/src/fftw3/dft/scalar/codelets/t2_20.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Sun Jun 22 06:41:10 UTC 2025 */ |
23 | | |
24 | | #include "dft/codelet-dft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 20 -name t2_20 -include dft/scalar/t.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 276 FP additions, 198 FP multiplications, |
32 | | * (or, 136 additions, 58 multiplications, 140 fused multiply/add), |
33 | | * 95 stack variables, 4 constants, and 80 memory accesses |
34 | | */ |
35 | | #include "dft/scalar/t.h" |
36 | | |
37 | | static void t2_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
40 | | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
41 | | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
42 | | DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
43 | | { |
44 | | INT m; |
45 | | for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(40, rs)) { |
46 | | E T2, Th, Tf, T6, T5, Ti, Tl, T1n, T3, Tt, Tv, T7, T17, T1L, T24; |
47 | | E Tb, T13, T1P, T21, T1b, T1D, T1A, T1H, T1f, TA, Tw, Tq, Tm, TK, T1S; |
48 | | E TO, T1p, T1q, T1u, T2n, T2k, T2h, T2d; |
49 | | { |
50 | | E Tk, Ta, T1e, T4, T1a, Tj, T12, T1G, T16, T1K, Tg, Tz; |
51 | | T2 = W[0]; |
52 | | Th = W[3]; |
53 | | Tf = W[2]; |
54 | | Tg = T2 * Tf; |
55 | | Tk = T2 * Th; |
56 | | T6 = W[5]; |
57 | | Ta = T2 * T6; |
58 | | T1e = Tf * T6; |
59 | | T5 = W[1]; |
60 | | Ti = FNMS(T5, Th, Tg); |
61 | | Tl = FMA(T5, Tf, Tk); |
62 | | T1n = FMA(T5, Th, Tg); |
63 | | T3 = W[4]; |
64 | | T4 = T2 * T3; |
65 | | T1a = Tf * T3; |
66 | | Tj = Ti * T3; |
67 | | Tt = W[6]; |
68 | | T12 = Tf * Tt; |
69 | | T1G = T2 * Tt; |
70 | | Tv = W[7]; |
71 | | T16 = Tf * Tv; |
72 | | T1K = T2 * Tv; |
73 | | T7 = FNMS(T5, T6, T4); |
74 | | T17 = FNMS(Th, Tt, T16); |
75 | | T1L = FNMS(T5, Tt, T1K); |
76 | | T24 = FMA(Th, T3, T1e); |
77 | | Tb = FMA(T5, T3, Ta); |
78 | | T13 = FMA(Th, Tv, T12); |
79 | | T1P = FNMS(Tl, T6, Tj); |
80 | | T21 = FNMS(Th, T6, T1a); |
81 | | T1b = FMA(Th, T6, T1a); |
82 | | T1D = FNMS(T5, T3, Ta); |
83 | | T1A = FMA(T5, T6, T4); |
84 | | T1H = FMA(T5, Tv, T1G); |
85 | | T1f = FNMS(Th, T3, T1e); |
86 | | Tz = Ti * Tv; |
87 | | TA = FNMS(Tl, Tt, Tz); |
88 | | { |
89 | | E Tu, Tp, TJ, TN; |
90 | | Tu = Ti * Tt; |
91 | | Tw = FMA(Tl, Tv, Tu); |
92 | | Tp = Ti * T6; |
93 | | Tq = FNMS(Tl, T3, Tp); |
94 | | Tm = FMA(Tl, T6, Tj); |
95 | | TJ = Tm * Tt; |
96 | | TN = Tm * Tv; |
97 | | TK = FMA(Tq, Tv, TJ); |
98 | | T1S = FMA(Tl, T3, Tp); |
99 | | TO = FNMS(Tq, Tt, TN); |
100 | | { |
101 | | E T1o, T2g, T1t, T2c; |
102 | | T1o = T1n * T3; |
103 | | T2g = T1n * Tv; |
104 | | T1t = T1n * T6; |
105 | | T2c = T1n * Tt; |
106 | | T1p = FNMS(T5, Tf, Tk); |
107 | | T1q = FNMS(T1p, T6, T1o); |
108 | | T1u = FMA(T1p, T3, T1t); |
109 | | T2n = FNMS(T1p, T3, T1t); |
110 | | T2k = FMA(T1p, T6, T1o); |
111 | | T2h = FNMS(T1p, Tt, T2g); |
112 | | T2d = FMA(T1p, Tv, T2c); |
113 | | } |
114 | | } |
115 | | } |
116 | | { |
117 | | E Te, T2C, T4L, T57, TD, T58, T2H, T4H, T11, T2v, T4k, T4v, T2P, T3P, T3C; |
118 | | E T3Z, T2r, T2z, T4g, T4z, T3b, T3T, T3u, T43, T20, T2y, T4d, T4y, T34, T3S; |
119 | | E T3n, T42, T1y, T2w, T4n, T4w, T2W, T3Q, T3J, T40; |
120 | | { |
121 | | E T1, T4K, T8, T9, Tc, T4I, Td, T4J; |
122 | | T1 = ri[0]; |
123 | | T4K = ii[0]; |
124 | | T8 = ri[WS(rs, 10)]; |
125 | | T9 = T7 * T8; |
126 | | Tc = ii[WS(rs, 10)]; |
127 | | T4I = T7 * Tc; |
128 | | Td = FMA(Tb, Tc, T9); |
