC;
68
        {
69
       E Tn, To, Ts, Tt;
70
       Tn = Ip[WS(rs, 2)];
71
       To = Im[WS(rs, 2)];
72
       Tp = Tn - To;
73
       TF = Tn + To;
74
       Ts = Rp[WS(rs, 2)];
75
       Tt = Rm[WS(rs, 2)];
76
       Tu = Ts + Tt;
77
       TC = Tt - Ts;
78
        }
79
        {
80
       E Tq, T15, Tm, Tr;
81
       Tm = W[6];
82
       Tq = Tm * Tp;
83
       T15 = Tm * Tu;
84
       Tr = W[7];
85
       Tv = FNMS(Tr, Tu, Tq);
86
       T16 = FMA(Tr, Tp, T15);
87
        }
88
        {
89
       E TB, TD, TE, T1l;
90
       TB = W[8];
91
       TD = TB * TC;
92
       TE = W[9];
93
       T1l = TE * TC;
94
       TG = FNMS(TE, TF, TD);
95
       T1m = FMA(TB, TF, T1l);
96
        }
97
         }
98
         {
99
        E T4, TU, T9, TR;
100
        {
101
       E T2, T3, T7, T8;
102
       T2 = Ip[WS(rs, 1)];
103
       T3 = Im[WS(rs, 1)];
104
       T4 = T2 - T3;
105
       TU = T2 + T3;
106
       T7 = Rp[WS(rs, 1)];
107
       T8 = Rm[WS(rs, 1)];
108
       T9 = T7 + T8;
109
       TR = T7 - T8;
110
        }
111
        {
112
       E T5, T18, T1, T6;
113
       T1 = W[2];
114
       T5 = T1 * T4;
115
       T18 = T1 * T9;
116
       T6 = W[3];
117
       Ta = FNMS(T6, T9, T5);
118
       T19 = FMA(T6, T4, T18);
119
        }
120
        {
121
       E TS, T1g, TQ, TT;
122
       TQ = W[4];
123
       TS = TQ * TR;
124
       T1g = TQ * TU;
125
       TT = W[5];
126
       TV = FMA(TT, TU, TS);
127
       T1h = FNMS(TT, TR, T1g);
128
        }
129
         }
130
         {
131
        E Te, T10, Tj, TX;
132
        {
133
       E Tc, Td, Th, Ti;
134
       Tc = Ip[WS(rs, 3)];
135
       Td = Im[WS(rs, 3)];
136
       Te = Tc - Td;
137
       T10 = Tc + Td;
138
       Th = Rp[WS(rs, 3)];
139
       Ti = Rm[WS(rs, 3)];
140
       Tj = Th + Ti;
141
       TX = Th - Ti;
142
        }
143
        {
144
       E Tf, T1a, Tb, Tg;
145
       Tb = W[10];
146
       Tf = Tb * Te;
147
       T1a = Tb * Tj;
148
       Tg = W[11];
149
       Tk = FNMS(Tg, Tj, Tf);
150
       T1b = FMA(Tg, Te, T1a);
151
        }
152
        {
153
       E TY, T1i, TW, TZ;
154
       TW = W[12];
155
       TY = TW * TX;
156
       T1i = TW * T10;
157
       TZ = W[13];
158
       T11 = FMA(TZ, T10, TY);
159
       T1j = FNMS(TZ, TX, T1i);
160
        }
161
         }
162
         {
163
        E TA, T1f, T1q, T1s, T13, T1e, T1d, T1r;
164
        {
165
       E Tl, Tz, T1k, T1p;
166
       Tl = Ta + Tk;
167
       Tz = Tv + Ty;
168
       TA = Tl + Tz;
169
       T1f = Tz - Tl;
170
       T1k = T1h + T1j;
171
       T1p = T1m + T1o;
172
       T1q = T1k - T1p;
173
       T1s = T1k + T1p;
174
        }
175
        {
176
       E TP, T12, T17, T1c;
177
       TP = TG + TO;
178
       T12 = TV + T11;
179
       T13 = TP - T12;
180
       T1e = T12 + TP;
