/src/fftw3/rdft/scalar/r2cf/r2cf_13.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Sun Sep 8 06:41:09 UTC 2024 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 13 -name r2cf_13 -include rdft/scalar/r2cf.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 76 FP additions, 51 FP multiplications, |
32 | | * (or, 31 additions, 6 multiplications, 45 fused multiply/add), |
33 | | * 58 stack variables, 23 constants, and 26 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/r2cf.h" |
36 | | |
37 | | static void r2cf_13(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
38 | | { |
39 | | DK(KP300462606, +0.300462606288665774426601772289207995520941381); |
40 | | DK(KP516520780, +0.516520780623489722840901288569017135705033622); |
41 | | DK(KP859542535, +0.859542535098774820163672132761689612766401925); |
42 | | DK(KP581704778, +0.581704778510515730456870384989698884939833902); |
43 | | DK(KP514918778, +0.514918778086315755491789696138117261566051239); |
44 | | DK(KP769338817, +0.769338817572980603471413688209101117038278899); |
45 | | DK(KP686558370, +0.686558370781754340655719594850823015421401653); |
46 | | DK(KP226109445, +0.226109445035782405468510155372505010481906348); |
47 | | DK(KP251768516, +0.251768516431883313623436926934233488546674281); |
48 | | DK(KP503537032, +0.503537032863766627246873853868466977093348562); |
49 | | DK(KP301479260, +0.301479260047709873958013540496673347309208464); |
50 | | DK(KP083333333, +0.083333333333333333333333333333333333333333333); |
51 | | DK(KP904176221, +0.904176221990848204433795481776887926501523162); |
52 | | DK(KP575140729, +0.575140729474003121368385547455453388461001608); |
53 | | DK(KP522026385, +0.522026385161275033714027226654165028300441940); |
54 | | DK(KP957805992, +0.957805992594665126462521754605754580515587217); |
55 | | DK(KP600477271, +0.600477271932665282925769253334763009352012849); |
56 | | DK(KP853480001, +0.853480001859823990758994934970528322872359049); |
57 | | DK(KP612264650, +0.612264650376756543746494474777125408779395514); |
58 | | DK(KP038632954, +0.038632954644348171955506895830342264440241080); |
59 | | DK(KP302775637, +0.302775637731994646559610633735247973125648287); |
60 | | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
61 | | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
62 | | { |
63 | | INT i; |
64 | | for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(52, rs), MAKE_VOLATILE_STRIDE(52, csr), MAKE_VOLATILE_STRIDE(52, csi)) { |
65 | | E TN, TA, TD, TO, TR, TS, TZ, T12, Tu, Tx, Tj, Tw, TW, T13; |
66 | | TN = R0[0]; |
67 | | { |
68 | | E T3, TP, Th, TB, Tp, Te, TC, Tm, T6, Tr, T9, Ts, Ta, TQ, T1; |