129 | | Te = T1 + Td; |
130 | | T2C = T1 - Td; |
131 | | T4J = FNMS(Tb, T8, T4I); |
132 | | T4L = T4J + T4K; |
133 | | T57 = T4K - T4J; |
134 | | } |
135 | | { |
136 | | E Tn, To, Tr, T2D, Tx, Ty, TB, T2F; |
137 | | Tn = ri[WS(rs, 5)]; |
138 | | To = Tm * Tn; |
139 | | Tr = ii[WS(rs, 5)]; |
140 | | T2D = Tm * Tr; |
141 | | Tx = ri[WS(rs, 15)]; |
142 | | Ty = Tw * Tx; |
143 | | TB = ii[WS(rs, 15)]; |
144 | | T2F = Tw * TB; |
145 | | { |
146 | | E Ts, TC, T2E, T2G; |
147 | | Ts = FMA(Tq, Tr, To); |
148 | | TC = FMA(TA, TB, Ty); |
149 | | TD = Ts + TC; |
150 | | T58 = Ts - TC; |
151 | | T2E = FNMS(Tq, Tn, T2D); |
152 | | T2G = FNMS(TA, Tx, T2F); |
153 | | T2H = T2E - T2G; |
154 | | T4H = T2E + T2G; |
155 | | } |
156 | | } |
157 | | { |
158 | | E TI, T3x, TZ, T2N, TQ, T3z, TV, T2L; |
159 | | { |
160 | | E TF, TG, TH, T3w; |
161 | | TF = ri[WS(rs, 4)]; |
162 | | TG = Ti * TF; |
163 | | TH = ii[WS(rs, 4)]; |
164 | | T3w = Ti * TH; |
165 | | TI = FMA(Tl, TH, TG); |
166 | | T3x = FNMS(Tl, TF, T3w); |
167 | | } |
168 | | { |
169 | | E TW, TX, TY, T2M; |
170 | | TW = ri[WS(rs, 19)]; |
171 | | TX = Tt * TW; |
172 | | TY = ii[WS(rs, 19)]; |
173 | | T2M = Tt * TY; |
174 | | TZ = FMA(Tv, TY, TX); |
175 | | T2N = FNMS(Tv, TW, T2M); |
176 | | } |
177 | | { |
178 | | E TL, TM, TP, T3y; |
179 | | TL = ri[WS(rs, 14)]; |
180 | | TM = TK * TL; |
181 | | TP = ii[WS(rs, 14)]; |
182 | | T3y = TK * TP; |
183 | | TQ = FMA(TO, TP, TM); |
184 | | T3z = FNMS(TO, TL, T3y); |
185 | | } |
186 | | { |
187 | | E TS, TT, TU, T2K; |
188 | | TS = ri[WS(rs, 9)]; |
189 | | TT = T3 * TS; |
190 | | TU = ii[WS(rs, 9)]; |
191 | | T2K = T3 * TU; |
192 | | TV = FMA(T6, TU, TT); |
193 | | T2L = FNMS(T6, TS, T2K); |
194 | | } |
195 | | { |
196 | | E TR, T10, T4i, T4j; |
197 | | TR = TI + TQ; |
198 | | T10 = TV + TZ; |
199 | | T11 = TR - T10; |
200 | | T2v = TR + T10; |
201 | | T4i = T3x + T3z; |
202 | | T4j = T2L + T2N; |
203 | | T4k = T4i - T4j; |
204 | | T4v = T4i + T4j; |
205 | | } |
206 | | { |
207 | | E T2J, T2O, T3A, T3B; |
208 | | T2J = TI - TQ; |
209 | | T2O = T2L - T2N; |
210 | | T2P = T2J - T2O; |
211 | | T3P = T2J + T2O; |
212 | | T3A = T3x - T3z; |
213 | | T3B = TV - TZ; |
214 | | T3C = T3A + T3B; |
215 | | T3Z = T3A - T3B; |
216 | | } |
217 | | } |
218 | | { |
219 | | E T26, T3p, T2p, T39, T2a, T3r, T2j, T37; |
220 | | { |
221 | | E T22, T23, T25, T3o; |
222 | | T22 = ri[WS(rs, 12)]; |
223 | | T23 = T21 * T22; |
224 | | T25 = ii[WS(rs, 12)]; |
225 | | T3o = T21 * T25; |
226 | | T26 = FMA(T24, T25, T23); |
227 | | T3p = FNMS(T24, T22, T3o); |
228 | | } |
229 | | { |
230 | | E T2l, T2m, T2o, T38; |
231 | | T2l = ri[WS(rs, 7)]; |
232 | | T2m = T2k * T2l; |
233 | | T2o = ii[WS(rs, 7)]; |
234 | | T38 = T2k * T2o; |
235 | | T2p = FMA(T2n, T2o, T2m); |
236 | | T39 = FNMS(T2n, T2l, T38); |
237 | | } |
238 | | { |
239 | | E T27, T28, T29, T3q; |
240 | | T27 = ri[WS(rs, 2)]; |
241 | | T28 = T1n * T27; |
242 | | T29 = ii[WS(rs, 2)]; |
243 | | T3q = T1n * T29; |
244 | | T2a = FMA(T1p, T29, T28); |
245 | | T3r = FNMS(T1p, T27, T3q); |
246 | | } |
247 | | { |
248 | | E T2e, T2f, T2i, T36; |
249 | | T2e = ri[WS(rs, 17)]; |
250 | | T2f = T2d * T2e; |
251 | | T2i = ii[WS(rs, 17)]; |
252 | | T36 = T2d * T2i; |
253 | | T2j = FMA(T2h, T2i, T2f); |
254 | | T37 = FNMS(T2h, T2e, T36); |
255 | | } |
256 | | { |
257 | | E T2b, T2q, T4e, T4f; |
258 | | T2b = T26 + T2a; |
259 | | T2q = T2j + T2p; |
260 | | T2r = T2b - T2q; |
261 | | T2z = T2b + T2q; |