181
       T17 = T14 + T16;
182
       T1c = T19 + T1b;
183
       T1d = T17 - T1c;
184
       T1r = T17 + T1c;
185
        }
186
        Ip[0] = KP500000000 * (TA + T13);
187
        Rp[0] = KP500000000 * (T1r + T1s);
188
        Im[WS(rs, 3)] = KP500000000 * (T13 - TA);
189
        Rm[WS(rs, 3)] = KP500000000 * (T1r - T1s);
190
        Rm[WS(rs, 1)] = KP500000000 * (T1d - T1e);
191
        Im[WS(rs, 1)] = KP500000000 * (T1q - T1f);
192
        Rp[WS(rs, 2)] = KP500000000 * (T1d + T1e);
193
        Ip[WS(rs, 2)] = KP500000000 * (T1f + T1q);
194
         }
195
         {
196
        E T1v, T1H, T1F, T1L, T1y, T1I, T1B, T1J;
197
        {
198
       E T1t, T1u, T1D, T1E;
199
       T1t = Ty - Tv;
200
       T1u = T19 - T1b;
201
       T1v = T1t - T1u;
202
       T1H = T1u + T1t;
203
       T1D = T14 - T16;
204
       T1E = Ta - Tk;
205
       T1F = T1D - T1E;
206
       T1L = T1D + T1E;
207
        }
208
        {
209
       E T1w, T1x, T1z, T1A;
210
       T1w = T1j - T1h;
211
       T1x = TV - T11;
212
       T1y = T1w + T1x;
213
       T1I = T1w - T1x;
214
       T1z = TO - TG;
215
       T1A = T1o - T1m;
216
       T1B = T1z - T1A;
217
       T1J = T1z + T1A;
218
        }
219
        {
220
       E T1C, T1M, T1G, T1K;
221
       T1C = T1y + T1B;
222
       Ip[WS(rs, 1)] = KP500000000 * (FMA(KP707106781, T1C, T1v));
223
       Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP707106781, T1C, T1v)));
224
       T1M = T1I + T1J;
225
       Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP707106781, T1M, T1L));
226
       Rp[WS(rs, 1)] = KP500000000 * (FMA(KP707106781, T1M, T1L));
227
       T1G = T1B - T1y;
228
       Rm[0] = KP500000000 * (FNMS(KP707106781, T1G, T1F));
229
       Rp[WS(rs, 3)] = KP500000000 * (FMA(KP707106781, T1G, T1F));
230
       T1K = T1I - T1J;
231
       Ip[WS(rs, 3)] = KP500000000 * (FMA(KP707106781, T1K, T1H));
232
       Im[0] = -(KP500000000 * (FNMS(KP707106781, T1K, T1H)));
233
        }
234
         }
235
    }
236
     }
237
}
238
239
static const tw_instr twinstr[] = {
240
     { TW_FULL, 1, 8 },
241
     { TW_NEXT, 1, 0 }
242
};
243
244
static const hc2c_desc desc = { 8, "hc2cfdft_8", twinstr, &GENUS, { 60, 30, 22, 0 } };
245
246
void X(codelet_hc2cfdft_8) (planner *p) {
247
     X(khc2c_register) (p, hc2cfdft_8, &desc, HC2C_VIA_DFT);
248
}
249
#else
250
251
/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 8 -dit -name hc2cfdft_8 -include rdft/scalar/hc2cf.h */
252
253
/*
254
 * This function contains 82 FP additions, 44 FP multiplications,
255
 * (or, 68 additions, 30 multiplications, 14 fused multiply/add),
256
 * 39 stack variables, 2 constants, and 32 memory accesses
257
 */
258
#include "rdft/scalar/hc2cf.h"
259
260
static void hc2cfdft_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