69 | | E T2; |
70 | | T1 = R0[WS(rs, 4)]; |
71 | | T2 = R1[WS(rs, 2)]; |
72 | | T3 = T1 - T2; |
73 | | TP = T1 + T2; |
74 | | { |
75 | | E Tn, Tf, Tg, To; |
76 | | Tn = R0[WS(rs, 6)]; |
77 | | Tf = R0[WS(rs, 5)]; |
78 | | Tg = R0[WS(rs, 2)]; |
79 | | To = Tf + Tg; |
80 | | Th = Tf - Tg; |
81 | | TB = Tn + To; |
82 | | Tp = FMS(KP500000000, To, Tn); |
83 | | } |
84 | | { |
85 | | E Tk, Tc, Td, Tl; |
86 | | Tk = R1[0]; |
87 | | Tc = R1[WS(rs, 4)]; |
88 | | Td = R1[WS(rs, 1)]; |
89 | | Tl = Td + Tc; |
90 | | Te = Tc - Td; |
91 | | TC = Tk + Tl; |
92 | | Tm = FNMS(KP500000000, Tl, Tk); |
93 | | } |
94 | | { |
95 | | E T4, T5, T7, T8; |
96 | | T4 = R1[WS(rs, 5)]; |
97 | | T5 = R0[WS(rs, 3)]; |
98 | | T6 = T4 - T5; |
99 | | Tr = T4 + T5; |
100 | | T7 = R1[WS(rs, 3)]; |
101 | | T8 = R0[WS(rs, 1)]; |
102 | | T9 = T7 - T8; |
103 | | Ts = T7 + T8; |
104 | | } |
105 | | Ta = T6 + T9; |
106 | | TQ = Tr + Ts; |
107 | | TA = T3 + Ta; |
108 | | TD = TB - TC; |
109 | | TO = TC + TB; |
110 | | TR = TP + TQ; |
111 | | TS = TO + TR; |
112 | | { |
113 | | E TX, TY, Tq, Tt; |
114 | | TX = Tm - Tp; |
115 | | TY = FNMS(KP500000000, TQ, TP); |
116 | | TZ = TX + TY; |
117 | | T12 = TX - TY; |
118 | | Tq = Tm + Tp; |
119 | | Tt = Tr - Ts; |
120 | | Tu = FMA(KP866025403, Tt, Tq); |
121 | | Tx = FNMS(KP866025403, Tt, Tq); |
122 | | } |
123 | | { |
124 | | E Tb, Ti, TU, TV; |
125 | | Tb = FNMS(KP500000000, Ta, T3); |
126 | | Ti = Te + Th; |
127 | | Tj = FMA(KP866025403, Ti, Tb); |
128 | | Tw = FNMS(KP866025403, Ti, Tb); |
129 | | TU = Th - Te; |
130 | | TV = T6 - T9; |
131 | | TW = TU + TV; |
132 | | T13 = TU - TV; |
133 | | } |
134 | | } |
135 | | Cr[0] = TN + TS; |
136 | | { |
137 | | E TE, TI, Tz, TK, TH, TM, TJ, TL; |
138 | | TE = FMA(KP302775637, TD, TA); |
139 | | TI = FNMS(KP302775637, TA, TD); |
140 | | { |
141 | | E Tv, Ty, TF, TG; |
142 | | Tv = FMA(KP038632954, Tu, Tj); |
143 | | Ty = FMA(KP612264650, Tx, Tw); |
144 | | Tz = FNMS(KP853480001, Ty, Tv); |
145 | | TK = FMA(KP853480001, Ty, Tv); |
146 | | TF = FNMS(KP038632954, Tj, Tu); |
147 | | TG = FNMS(KP612264650, Tw, Tx); |
148 | | TH = FNMS(KP853480001, TG, TF); |
149 | | TM = FMA(KP853480001, TG, TF); |
150 | | } |
151 | | Ci[WS(csi, 1)] = KP600477271 * (FMA(KP957805992, TE, Tz)); |
152 | | Ci[WS(csi, 5)] = -(KP600477271 * (FNMS(KP957805992, TI, TH))); |
153 | | TJ = FMA(KP522026385, TH, TI); |
154 | | Ci[WS(csi, 2)] = KP575140729 * (FNMS(KP904176221, TK, TJ)); |
155 | | Ci[WS(csi, 6)] = KP575140729 * (FMA(KP904176221, TK, TJ)); |
156 | | TL = FNMS(KP522026385, Tz, TE); |
