/src/fftw3/dft/scalar/codelets/n1_6.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Sun Jun 22 06:40:50 UTC 2025 */ |
23 | | |
24 | | #include "dft/codelet-dft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 6 -name n1_6 -include dft/scalar/n.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 36 FP additions, 12 FP multiplications, |
32 | | * (or, 24 additions, 0 multiplications, 12 fused multiply/add), |
33 | | * 23 stack variables, 2 constants, and 24 memory accesses |
34 | | */ |
35 | | #include "dft/scalar/n.h" |
36 | | |
37 | | static void n1_6(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
38 | | { |
39 | | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
40 | | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
41 | | { |
42 | | INT i; |
43 | | for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) { |
44 | | E T3, Tb, Tp, Tx, T6, Tc, T9, Td, Ta, Te, Ti, Tu, Tl, Tv, Tq; |
45 | | E Ty; |
46 | | { |
47 | | E T1, T2, Tn, To; |
48 | | T1 = ri[0]; |
49 | | T2 = ri[WS(is, 3)]; |
50 | | T3 = T1 - T2; |
51 | | Tb = T1 + T2; |
52 | | Tn = ii[0]; |
53 | | To = ii[WS(is, 3)]; |
54 | | Tp = Tn - To; |
55 | | Tx = Tn + To; |
56 | | } |
57 | | { |
58 | | E T4, T5, T7, T8; |
59 | | T4 = ri[WS(is, 2)]; |
60 | | T5 = ri[WS(is, 5)]; |
61 | | T6 = T4 - T5; |
62 | | Tc = T4 + T5; |
63 | | T7 = ri[WS(is, 4)]; |
64 | | T8 = ri[WS(is, 1)]; |
65 | | T9 = T7 - T8; |
66 | | Td = T7 + T8; |
67 | | } |
68 | | Ta = T6 + T9; |
69 | | Te = Tc + Td; |
70 | | { |
71 | | E Tg, Th, Tj, Tk; |
72 | | Tg = ii[WS(is, 2)]; |
73 | | Th = ii[WS(is, 5)]; |
74 | | Ti = Tg - Th; |
75 | | Tu = Tg + Th; |
76 | | Tj = ii[WS(is, 4)]; |
77 | | Tk = ii[WS(is, 1)]; |
78 | | Tl = Tj - Tk; |
79 | | Tv = Tj + Tk; |
80 | | } |
81 | | Tq = Ti + Tl; |
82 | | Ty = Tu + Tv; |
83 | | ro[WS(os, 3)] = T3 + Ta; |
84 | | io[WS(os, 3)] = Tp + Tq; |
85 | | ro[0] = Tb + Te; |
86 | | io[0] = Tx + Ty; |
87 | | { |
88 | | E Tf, Tm, Tr, Ts; |
89 | | Tf = FNMS(KP500000000, Ta, T3); |
90 | | Tm = Ti - Tl; |
91 | | ro[WS(os, 5)] = FNMS(KP866025403, Tm, Tf); |
92 | | ro[WS(os, 1)] = FMA(KP866025403, Tm, Tf); |
93 | | Tr = FNMS(KP500000000, Tq, Tp); |
94 | | Ts = T9 - T6; |
95 | | io[WS(os, 1)] = FMA(KP866025403, Ts, Tr); |
96 | | io[WS(os, 5)] = FNMS(KP866025403, Ts, Tr); |
97 | | } |
98 | | { |
99 | | E Tt, Tw, Tz, TA; |
100 | | Tt = FNMS(KP500000000, Te, Tb); |
101 | | Tw = Tu - Tv; |
102 | | ro[WS(os, 2)] = FNMS(KP866025403, Tw, Tt); |
103 | | ro[WS(os, 4)] = FMA(KP866025403, Tw, Tt); |
104 | | Tz = FNMS(KP500000000, Ty, Tx); |
105 | | TA = Td - Tc; |
106 | | io[WS(os, 2)] = FNMS(KP866025403, TA, Tz); |
107 | | io[WS(os, 4)] = FMA(KP866025403, TA, Tz); |
108 | | } |
109 | | } |
110 | | } |
111 | | } |
112 | | |
113 | | static const kdft_desc desc = { 6, "n1_6", { 24, 0, 12, 0 }, &GENUS, 0, 0, 0, 0 }; |
114 | | |
115 | | void X(codelet_n1_6) (planner *p) { X(kdft_register) (p, n1_6, &desc); |
116 | | } |
117 | | |
118 | | #else |
119 | | |
120 | | /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 6 -name n1_6 -include dft/scalar/n.h */ |
121 | | |
122 | | /* |
