Coverage Report

Created: 2024-09-08 06:43

/src/fftw3/rdft/scalar/r2cf/r2cfII_12.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Sun Sep  8 06:41:30 UTC 2024 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 12 -name r2cfII_12 -dft-II -include rdft/scalar/r2cfII.h */
29
30
/*
31
 * This function contains 45 FP additions, 24 FP multiplications,
32
 * (or, 21 additions, 0 multiplications, 24 fused multiply/add),
33
 * 28 stack variables, 3 constants, and 24 memory accesses
34
 */
35
#include "rdft/scalar/r2cfII.h"
36
37
static void r2cfII_12(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38
{
39
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
40
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
41
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
42
     {
43
    INT i;
44
    for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(48, rs), MAKE_VOLATILE_STRIDE(48, csr), MAKE_VOLATILE_STRIDE(48, csi)) {
45
         E Tx, Ty, T8, Tz, Tl, Tm, Tv, T5, TA, Tt, Te, Tf, Tu, T6, T7;
46
         E Tw, TF, TG;
47
         Tx = R0[WS(rs, 3)];
48
         T6 = R0[WS(rs, 5)];
49
         T7 = R0[WS(rs, 1)];
50
         Ty = T6 + T7;
51
         T8 = T6 - T7;
52
         Tz = FMA(KP500000000, Ty, Tx);
53
         {
54
        E Th, Ti, Tj, Tk;
55
        Th = R1[WS(rs, 4)];
56
        Ti = R1[WS(rs, 2)];
57
        Tj = R1[0];
58
        Tk = Ti - Tj;
59
        Tl = FMA(KP500000000, Tk, Th);
60
        Tm = Ti + Tj;
61
        Tv = Ti - Tj - Th;
62
         }
63
         {
64
        E T1, T2, T3, T4;
65
        T1 = R0[0];
66
        T2 = R0[WS(rs, 2)];
67
        T3 = R0[WS(rs, 4)];
68
        T4 = T2 - T3;
69
        T5 = FMA(KP500000000, T4, T1);
70
        TA = T3 + T2;
71
        Tt = T1 + T3 - T2;
72
         }
73
         {
74
        E Ta, Tb, Tc, Td;
75
        Ta = R1[WS(rs, 1)];
76
        Tb = R1[WS(rs, 3)];
77
        Tc = R1[WS(rs, 5)];
78
        Td = Tb - Tc;
79
        Te = FMA(KP500000000, Td, Ta);
80
        Tf = Tc + Tb;
81
        Tu = Ta + Tc - Tb;
82
         }
83
         Tw = Tu + Tv;
84
         Cr[WS(csr, 1)] = FNMS(KP707106781, Tw, Tt);
85
         Cr[WS(csr, 4)] = FMA(KP707106781, Tw, Tt);
86
         TF = Tx - Ty;
87
         TG = Tv - Tu;
88
         Ci[WS(csi, 4)] = FMS(KP707106781, TG, TF);
89
         Ci[WS(csi, 1)] = FMA(KP707106781, TG, TF);
90
         {
91
        E T9, TD, To, TE, Tg, Tn;
92
        T9 = FNMS(KP866025403, T8, T5);
93
        TD = FNMS(KP866025403, TA, Tz);
94
        Tg = FNMS(KP866025403, Tf, Te);
95
        Tn = FNMS(KP866025403, Tm, Tl);
96
        To = Tg - Tn;
97
        TE = Tg + Tn;
98
        Cr[WS(csr, 5)] = FNMS(KP707106781, To, T9);
99
        Ci[WS(csi, 3)] = FMA(KP707106781, TE, TD);
100
        Cr[0] = FMA(KP707106781, To, T9);
101
        Ci[WS(csi, 2)] = FMS(KP707106781, TE, TD);
102
         }
103
         {
104
        E Tp, TB, Ts, TC, Tq, Tr;
105
        Tp = FMA(KP866025403, T8, T5);
106
        TB = FMA(KP866025403, TA, Tz);
107
        Tq = FMA(KP866025403, Tm, Tl);
108
        Tr = FMA(KP866025403, Tf, Te);
109
        Ts = Tq - Tr;
110
        TC = Tr + Tq;
111
        Cr[WS(csr, 3)] = FNMS(KP707106781, Ts, Tp);
112
        Ci[WS(csi, 5)] = FNMS(KP707106781, TC, TB);
113
        Cr[WS(csr, 2)] = FMA(KP707106781, Ts, Tp);
114
        Ci[0] = -(FMA(KP707106781, TC, TB));
115
         }
116
    }
117
     }
118
}
119
120
static const kr2c_desc desc = { 12, "r2cfII_12", { 21, 0, 24, 0 }, &GENUS };
121
122
void X(codelet_r2cfII_12) (planner *p) { X(kr2c_register) (p, r2cfII_12, &desc);
123
}