157 | | Ci[WS(csi, 3)] = KP575140729 * (FNMS(KP904176221, TM, TL)); |
158 | | Ci[WS(csi, 4)] = -(KP575140729 * (FMA(KP904176221, TM, TL))); |
159 | | } |
160 | | { |
161 | | E T11, T17, T1c, T1e, T16, T18, TT, T10, T19, T1d; |
162 | | TT = FNMS(KP083333333, TS, TN); |
163 | | T10 = FMA(KP301479260, TZ, TW); |
164 | | T11 = FMA(KP503537032, T10, TT); |
165 | | T17 = FNMS(KP251768516, T10, TT); |
166 | | { |
167 | | E T1a, T1b, T14, T15; |
168 | | T1a = FNMS(KP226109445, TW, TZ); |
169 | | T1b = FMA(KP686558370, T12, T13); |
170 | | T1c = FNMS(KP769338817, T1b, T1a); |
171 | | T1e = FMA(KP769338817, T1b, T1a); |
172 | | T14 = FNMS(KP514918778, T13, T12); |
173 | | T15 = TO - TR; |
174 | | T16 = FMA(KP581704778, T15, T14); |
175 | | T18 = FNMS(KP859542535, T14, T15); |
176 | | } |
177 | | Cr[WS(csr, 5)] = FNMS(KP516520780, T16, T11); |
178 | | Cr[WS(csr, 1)] = FMA(KP516520780, T16, T11); |
179 | | T19 = FMA(KP300462606, T18, T17); |
180 | | Cr[WS(csr, 4)] = FNMS(KP503537032, T1c, T19); |
181 | | Cr[WS(csr, 3)] = FMA(KP503537032, T1c, T19); |
182 | | T1d = FNMS(KP300462606, T18, T17); |
183 | | Cr[WS(csr, 6)] = FNMS(KP503537032, T1e, T1d); |
184 | | Cr[WS(csr, 2)] = FMA(KP503537032, T1e, T1d); |
185 | | } |
186 | | } |
187 | | } |
188 | | } |
189 | | |
190 | | static const kr2c_desc desc = { 13, "r2cf_13", { 31, 6, 45, 0 }, &GENUS }; |
191 | | |
192 | | void X(codelet_r2cf_13) (planner *p) { X(kr2c_register) (p, r2cf_13, &desc); |
193 | | } |
194 | | |
195 | | #else |
196 | | |
197 | | /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 13 -name r2cf_13 -include rdft/scalar/r2cf.h */ |
198 | | |
199 | | /* |
200 | | * This function contains 76 FP additions, 34 FP multiplications, |
201 | | * (or, 57 additions, 15 multiplications, 19 fused multiply/add), |
202 | | * 55 stack variables, 20 constants, and 26 memory accesses |
203 | | */ |
204 | | #include "rdft/scalar/r2cf.h" |
205 | | |
206 | | static void r2cf_13(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
207 | 0 | { |
208 | 0 | DK(KP083333333, +0.083333333333333333333333333333333333333333333); |
209 | 0 | DK(KP075902986, +0.075902986037193865983102897245103540356428373); |
210 | 0 | DK(KP251768516, +0.251768516431883313623436926934233488546674281); |
211 | 0 | DK(KP503537032, +0.503537032863766627246873853868466977093348562); |
212 | 0 | DK(KP113854479, +0.113854479055790798974654345867655310534642560); |
213 | 0 | DK(KP265966249, +0.265966249214837287587521063842185948798330267); |
214 | 0 | DK(KP387390585, +0.387390585467617292130675966426762851778775217); |
215 | 0 | DK(KP300462606, +0.300462606288665774426601772289207995520941381); |