262 | | T4e = T3p + T3r; |
263 | | T4f = T37 + T39; |
264 | | T4g = T4e - T4f; |
265 | | T4z = T4e + T4f; |
266 | | } |
267 | | { |
268 | | E T35, T3a, T3s, T3t; |
269 | | T35 = T26 - T2a; |
270 | | T3a = T37 - T39; |
271 | | T3b = T35 - T3a; |
272 | | T3T = T35 + T3a; |
273 | | T3s = T3p - T3r; |
274 | | T3t = T2j - T2p; |
275 | | T3u = T3s + T3t; |
276 | | T43 = T3s - T3t; |
277 | | } |
278 | | } |
279 | | { |
280 | | E T1F, T3i, T1Y, T32, T1N, T3k, T1U, T30; |
281 | | { |
282 | | E T1B, T1C, T1E, T3h; |
283 | | T1B = ri[WS(rs, 8)]; |
284 | | T1C = T1A * T1B; |
285 | | T1E = ii[WS(rs, 8)]; |
286 | | T3h = T1A * T1E; |
287 | | T1F = FMA(T1D, T1E, T1C); |
288 | | T3i = FNMS(T1D, T1B, T3h); |
289 | | } |
290 | | { |
291 | | E T1V, T1W, T1X, T31; |
292 | | T1V = ri[WS(rs, 3)]; |
293 | | T1W = Tf * T1V; |
294 | | T1X = ii[WS(rs, 3)]; |
295 | | T31 = Tf * T1X; |
296 | | T1Y = FMA(Th, T1X, T1W); |
297 | | T32 = FNMS(Th, T1V, T31); |
298 | | } |
299 | | { |
300 | | E T1I, T1J, T1M, T3j; |
301 | | T1I = ri[WS(rs, 18)]; |
302 | | T1J = T1H * T1I; |
303 | | T1M = ii[WS(rs, 18)]; |
304 | | T3j = T1H * T1M; |
305 | | T1N = FMA(T1L, T1M, T1J); |
306 | | T3k = FNMS(T1L, T1I, T3j); |
307 | | } |
308 | | { |
309 | | E T1Q, T1R, T1T, T2Z; |
310 | | T1Q = ri[WS(rs, 13)]; |
311 | | T1R = T1P * T1Q; |
312 | | T1T = ii[WS(rs, 13)]; |
313 | | T2Z = T1P * T1T; |
314 | | T1U = FMA(T1S, T1T, T1R); |
315 | | T30 = FNMS(T1S, T1Q, T2Z); |
316 | | } |
317 | | { |
318 | | E T1O, T1Z, T4b, T4c; |
319 | | T1O = T1F + T1N; |
320 | | T1Z = T1U + T1Y; |
321 | | T20 = T1O - T1Z; |
322 | | T2y = T1O + T1Z; |
323 | | T4b = T3i + T3k; |
324 | | T4c = T30 + T32; |
325 | | T4d = T4b - T4c; |
326 | | T4y = T4b + T4c; |
327 | | } |
328 | | { |
329 | | E T2Y, T33, T3l, T3m; |
330 | | T2Y = T1F - T1N; |
331 | | T33 = T30 - T32; |
332 | | T34 = T2Y - T33; |
333 | | T3S = T2Y + T33; |
334 | | T3l = T3i - T3k; |
335 | | T3m = T1U - T1Y; |
336 | | T3n = T3l + T3m; |
337 | | T42 = T3l - T3m; |
338 | | } |
339 | | } |
340 | | { |
341 | | E T19, T3E, T1w, T2U, T1h, T3G, T1m, T2S; |
342 | | { |
343 | | E T14, T15, T18, T3D; |
344 | | T14 = ri[WS(rs, 16)]; |
345 | | T15 = T13 * T14; |
346 | | T18 = ii[WS(rs, 16)]; |
347 | | T3D = T13 * T18; |
348 | | T19 = FMA(T17, T18, T15); |
349 | | T3E = FNMS(T17, T14, T3D); |
350 | | } |
351 | | { |
352 | | E T1r, T1s, T1v, T2T; |
353 | | T1r = ri[WS(rs, 11)]; |
354 | | T1s = T1q * T1r; |
355 | | T1v = ii[WS(rs, 11)]; |
356 | | T2T = T1q * T1v; |
357 | | T1w = FMA(T1u, T1v, T1s); |
358 | | T2U = FNMS(T1u, T1r, T2T); |
359 | | } |
360 | | { |
361 | | E T1c, T1d, T1g, T3F; |
362 | | T1c = ri[WS(rs, 6)]; |
363 | | T1d = T1b * T1c; |
364 | | T1g = ii[WS(rs, 6)]; |
365 | | T3F = T1b * T1g; |
366 | | T1h = FMA(T1f, T1g, T1d); |
367 | | T3G = FNMS(T1f, T1c, T3F); |
368 | | } |
369 | | { |
370 | | E T1j, T1k, T1l, T2R; |
371 | | T1j = ri[WS(rs, 1)]; |
372 | | T1k = T2 * T1j; |
373 | | T1l = ii[WS(rs, 1)]; |
374 | | T2R = T2 * T1l; |
375 | | T1m = FMA(T5, T1l, T1k); |
376 | | T2S = FNMS(T5, T1j, T2R); |
377 | | } |
378 | | { |
379 | | E T1i, T1x, T4l, T4m; |
380 | | T1i = T19 + T1h; |
381 | | T1x = T1m + T1w; |
382 | | T1y = T1i - T1x; |
383 | | T2w = T1i + T1x; |
384 | | T4l = T3E + T3G; |
385 | | T4m = T2S + T2U; |
386 | | T4n = T4l - T4m; |
387 | | T4w = T4l + T4m; |
388 | | } |
389 | | { |
390 | | E T2Q, T2V, T3H, T3I; |
391 | | T2Q = T19 - T1h; |
392 | | T2V = T2S - T2U; |
393 | | T2W = T2Q - T2V; |