261
0
{
262
0
     DK(KP353553390, +0.353553390593273762200422181052424519642417969);
263
0
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
264
0
     {
265
0
    INT m;
266
0
    for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) {
267
0
         E Tv, TX, Ts, TY, TE, T1a, TJ, T19, T1l, T1m, T9, T10, Ti, T11, TP;
268
0
         E T16, TU, T17, T1i, T1j;
269
0
         {
270
0
        E Tt, Tu, TD, Tz, TA, TB, Tn, TI, Tr, TG, Tk, To;
271
0
        Tt = Ip[0];
272
0
        Tu = Im[0];
273
0
        TD = Tt + Tu;
274
0
        Tz = Rm[0];
275
0
        TA = Rp[0];
276
0
        TB = Tz - TA;
277
0
        {
278
0
       E Tl, Tm, Tp, Tq;
279
0
       Tl = Ip[WS(rs, 2)];
280
0
       Tm = Im[WS(rs, 2)];
281
0
       Tn = Tl - Tm;
282
0
       TI = Tl + Tm;
283
0
       Tp = Rp[WS(rs, 2)];
284
0
       Tq = Rm[WS(rs, 2)];
285
0
       Tr = Tp + Tq;
286
0
       TG = Tp - Tq;
287
0
        }
288
0
        Tv = Tt - Tu;
289
0
        TX = TA + Tz;
290
0
        Tk = W[6];
291
0
        To = W[7];
292
0
        Ts = FNMS(To, Tr, Tk * Tn);
293
0
        TY = FMA(Tk, Tr, To * Tn);
294
0
        {
295
0
       E Ty, TC, TF, TH;
296
0
       Ty = W[0];
297
0
       TC = W[1];
298
0
       TE = FNMS(TC, TD, Ty * TB);
299
0
       T1a = FMA(TC, TB, Ty * TD);
300
0
       TF = W[8];
301
0
       TH = W[9];
302
0
       TJ = FMA(TF, TG, TH * TI);
303
0
       T19 = FNMS(TH, TG, TF * TI);
304
0
        }
305
0
        T1l = TJ + TE;
306
0
        T1m = T1a - T19;
307
0
         }
308
0
         {
309
0
        E T4, TO, T8, TM, Td, TT, Th, TR;
310
0
        {
311
0
       E T2, T3, T6, T7;
312
0
       T2 = Ip[WS(rs, 1)];
313
0
       T3 = Im[WS(rs, 1)];
314
0
       T4 = T2 - T3;
315
0
       TO = T2 + T3;
316
0
       T6 = Rp[WS(rs, 1)];
317
0
       T7 = Rm[WS(rs, 1)];
318
0
       T8 = T6 + T7;
319
0
       TM = T6 - T7;
320
0
        }
321
0
        {
322
0
       E Tb, Tc, Tf, Tg;
323
0
       Tb = Ip[WS(rs, 3)];
324
0
       Tc = Im[WS(rs, 3)];
325
0
       Td = Tb - Tc;
326
0
       TT = Tb + Tc;
327
0
       Tf = Rp[WS(rs, 3)];
328
0
       Tg = Rm[WS(rs, 3)];
329
0
       Th = Tf + Tg;
330
0
       TR = Tf - Tg;
331
0
        }
332
0
        {
333
0
       E T1, T5, Ta, Te;
334
0
       T1 = W[2];
335
0
       T5 = W[3];
336
0
       T9 = FNMS(T5, T8, T1 * T4);
337
0
       T10 = FMA(T1, T8, T5 * T4);
338
0
       Ta = W[10];
339
0
       Te = W[11];
340
0
       Ti = FNMS(Te, Th, Ta * Td);
341
0
       T11 = FMA(Ta, Th, Te * Td);
342
0
       {
343
0
            E TL, TN, TQ, TS;
344
0
            TL = W[4];
345
0
            TN = W[5];
346
0
            TP = FMA(TL, TM, TN * TO);
347
0
            T16 = FNMS(TN, TM, TL * TO);
348
0
            TQ = W[12];
349
0
            TS = W[13];
350
0
            TU = FMA(TQ, TR, TS * TT);