216 | 0 | DK(KP132983124, +0.132983124607418643793760531921092974399165133); |
217 | 0 | DK(KP258260390, +0.258260390311744861420450644284508567852516811); |
218 | 0 | DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); |
219 | 0 | DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); |
220 | 0 | DK(KP300238635, +0.300238635966332641462884626667381504676006424); |
221 | 0 | DK(KP011599105, +0.011599105605768290721655456654083252189827041); |
222 | 0 | DK(KP156891391, +0.156891391051584611046832726756003269660212636); |
223 | 0 | DK(KP256247671, +0.256247671582936600958684654061725059144125175); |
224 | 0 | DK(KP174138601, +0.174138601152135905005660794929264742616964676); |
225 | 0 | DK(KP575140729, +0.575140729474003121368385547455453388461001608); |
226 | 0 | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
227 | 0 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
228 | 0 | { |
229 | 0 | INT i; |
230 | 0 | for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(52, rs), MAKE_VOLATILE_STRIDE(52, csr), MAKE_VOLATILE_STRIDE(52, csi)) { |
231 | 0 | E T13, Tb, Tm, TW, TX, T14, TU, T10, Tz, TB, Tu, TC, TR, T11; |
232 | 0 | T13 = R0[0]; |
233 | 0 | { |
234 | 0 | E Te, TO, Ta, Tv, To, T5, Tw, Tp, Th, Tr, Tk, Ts, Tl, TP, Tc; |
235 | 0 | E Td; |
236 | 0 | Tc = R0[WS(rs, 4)]; |
237 | 0 | Td = R1[WS(rs, 2)]; |
238 | 0 | Te = Tc - Td; |
239 | 0 | TO = Tc + Td; |
240 | 0 | { |
241 | 0 | E T6, T7, T8, T9; |
242 | 0 | T6 = R1[0]; |
243 | 0 | T7 = R1[WS(rs, 1)]; |
244 | 0 | T8 = R1[WS(rs, 4)]; |
245 | 0 | T9 = T7 + T8; |
246 | 0 | Ta = T6 + T9; |
247 | 0 | Tv = T7 - T8; |
248 | 0 | To = FNMS(KP500000000, T9, T6); |
249 | 0 | } |
250 | 0 | { |
251 | 0 | E T1, T2, T3, T4; |
252 | 0 | T1 = R0[WS(rs, 6)]; |
253 | 0 | T2 = R0[WS(rs, 5)]; |
254 | 0 | T3 = R0[WS(rs, 2)]; |
255 | 0 | T4 = T2 + T3; |
256 | 0 | T5 = T1 + T4; |
257 | 0 | Tw = T2 - T3; |
258 | 0 | Tp = FNMS(KP500000000, T4, T1); |
259 | 0 | } |
260 | 0 | { |
261 | 0 | E Tf, Tg, Ti, Tj; |
262 | 0 | Tf = R1[WS(rs, 5)]; |
263 | 0 | Tg = R0[WS(rs, 3)]; |
264 | 0 | Th = Tf - Tg; |
265 | 0 | Tr = Tf + Tg; |
266 | 0 | Ti = R1[WS(rs, 3)]; |
267 | 0 | Tj = R0[WS(rs, 1)]; |
268 | 0 | Tk = Ti - Tj; |
269 | 0 | Ts = Ti + Tj; |
270 | 0 | } |
271 | 0 | Tl = Th + Tk; |
272 | 0 | TP = Tr + Ts; |
273 | 0 | Tb = T5 - Ta; |
274 | 0 | Tm = Te + Tl; |
275 | 0 | TW = Ta + T5; |
276 | 0 | TX = TO + TP; |
277 | 0 | T14 = TW + TX; |
278 | 0 | { |
279 | 0 | E TS, TT, Tx, Ty; |
280 | 0 | TS = Tv + Tw; |
281 | 0 | TT = Th - Tk; |
282 | 0 | TU = TS - TT; |
283 | 0 | T10 = TS + TT; |
284 | 0 | Tx = KP866025403 * (Tv - Tw); |
285 | 0 | Ty = FNMS(KP500000000, Tl, Te); |