394 | | T3Q = T2Q + T2V; |
395 | | T3H = T3E - T3G; |
396 | | T3I = T1m - T1w; |
397 | | T3J = T3H + T3I; |
398 | | T40 = T3H - T3I; |
399 | | } |
400 | | } |
401 | | { |
402 | | E T4p, T4r, TE, T2t, T48, T49, T4q, T4a; |
403 | | { |
404 | | E T4h, T4o, T1z, T2s; |
405 | | T4h = T4d - T4g; |
406 | | T4o = T4k - T4n; |
407 | | T4p = FNMS(KP618033988, T4o, T4h); |
408 | | T4r = FMA(KP618033988, T4h, T4o); |
409 | | TE = Te - TD; |
410 | | T1z = T11 + T1y; |
411 | | T2s = T20 + T2r; |
412 | | T2t = T1z + T2s; |
413 | | T48 = FNMS(KP250000000, T2t, TE); |
414 | | T49 = T1z - T2s; |
415 | | } |
416 | | ri[WS(rs, 10)] = TE + T2t; |
417 | | T4q = FMA(KP559016994, T49, T48); |
418 | | ri[WS(rs, 14)] = FNMS(KP951056516, T4r, T4q); |
419 | | ri[WS(rs, 6)] = FMA(KP951056516, T4r, T4q); |
420 | | T4a = FNMS(KP559016994, T49, T48); |
421 | | ri[WS(rs, 2)] = FNMS(KP951056516, T4p, T4a); |
422 | | ri[WS(rs, 18)] = FMA(KP951056516, T4p, T4a); |
423 | | } |
424 | | { |
425 | | E T54, T56, T4V, T4Y, T4Z, T50, T55, T51; |
426 | | { |
427 | | E T52, T53, T4W, T4X; |
428 | | T52 = T20 - T2r; |
429 | | T53 = T11 - T1y; |
430 | | T54 = FNMS(KP618033988, T53, T52); |
431 | | T56 = FMA(KP618033988, T52, T53); |
432 | | T4V = T4L - T4H; |
433 | | T4W = T4k + T4n; |
434 | | T4X = T4d + T4g; |
435 | | T4Y = T4W + T4X; |
436 | | T4Z = FNMS(KP250000000, T4Y, T4V); |
437 | | T50 = T4W - T4X; |
438 | | } |
439 | | ii[WS(rs, 10)] = T4Y + T4V; |
440 | | T55 = FMA(KP559016994, T50, T4Z); |
441 | | ii[WS(rs, 6)] = FNMS(KP951056516, T56, T55); |
442 | | ii[WS(rs, 14)] = FMA(KP951056516, T56, T55); |
443 | | T51 = FNMS(KP559016994, T50, T4Z); |
444 | | ii[WS(rs, 2)] = FMA(KP951056516, T54, T51); |
445 | | ii[WS(rs, 18)] = FNMS(KP951056516, T54, T51); |
446 | | } |
447 | | { |
448 | | E T4B, T4D, T2u, T2B, T4s, T4t, T4C, T4u; |
449 | | { |
450 | | E T4x, T4A, T2x, T2A; |
451 | | T4x = T4v - T4w; |
452 | | T4A = T4y - T4z; |
453 | | T4B = FMA(KP618033988, T4A, T4x); |
454 | | T4D = FNMS(KP618033988, T4x, T4A); |
455 | | T2u = Te + TD; |
456 | | T2x = T2v + T2w; |
457 | | T2A = T2y + T2z; |
458 | | T2B = T2x + T2A; |
459 | | T4s = FNMS(KP250000000, T2B, T2u); |
460 | | T4t = T2x - T2A; |
461 | | } |
462 | | ri[0] = T2u + T2B; |
463 | | T4C = FNMS(KP559016994, T4t, T4s); |
464 | | ri[WS(rs, 12)] = FNMS(KP951056516, T4D, T4C); |
465 | | ri[WS(rs, 8)] = FMA(KP951056516, T4D, T4C); |
466 | | T4u = FMA(KP559016994, T4t, T4s); |
467 | | ri[WS(rs, 4)] = FNMS(KP951056516, T4B, T4u); |
468 | | ri[WS(rs, 16)] = FMA(KP951056516, T4B, T4u); |
469 | | } |
470 | | { |
471 | | E T4S, T4U, T4M, T4G, T4N, T4O, T4T, T4P; |
472 | | { |
473 | | E T4Q, T4R, T4E, T4F; |
474 | | T4Q = T2v - T2w; |
475 | | T4R = T2y - T2z; |
476 | | T4S = FMA(KP618033988, T4R, T4Q); |
477 | | T4U = FNMS(KP618033988, T4Q, T4R); |
478 | | T4M = T4H + T4L; |
479 | | T4E = T4v + T4w; |
480 | | T4F = T4y + T4z; |
481 | | T4G = T4E + T4F; |
482 | | T4N = FNMS(KP250000000, T4G, T4M); |
483 | | T4O = T4E - T4F; |
484 | | } |
485 | | ii[0] = T4G + T4M; |
486 | | T4T = FNMS(KP559016994, T4O, T4N); |
487 | | ii[WS(rs, 8)] = FNMS(KP951056516, T4U, T4T); |
488 | | ii[WS(rs, 12)] = FMA(KP951056516, T4U, T4T); |
489 | | T4P = FMA(KP559016994, T4O, T4N); |
490 | | ii[WS(rs, 4)] = FMA(KP951056516, T4S, T4P); |
491 | | ii[WS(rs, 16)] = FNMS(KP951056516, T4S, T4P); |
492 | | } |
493 | | { |
494 | | E T3L, T3N, T2I, T3d, T3e, T3f, T3M, T3g; |
495 | | { |
496 | | E T3v, T3K, T2X, T3c; |