351
0
            T17 = FNMS(TS, TR, TQ * TT);
352
0
       }
353
0
       T1i = T17 - T16;
354
0
       T1j = TP - TU;
355
0
        }
356
0
         }
357
0
         {
358
0
        E T1h, T1t, T1w, T1y, T1o, T1s, T1r, T1x;
359
0
        {
360
0
       E T1f, T1g, T1u, T1v;
361
0
       T1f = Tv - Ts;
362
0
       T1g = T10 - T11;
363
0
       T1h = KP500000000 * (T1f - T1g);
364
0
       T1t = KP500000000 * (T1g + T1f);
365
0
       T1u = T1i - T1j;
366
0
       T1v = T1l + T1m;
367
0
       T1w = KP353553390 * (T1u - T1v);
368
0
       T1y = KP353553390 * (T1u + T1v);
369
0
        }
370
0
        {
371
0
       E T1k, T1n, T1p, T1q;
372
0
       T1k = T1i + T1j;
373
0
       T1n = T1l - T1m;
374
0
       T1o = KP353553390 * (T1k + T1n);
375
0
       T1s = KP353553390 * (T1n - T1k);
376
0
       T1p = TX - TY;
377
0
       T1q = T9 - Ti;
378
0
       T1r = KP500000000 * (T1p - T1q);
379
0
       T1x = KP500000000 * (T1p + T1q);
380
0
        }
381
0
        Ip[WS(rs, 1)] = T1h + T1o;
382
0
        Rp[WS(rs, 1)] = T1x + T1y;
383
0
        Im[WS(rs, 2)] = T1o - T1h;
384
0
        Rm[WS(rs, 2)] = T1x - T1y;
385
0
        Rm[0] = T1r - T1s;
386
0
        Im[0] = T1w - T1t;
387
0
        Rp[WS(rs, 3)] = T1r + T1s;
388
0
        Ip[WS(rs, 3)] = T1t + T1w;
389
0
         }
390
0
         {
391
0
        E Tx, T15, T1c, T1e, TW, T14, T13, T1d;
392
0
        {
393
0
       E Tj, Tw, T18, T1b;
394
0
       Tj = T9 + Ti;
395
0
       Tw = Ts + Tv;
396
0
       Tx = Tj + Tw;
397
0
       T15 = Tw - Tj;
398
0
       T18 = T16 + T17;
399
0
       T1b = T19 + T1a;
400
0
       T1c = T18 - T1b;
401
0
       T1e = T18 + T1b;
402
0
        }
403
0
        {
404
0
       E TK, TV, TZ, T12;
405
0
       TK = TE - TJ;
406
0
       TV = TP + TU;
407
0
       TW = TK - TV;
408
0
       T14 = TV + TK;
409
0
       TZ = TX + TY;
410
0
       T12 = T10 + T11;
411
0
       T13 = TZ - T12;
412
0
       T1d = TZ + T12;
413
0
        }
414
0
        Ip[0] = KP500000000 * (Tx + TW);
415
0
        Rp[0] = KP500000000 * (T1d + T1e);
416
0
        Im[WS(rs, 3)] = KP500000000 * (TW - Tx);
417
0
        Rm[WS(rs, 3)] = KP500000000 * (T1d - T1e);
418
0
        Rm[WS(rs, 1)] = KP500000000 * (T13 - T14);
419
0
        Im[WS(rs, 1)] = KP500000000 * (T1c - T15);
420
0
        Rp[WS(rs, 2)] = KP500000000 * (T13 + T14);
421
0
        Ip[WS(rs, 2)] = KP500000000 * (T15 + T1c);
422
0
         }
423
0
    }
424
0
     }
425
0
}
426
427
static const tw_instr twinstr[] = {
428
     { TW_FULL, 1, 8 },
429
     { TW_NEXT, 1, 0 }
430
};
431
432
static const hc2c_desc desc = { 8, "hc2cfdft_8", twinstr, &GENUS, { 68, 30, 14, 0 } };
433
434
1
void X(codelet_hc2cfdft_8) (planner *p) {
435
1
     X(khc2c_register) (p, hc2cfdft_8, &desc, HC2C_VIA_DFT);
436
1
}
437
#endif