123 | | * This function contains 36 FP additions, 8 FP multiplications, |
124 | | * (or, 32 additions, 4 multiplications, 4 fused multiply/add), |
125 | | * 23 stack variables, 2 constants, and 24 memory accesses |
126 | | */ |
127 | | #include "dft/scalar/n.h" |
128 | | |
129 | | static void n1_6(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
130 | 570 | { |
131 | 570 | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
132 | 570 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
133 | 570 | { |
134 | 570 | INT i; |
135 | 2.54k | for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) { |
136 | 1.97k | E T3, Tb, Tq, Tx, T6, Tc, T9, Td, Ta, Te, Ti, Tu, Tl, Tv, Tr; |
137 | 1.97k | E Ty; |
138 | 1.97k | { |
139 | 1.97k | E T1, T2, To, Tp; |
140 | 1.97k | T1 = ri[0]; |
141 | 1.97k | T2 = ri[WS(is, 3)]; |
142 | 1.97k | T3 = T1 - T2; |
143 | 1.97k | Tb = T1 + T2; |
144 | 1.97k | To = ii[0]; |
145 | 1.97k | Tp = ii[WS(is, 3)]; |
146 | 1.97k | Tq = To - Tp; |
147 | 1.97k | Tx = To + Tp; |
148 | 1.97k | } |
149 | 1.97k | { |
150 | 1.97k | E T4, T5, T7, T8; |
151 | 1.97k | T4 = ri[WS(is, 2)]; |
152 | 1.97k | T5 = ri[WS(is, 5)]; |
153 | 1.97k | T6 = T4 - T5; |
154 | 1.97k | Tc = T4 + T5; |
155 | 1.97k | T7 = ri[WS(is, 4)]; |
156 | 1.97k | T8 = ri[WS(is, 1)]; |
157 | 1.97k | T9 = T7 - T8; |
158 | 1.97k | Td = T7 + T8; |
159 | 1.97k | } |
160 | 1.97k | Ta = T6 + T9; |
161 | 1.97k | Te = Tc + Td; |
162 | 1.97k | { |
163 | 1.97k | E Tg, Th, Tj, Tk; |
164 | 1.97k | Tg = ii[WS(is, 2)]; |
165 | 1.97k | Th = ii[WS(is, 5)]; |
166 | 1.97k | Ti = Tg - Th; |
167 | 1.97k | Tu = Tg + Th; |
168 | 1.97k | Tj = ii[WS(is, 4)]; |
169 | 1.97k | Tk = ii[WS(is, 1)]; |
170 | 1.97k | Tl = Tj - Tk; |
171 | 1.97k | Tv = Tj + Tk; |
172 | 1.97k | } |
173 | 1.97k | Tr = Ti + Tl; |
174 | 1.97k | Ty = Tu + Tv; |
175 | 1.97k | ro[WS(os, 3)] = T3 + Ta; |
176 | 1.97k | io[WS(os, 3)] = Tq + Tr; |
177 | 1.97k | ro[0] = Tb + Te; |
178 | 1.97k | io[0] = Tx + Ty; |
179 | 1.97k | { |
180 | 1.97k | E Tf, Tm, Tn, Ts; |
181 | 1.97k | Tf = FNMS(KP500000000, Ta, T3); |
182 | 1.97k | Tm = KP866025403 * (Ti - Tl); |
183 | 1.97k | ro[WS(os, 5)] = Tf - Tm; |
184 | 1.97k | ro[WS(os, 1)] = Tf + Tm; |
185 | 1.97k | Tn = KP866025403 * (T9 - T6); |
186 | 1.97k | Ts = FNMS(KP500000000, Tr, Tq); |
187 | 1.97k | io[WS(os, 1)] = Tn + Ts; |
188 | 1.97k | io[WS(os, 5)] = Ts - Tn; |
189 | 1.97k | } |
190 | 1.97k | { |
191 | 1.97k | E Tt, Tw, Tz, TA; |
192 | 1.97k | Tt = FNMS(KP500000000, Te, Tb); |
193 | 1.97k | Tw = KP866025403 * (Tu - Tv); |
194 | 1.97k | ro[WS(os, 2)] = Tt - Tw; |
195 | 1.97k | ro[WS(os, 4)] = Tt + Tw; |
196 | 1.97k | Tz = FNMS(KP500000000, Ty, Tx); |
197 | 1.97k | TA = KP866025403 * (Td - Tc); |
198 | 1.97k | io[WS(os, 2)] = Tz - TA; |
199 | 1.97k | io[WS(os, 4)] = TA + Tz; |
200 | 1.97k | } |
201 | 1.97k | } |
202 | 570 | } |
203 | 570 | } |
204 | | |
205 | | static const kdft_desc desc = { 6, "n1_6", { 32, 4, 4, 0 }, &GENUS, 0, 0, 0, 0 }; |
206 | | |
207 | 1 | void X(codelet_n1_6) (planner *p) { X(kdft_register) (p, n1_6, &desc); |
208 | 1 | } |
209 | | |
210 | | #endif |