497 | | T3v = T3n - T3u; |
498 | | T3K = T3C - T3J; |
499 | | T3L = FNMS(KP618033988, T3K, T3v); |
500 | | T3N = FMA(KP618033988, T3v, T3K); |
501 | | T2I = T2C - T2H; |
502 | | T2X = T2P + T2W; |
503 | | T3c = T34 + T3b; |
504 | | T3d = T2X + T3c; |
505 | | T3e = FNMS(KP250000000, T3d, T2I); |
506 | | T3f = T2X - T3c; |
507 | | } |
508 | | ri[WS(rs, 15)] = T2I + T3d; |
509 | | T3M = FMA(KP559016994, T3f, T3e); |
510 | | ri[WS(rs, 11)] = FMA(KP951056516, T3N, T3M); |
511 | | ri[WS(rs, 19)] = FNMS(KP951056516, T3N, T3M); |
512 | | T3g = FNMS(KP559016994, T3f, T3e); |
513 | | ri[WS(rs, 3)] = FMA(KP951056516, T3L, T3g); |
514 | | ri[WS(rs, 7)] = FNMS(KP951056516, T3L, T3g); |
515 | | } |
516 | | { |
517 | | E T5u, T5w, T5l, T5o, T5p, T5q, T5v, T5r; |
518 | | { |
519 | | E T5s, T5t, T5m, T5n; |
520 | | T5s = T34 - T3b; |
521 | | T5t = T2P - T2W; |
522 | | T5u = FNMS(KP618033988, T5t, T5s); |
523 | | T5w = FMA(KP618033988, T5s, T5t); |
524 | | T5l = T58 + T57; |
525 | | T5m = T3C + T3J; |
526 | | T5n = T3n + T3u; |
527 | | T5o = T5m + T5n; |
528 | | T5p = FNMS(KP250000000, T5o, T5l); |
529 | | T5q = T5m - T5n; |
530 | | } |
531 | | ii[WS(rs, 15)] = T5o + T5l; |
532 | | T5v = FMA(KP559016994, T5q, T5p); |
533 | | ii[WS(rs, 11)] = FNMS(KP951056516, T5w, T5v); |
534 | | ii[WS(rs, 19)] = FMA(KP951056516, T5w, T5v); |
535 | | T5r = FNMS(KP559016994, T5q, T5p); |
536 | | ii[WS(rs, 3)] = FNMS(KP951056516, T5u, T5r); |
537 | | ii[WS(rs, 7)] = FMA(KP951056516, T5u, T5r); |
538 | | } |
539 | | { |
540 | | E T45, T47, T3O, T3V, T3W, T3X, T46, T3Y; |
541 | | { |
542 | | E T41, T44, T3R, T3U; |
543 | | T41 = T3Z - T40; |
544 | | T44 = T42 - T43; |
545 | | T45 = FMA(KP618033988, T44, T41); |
546 | | T47 = FNMS(KP618033988, T41, T44); |
547 | | T3O = T2C + T2H; |
548 | | T3R = T3P + T3Q; |
549 | | T3U = T3S + T3T; |
550 | | T3V = T3R + T3U; |
551 | | T3W = FNMS(KP250000000, T3V, T3O); |
552 | | T3X = T3R - T3U; |
553 | | } |
554 | | ri[WS(rs, 5)] = T3O + T3V; |
555 | | T46 = FNMS(KP559016994, T3X, T3W); |
556 | | ri[WS(rs, 13)] = FMA(KP951056516, T47, T46); |
557 | | ri[WS(rs, 17)] = FNMS(KP951056516, T47, T46); |
558 | | T3Y = FMA(KP559016994, T3X, T3W); |
559 | | ri[WS(rs, 1)] = FMA(KP951056516, T45, T3Y); |
560 | | ri[WS(rs, 9)] = FNMS(KP951056516, T45, T3Y); |
561 | | } |
562 | | { |
563 | | E T5i, T5k, T59, T5c, T5d, T5e, T5j, T5f; |
564 | | { |
565 | | E T5g, T5h, T5a, T5b; |
566 | | T5g = T3P - T3Q; |
567 | | T5h = T3S - T3T; |
568 | | T5i = FMA(KP618033988, T5h, T5g); |
569 | | T5k = FNMS(KP618033988, T5g, T5h); |
570 | | T59 = T57 - T58; |
571 | | T5a = T3Z + T40; |
572 | | T5b = T42 + T43; |
573 | | T5c = T5a + T5b; |
574 | | T5d = FNMS(KP250000000, T5c, T59); |
575 | | T5e = T5a - T5b; |
576 | | } |
577 | | ii[WS(rs, 5)] = T5c + T59; |
578 | | T5j = FNMS(KP559016994, T5e, T5d); |
579 | | ii[WS(rs, 13)] = FNMS(KP951056516, T5k, T5j); |
580 | | ii[WS(rs, 17)] = FMA(KP951056516, T5k, T5j); |
581 | | T5f = FMA(KP559016994, T5e, T5d); |
582 | | ii[WS(rs, 1)] = FNMS(KP951056516, T5i, T5f); |
583 | | ii[WS(rs, 9)] = FMA(KP951056516, T5i, T5f); |
584 | | } |
585 | | } |
586 | | } |
587 | | } |
588 | | } |
589 | | |
590 | | static const tw_instr twinstr[] = { |
591 | | { TW_CEXP, 0, 1 }, |
592 | | { TW_CEXP, 0, 3 }, |
593 | | { TW_CEXP, 0, 9 }, |
594 | | { TW_CEXP, 0, 19 }, |
595 | | { TW_NEXT, 1, 0 } |
596 | | }; |
597 | | |
598 | | static const ct_desc desc = { 20, "t2_20", twinstr, &GENUS, { 136, 58, 140, 0 }, 0, 0, 0 }; |