286 | 0 | Tz = Tx + Ty; |
287 | 0 | TB = Ty - Tx; |
288 | 0 | } |
289 | 0 | { |
290 | 0 | E Tq, Tt, TN, TQ; |
291 | 0 | Tq = To - Tp; |
292 | 0 | Tt = KP866025403 * (Tr - Ts); |
293 | 0 | Tu = Tq - Tt; |
294 | 0 | TC = Tq + Tt; |
295 | 0 | TN = To + Tp; |
296 | 0 | TQ = FNMS(KP500000000, TP, TO); |
297 | 0 | TR = TN - TQ; |
298 | 0 | T11 = TN + TQ; |
299 | 0 | } |
300 | 0 | } |
301 | 0 | Cr[0] = T13 + T14; |
302 | 0 | { |
303 | 0 | E Tn, TG, TE, TF, TJ, TM, TK, TL; |
304 | 0 | Tn = FNMS(KP174138601, Tm, KP575140729 * Tb); |
305 | 0 | TG = FMA(KP174138601, Tb, KP575140729 * Tm); |
306 | 0 | { |
307 | 0 | E TA, TD, TH, TI; |
308 | 0 | TA = FNMS(KP156891391, Tz, KP256247671 * Tu); |
309 | 0 | TD = FNMS(KP300238635, TC, KP011599105 * TB); |
310 | 0 | TE = TA + TD; |
311 | 0 | TF = KP1_732050807 * (TD - TA); |
312 | 0 | TH = FMA(KP300238635, TB, KP011599105 * TC); |
313 | 0 | TI = FMA(KP256247671, Tz, KP156891391 * Tu); |
314 | 0 | TJ = TH - TI; |
315 | 0 | TM = KP1_732050807 * (TI + TH); |
316 | 0 | } |
317 | 0 | Ci[WS(csi, 5)] = FMA(KP2_000000000, TE, Tn); |
318 | 0 | Ci[WS(csi, 1)] = FMA(KP2_000000000, TJ, TG); |
319 | 0 | TK = TG - TJ; |
320 | 0 | Ci[WS(csi, 4)] = TF - TK; |
321 | 0 | Ci[WS(csi, 3)] = TF + TK; |
322 | 0 | TL = Tn - TE; |
323 | 0 | Ci[WS(csi, 2)] = TL - TM; |
324 | 0 | Ci[WS(csi, 6)] = TL + TM; |
325 | 0 | } |
326 | 0 | { |
327 | 0 | E TZ, T1b, T19, T1e, T16, T1a, TV, TY, T1c, T1d; |
328 | 0 | TV = FNMS(KP132983124, TU, KP258260390 * TR); |
329 | 0 | TY = KP300462606 * (TW - TX); |
330 | 0 | TZ = FMA(KP2_000000000, TV, TY); |
331 | 0 | T1b = TY - TV; |
332 | 0 | { |
333 | 0 | E T17, T18, T12, T15; |
334 | 0 | T17 = FMA(KP387390585, TU, KP265966249 * TR); |
335 | 0 | T18 = FNMS(KP503537032, T11, KP113854479 * T10); |
336 | 0 | T19 = T17 - T18; |
337 | 0 | T1e = T17 + T18; |
338 | 0 | T12 = FMA(KP251768516, T10, KP075902986 * T11); |
339 | 0 | T15 = FNMS(KP083333333, T14, T13); |
340 | 0 | T16 = FMA(KP2_000000000, T12, T15); |
341 | 0 | T1a = T15 - T12; |
342 | 0 | } |
343 | 0 | Cr[WS(csr, 1)] = TZ + T16; |
344 | 0 | Cr[WS(csr, 5)] = T16 - TZ; |
345 | 0 | T1c = T1a - T1b; |
346 | 0 | Cr[WS(csr, 2)] = T19 + T1c; |
347 | 0 | Cr[WS(csr, 6)] = T1c - T19; |
348 | 0 | T1d = T1b + T1a; |
349 | 0 | Cr[WS(csr, 3)] = T1d - T1e; |
350 | 0 | Cr[WS(csr, 4)] = T1e + T1d; |
351 | 0 | } |
352 | 0 | } |
353 | 0 | } |
354 | 0 | } |
355 | | |
356 | | static const kr2c_desc desc = { 13, "r2cf_13", { 57, 15, 19, 0 }, &GENUS }; |
357 | | |
358 | 1 | void X(codelet_r2cf_13) (planner *p) { X(kr2c_register) (p, r2cf_13, &desc); |
359 | 1 | } |
360 | | |
361 | | #endif |