124
125
#else
126
127
/* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 12 -name r2cfII_12 -dft-II -include rdft/scalar/r2cfII.h */
128
129
/*
130
 * This function contains 43 FP additions, 12 FP multiplications,
131
 * (or, 39 additions, 8 multiplications, 4 fused multiply/add),
132
 * 28 stack variables, 5 constants, and 24 memory accesses
133
 */
134
#include "rdft/scalar/r2cfII.h"
135
136
static void r2cfII_12(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
137
0
{
138
0
     DK(KP353553390, +0.353553390593273762200422181052424519642417969);
139
0
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
140
0
     DK(KP612372435, +0.612372435695794524549321018676472847991486870);
141
0
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
142
0
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
143
0
     {
144
0
    INT i;
145
0
    for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(48, rs), MAKE_VOLATILE_STRIDE(48, csr), MAKE_VOLATILE_STRIDE(48, csi)) {
146
0
         E Tx, Tg, T4, Tz, Ty, Tj, TA, T9, Tm, Tl, Te, Tp, To, Tf, TE;
147
0
         E TF;
148
0
         {
149
0
        E T1, T3, T2, Th, Ti;
150
0
        T1 = R0[0];
151
0
        T3 = R0[WS(rs, 2)];
152
0
        T2 = R0[WS(rs, 4)];
153
0
        Tx = KP866025403 * (T2 + T3);
154
0
        Tg = FMA(KP500000000, T3 - T2, T1);
155
0
        T4 = T1 + T2 - T3;
156
0
        Tz = R0[WS(rs, 3)];
157
0
        Th = R0[WS(rs, 5)];
158
0
        Ti = R0[WS(rs, 1)];
159
0
        Ty = Th + Ti;
160
0
        Tj = KP866025403 * (Th - Ti);
161
0
        TA = FMA(KP500000000, Ty, Tz);
162
0
         }
163
0
         {
164
0
        E T5, T6, T7, T8;
165
0
        T5 = R1[WS(rs, 1)];
166
0
        T6 = R1[WS(rs, 5)];
167
0
        T7 = R1[WS(rs, 3)];
168
0
        T8 = T6 - T7;
169
0
        T9 = T5 + T8;
170
0
        Tm = KP612372435 * (T6 + T7);
171
0
        Tl = FNMS(KP353553390, T8, KP707106781 * T5);
172
0
         }
173
0
         {
174
0
        E Td, Ta, Tb, Tc;
175
0
        Td = R1[WS(rs, 4)];
176
0
        Ta = R1[WS(rs, 2)];
177
0
        Tb = R1[0];
178
0
        Tc = Ta - Tb;
179
0
        Te = Tc - Td;
180
0
        Tp = FMA(KP353553390, Tc, KP707106781 * Td);
181
0
        To = KP612372435 * (Ta + Tb);
182
0
         }
183
0
         Tf = KP707106781 * (T9 + Te);
184
0
         Cr[WS(csr, 1)] = T4 - Tf;
185
0
         Cr[WS(csr, 4)] = T4 + Tf;
186
0
         TE = KP707106781 * (Te - T9);
187
0
         TF = Tz - Ty;
188
0
         Ci[WS(csi, 4)] = TE - TF;
189
0
         Ci[WS(csi, 1)] = TE + TF;
190
0
         {
191
0
        E Tk, TB, Tr, Tw, Tn, Tq;
192
0
        Tk = Tg - Tj;
193
0
        TB = Tx - TA;
194
0
        Tn = Tl - Tm;
195
0
        Tq = To - Tp;
196
0
        Tr = Tn + Tq;
197
0
        Tw = Tn - Tq;
198
0
        Cr[WS(csr, 5)] = Tk - Tr;
199
0
        Ci[WS(csi, 2)] = Tw + TB;
200
0
        Cr[0] = Tk + Tr;
201
0
        Ci[WS(csi, 3)] = Tw - TB;
202
0
         }
203
0
         {
204
0
        E Ts, TD, Tv, TC, Tt, Tu;
205
0
        Ts = Tg + Tj;
206
0
        TD = Tx + TA;
207
0
        Tt = To + Tp;
208
0
        Tu = Tm + Tl;
209
0
        Tv = Tt - Tu;
210
0
        TC = Tu + Tt;
211
0
        Cr[WS(csr, 3)] = Ts - Tv;
212
0
        Ci[WS(csi, 5)] = TD - TC;
213
0
        Cr[WS(csr, 2)] = Ts + Tv;
214
0
        Ci[0] = -(TC + TD);
215
0
         }
216
0
    }
217
0
     }
218
0
}
219
220
static const kr2c_desc desc = { 12, "r2cfII_12", { 39, 8, 4, 0 }, &GENUS };
221
222
1
void X(codelet_r2cfII_12) (planner *p) { X(kr2c_register) (p, r2cfII_12, &desc);
223
1
}
224
225
#endif