599 | | |
600 | | void X(codelet_t2_20) (planner *p) { |
601 | | X(kdft_dit_register) (p, t2_20, &desc); |
602 | | } |
603 | | #else |
604 | | |
605 | | /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 20 -name t2_20 -include dft/scalar/t.h */ |
606 | | |
607 | | /* |
608 | | * This function contains 276 FP additions, 164 FP multiplications, |
609 | | * (or, 204 additions, 92 multiplications, 72 fused multiply/add), |
610 | | * 123 stack variables, 4 constants, and 80 memory accesses |
611 | | */ |
612 | | #include "dft/scalar/t.h" |
613 | | |
614 | | static void t2_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
615 | 39 | { |
616 | 39 | DK(KP587785252, +0.587785252292473129168705954639072768597652438); |
617 | 39 | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
618 | 39 | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
619 | 39 | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
620 | 39 | { |
621 | 39 | INT m; |
622 | 670 | for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(40, rs)) { |
623 | 631 | E T2, T5, Tg, Ti, Tk, To, T1h, T1f, T6, T3, T8, T14, T1Q, Tc, T1O; |
624 | 631 | E T1v, T18, T1t, T1n, T24, T1j, T22, Tq, Tu, T1E, T1G, Tx, Ty, Tz, TJ; |
625 | 631 | E T1Z, TB, T1X, T1A, TZ, TL, T1y, TX; |
626 | 631 | { |
627 | 631 | E T7, T16, Ta, T13, T4, T17, Tb, T12; |
628 | 631 | { |
629 | 631 | E Th, Tn, Tj, Tm; |
630 | 631 | T2 = W[0]; |
631 | 631 | T5 = W[1]; |
632 | 631 | Tg = W[2]; |
633 | 631 | Ti = W[3]; |
634 | 631 | Th = T2 * Tg; |
635 | 631 | Tn = T5 * Tg; |
636 | 631 | Tj = T5 * Ti; |
637 | 631 | Tm = T2 * Ti; |
638 | 631 | Tk = Th - Tj; |
639 | 631 | To = Tm + Tn; |
640 | 631 | T1h = Tm - Tn; |
641 | 631 | T1f = Th + Tj; |
642 | 631 | T6 = W[5]; |
643 | 631 | T7 = T5 * T6; |
644 | 631 | T16 = Tg * T6; |
645 | 631 | Ta = T2 * T6; |
646 | 631 | T13 = Ti * T6; |
647 | 631 | T3 = W[4]; |
648 | 631 | T4 = T2 * T3; |
649 | 631 | T17 = Ti * T3; |
650 | 631 | Tb = T5 * T3; |
651 | 631 | T12 = Tg * T3; |
652 | 631 | } |
653 | 631 | T8 = T4 - T7; |
654 | 631 | T14 = T12 + T13; |
655 | 631 | T1Q = T16 + T17; |
656 | 631 | Tc = Ta + Tb; |
657 | 631 | T1O = T12 - T13; |
658 | 631 | T1v = Ta - Tb; |
659 | 631 | T18 = T16 - T17; |
660 | 631 | T1t = T4 + T7; |
661 | 631 | { |
662 | 631 | E T1l, T1m, T1g, T1i; |
663 | 631 | T1l = T1f * T6; |
664 | 631 | T1m = T1h * T3; |
665 | 631 | T1n = T1l + T1m; |
666 | 631 | T24 = T1l - T1m; |
667 | 631 | T1g = T1f * T3; |
668 | 631 | T1i = T1h * T6; |
669 | 631 | T1j = T1g - T1i; |
670 | 631 | T22 = T1g + T1i; |
671 | 631 | { |
672 | 631 | E Tl, Tp, Ts, Tt; |
673 | 631 | Tl = Tk * T3; |
674 | 631 | Tp = To * T6; |
675 | 631 | Tq = Tl + Tp; |
676 | 631 | Ts = Tk * T6; |
677 | 631 | Tt = To * T3; |
678 | 631 | Tu = Ts - Tt; |
679 | 631 | T1E = Tl - Tp; |
680 | 631 | T1G = Ts + Tt; |
681 | 631 | Tx = W[6]; |
682 | 631 | Ty = W[7]; |
683 | 631 | Tz = FMA(Tk, Tx, To * Ty); |
684 | 631 | TJ = FMA(Tq, Tx, Tu * Ty); |
685 | 631 | T1Z = FNMS(T1h, Tx, T1f * Ty); |
686 | 631 | TB = FNMS(To, Tx, Tk * Ty); |
687 | 631 | T1X = FMA(T1f, Tx, T1h * Ty); |
688 | 631 | T1A = FNMS(T5, Tx, T2 * Ty); |
689 | 631 | TZ = FNMS(Ti, Tx, Tg * Ty); |
690 | 631 | TL = FNMS(Tu, Tx, Tq * Ty); |
691 | 631 | T1y = FMA(T2, Tx, T5 * Ty); |
692 | 631 | TX = FMA(Tg, Tx, Ti * Ty); |
693 | 631 | } |
694 | 631 | } |
695 | 631 | } |
696 | 631 | { |
697 | 631 | E TF, T2b, T4A, T4J, T2K, T3r, T4a, T4m, T1N, T28, T29, T3C, T3F, T4o, T3X; |
698 | 631 | E T3Y, T44, T2f, T2g, T2h, T2n, T2s, T4L, T3g, T3h, T4w, T3n, T3o, T3p, T30; |
699 | 631 | E T35, T36, TW, T1r, T1s, T3J, T3M, T4n, T3U, T3V, T43, T2c, T2d, T2e, T2y; |
700 | 631 | E T2D, T4K, T3d, T3e, T4v, T3k, T3l, T3m, T2P, T2U, T2V; |
701 | 631 | { |
702 | 631 | E T1, T48, Te, T47, Tw, T2H, TD, T2I, T9, Td; |
703 | 631 | T1 = ri[0]; |
704 | 631 | T48 = ii[0]; |
705 | 631 | T9 = ri[WS(rs, 10)]; |
706 | 631 | Td = ii[WS(rs, 10)]; |
707 | 631 | Te = FMA(T8, T9, Tc * Td); |
708 | 631 | T47 = FNMS(Tc, T9, T8 * Td); |
709 | 631 | { |
710 | 631 | E Tr, Tv, TA, TC; |
711 | 631 | Tr = ri[WS(rs, 5)]; |
712 | 631 | Tv = ii[WS(rs, 5)]; |
713 | 631 | Tw = FMA(Tq, Tr, Tu * Tv); |
714 | 631 | T2H = FNMS(Tu, Tr, Tq * Tv); |
715 | 631 | TA = ri[WS(rs, 15)]; |
716 | 631 | TC = ii[WS(rs, 15)]; |
717 | 631 | TD = FMA(Tz, TA, TB * TC); |
718 | 631 | T2I = FNMS(TB, TA, Tz * TC); |
719 | 631 | } |
720 | 631 | { |
721 | 631 | E Tf, TE, T4y, T4z; |
722 | 631 | Tf = T1 + Te; |
723 | 631 | TE = Tw + TD; |
724 | 631 | TF = Tf - TE; |
725 | 631 | T2b = Tf + TE; |
726 | 631 | T4y = T48 - T47; |
727 | 631 | T4z = Tw - TD; |
728 | 631 | T4A = T4y - T4z; |
729 | 631 | T4J = T4z + T4y; |
730 | 631 | } |
731 | 631 | { |
732 | 631 | E T2G, T2J, T46, T49; |
733 | 631 | T2G = T1 - Te; |
734 | 631 | T2J = T2H - T2I; |
735 | 631 | T2K = T2G - T2J; |
736 | 631 | T3r = T2G + T2J; |
737 | 631 | T46 = T2H + T2I; |
738 | 631 | T49 = T47 + T48; |
739 | 631 | T4a = T46 + T49; |
740 | 631 | T4m = T49 - T46; |
741 | 631 | } |
742 | 631 | } |
743 | 631 | { |
744 | 631 | E T1D, T3A, T2l, T2W, T27, T3E, T2r, T34, T1M, T3B, T2m, T2Z, T1W, T3D, T2q; |
745 | 631 | E T31; |
746 | 631 | { |
747 | 631 | E T1x, T2j, T1C, T2k; |
748 | 631 | { |
749 | 631 | E T1u, T1w, T1z, T1B; |
750 | 631 | T1u = ri[WS(rs, 8)]; |
751 | 631 | T1w = ii[WS(rs, 8)]; |
752 | 631 | T1x = FMA(T1t, T1u, T1v * T1w); |
753 | 631 | T2j = FNMS(T1v, T1u, T1t * T1w); |
754 | 631 | T1z = ri[WS(rs, 18)]; |
755 | 631 | T1B = ii[WS(rs, 18)]; |
756 | 631 | T1C = FMA(T1y, T1z, T1A * T1B); |
757 | 631 | T2k = FNMS(T1A, T1z, T1y * T1B); |
758 | 631 | } |
759 | 631 | T1D = T1x + T1C; |
760 | 631 | T3A = T2j + T2k; |
761 | 631 | T2l = T2j - T2k; |
762 | 631 | T2W = T1x - T1C; |
763 | 631 | } |
764 | 631 | { |
765 | 631 | E T21, T32, T26, T33; |
766 | 631 | { |
767 | 631 | E T1Y, T20, T23, T25; |
768 | 631 | T1Y = ri[WS(rs, 17)]; |
769 | 631 | T20 = ii[WS(rs, 17)]; |
770 | 631 | T21 = FMA(T1X, T1Y, T1Z * T20); |
771 | 631 | T32 = FNMS(T1Z, T1Y, T1X * T20); |
772 | 631 | T23 = ri[WS(rs, 7)]; |
773 | 631 | T25 = ii[WS(rs, 7)]; |
774 | 631 | T26 = FMA(T22, T23, T24 * T25); |
775 | 631 | T33 = FNMS(T24, T23, T22 * T25); |
776 | 631 | } |
777 | 631 | T27 = T21 + T26; |
778 | 631 | T3E = T32 + T33; |
779 | 631 | T2r = T21 - T26; |
780 | 631 | T34 = T32 - T33; |
781 | 631 | } |
782 | 631 | { |
783 | 631 | E T1I, T2X, T1L, T2Y; |
784 | 631 | { |
785 | 631 | E T1F, T1H, T1J, T1K; |
786 | 631 | T1F = ri[WS(rs, 13)]; |
787 | 631 | T1H = ii[WS(rs, 13)]; |
788 | 631 | T1I = FMA(T1E, T1F, T1G * T1H); |
789 | 631 | T2X = FNMS(T1G, T1F, T1E * T1H); |
790 | 631 | T1J = ri[WS(rs, 3)]; |
791 | 631 | T1K = ii[WS(rs, 3)]; |
792 | 631 | T1L = FMA(Tg, T1J, Ti * T1K); |
793 | 631 | T2Y = FNMS(Ti, T1J, Tg * T1K); |
794 | 631 | } |
795 | 631 | T1M = T1I + T1L; |
796 | 631 | T3B = T2X + T2Y; |
797 | 631 | T2m = T1I - T1L; |
798 | 631 | T2Z = T2X - T2Y; |
799 | 631 | } |
800 | 631 | { |
801 | 631 | E T1S, T2o, T1V, T2p; |
802 | 631 | { |
803 | 631 | E T1P, T1R, T1T, T1U; |
804 | 631 | T1P = ri[WS(rs, 12)]; |
805 | 631 | T1R = ii[WS(rs, 12)]; |
806 | 631 | T1S = FMA(T1O, T1P, T1Q * T1R); |
807 | 631 | T2o = FNMS(T1Q, T1P, T1O * T1R); |
808 | 631 | T1T = ri[WS(rs, 2)]; |
809 | 631 | T1U = ii[WS(rs, 2)]; |
810 | 631 | T1V = FMA(T1f, T1T, T1h * T1U); |
811 | 631 | T2p = FNMS(T1h, T1T, T1f * T1U); |
812 | 631 | } |
813 | 631 | T1W = T1S + T1V; |
814 | 631 | T3D = T2o + T2p; |
815 | 631 | T2q = T2o - T2p; |
816 | 631 | T31 = T1S - T1V; |
817 | 631 | } |
818 | 631 | T1N = T1D - T1M; |
819 | 631 | T28 = T1W - T27; |
820 | 631 | T29 = T1N + T28; |
821 | 631 | T3C = T3A - T3B; |
822 | 631 | T3F = T3D - T3E; |
823 | 631 | T4o = T3C + T3F; |
824 | 631 | T3X = T3A + T3B; |
825 | 631 | T3Y = T3D + T3E; |
826 | 631 | T44 = T3X + T3Y; |
827 | 631 | T2f = T1D + T1M; |
828 | 631 | T2g = T1W + T27; |
829 | 631 | T2h = T2f + T2g; |
830 | 631 | T2n = T2l + T2m; |
831 | 631 | T2s = T2q + T2r; |
832 | 631 | T4L = T2n + T2s; |
833 | 631 | T3g = T2l - T2m; |
834 | 631 | T3h = T2q - T2r; |
835 | 631 | T4w = T3g + T3h; |
836 | 631 | T3n = T2W + T2Z; |
837 | 631 | T3o = T31 + T34; |
838 | 631 | T3p = T3n + T3o; |
839 | 631 | T30 = T2W - T2Z; |
840 | 631 | T35 = T31 - T34; |
841 | 631 | T36 = T30 + T35; |
842 | 631 | } |
843 | 631 | { |
844 | 631 | E TO, T3H, T2w, T2L, T1q, T3L, T2C, T2T, TV, T3I, T2x, T2O, T1b, T3K, T2B; |
845 | 631 | E T2Q; |
846 | 631 | { |
847 | 631 | E TI, T2u, TN, T2v; |
848 | 631 | { |
849 | 631 | E TG, TH, TK, TM; |
850 | 631 | TG = ri[WS(rs, 4)]; |
851 | 631 | TH = ii[WS(rs, 4)]; |
852 | 631 | TI = FMA(Tk, TG, To * TH); |
853 | 631 | T2u = FNMS(To, TG, Tk * TH); |
854 | 631 | TK = ri[WS(rs, 14)]; |
855 | 631 | TM = ii[WS(rs, 14)]; |
856 | 631 | TN = FMA(TJ, TK, TL * TM); |
857 | 631 | T2v = FNMS(TL, TK, TJ * TM); |
858 | 631 | } |
859 | 631 | TO = TI + TN; |
860 | 631 | T3H = T2u + T2v; |
861 | 631 | T2w = T2u - T2v; |
862 | 631 | T2L = TI - TN; |
863 | 631 | } |
864 | 631 | { |
865 | 631 | E T1e, T2R, T1p, T2S; |
866 | 631 | { |
867 | 631 | E T1c, T1d, T1k, T1o; |
868 | 631 | T1c = ri[WS(rs, 1)]; |
869 | 631 | T1d = ii[WS(rs, 1)]; |
870 | 631 | T1e = FMA(T2, T1c, T5 * T1d); |
871 | 631 | T2R = FNMS(T5, T1c, T2 * T1d); |
872 | 631 | T1k = ri[WS(rs, 11)]; |
873 | 631 | T1o = ii[WS(rs, 11)]; |
874 | 631 | T1p = FMA(T1j, T1k, T1n * T1o); |
875 | 631 | T2S = FNMS(T1n, T1k, T1j * T1o); |
876 | 631 | } |
877 | 631 | T1q = T1e + T1p; |
878 | 631 | T3L = T2R + T2S; |
879 | 631 | T2C = T1e - T1p; |
880 | 631 | T2T = T2R - T2S; |
881 | 631 | } |
882 | 631 | { |
883 | 631 | E TR, T2M, TU, T2N; |
884 | 631 | { |
885 | 631 | E TP, TQ, TS, TT; |
886 | 631 | TP = ri[WS(rs, 9)]; |
887 | 631 | TQ = ii[WS(rs, 9)]; |
888 | 631 | TR = FMA(T3, TP, T6 * TQ); |
889 | 631 | T2M = FNMS(T6, TP, T3 * TQ); |
890 | 631 | TS = ri[WS(rs, 19)]; |
891 | 631 | TT = ii[WS(rs, 19)]; |
892 | 631 | TU = FMA(Tx, TS, Ty * TT); |
893 | 631 | T2N = FNMS(Ty, TS, Tx * TT); |
894 | 631 | } |
895 | 631 | TV = TR + TU; |
896 | 631 | T3I = T2M + T2N; |
897 | 631 | T2x = TR - TU; |
898 | 631 | T2O = T2M - T2N; |
899 | 631 | } |
900 | 631 | { |
901 | 631 | E T11, T2z, T1a, T2A; |
902 | 631 | { |
903 | 631 | E TY, T10, T15, T19; |
904 | 631 | TY = ri[WS(rs, 16)]; |
905 | 631 | T10 = ii[WS(rs, 16)]; |
906 | 631 | T11 = FMA(TX, TY, TZ * T10); |
907 | 631 | T2z = FNMS(TZ, TY, TX * T10); |
908 | 631 | T15 = ri[WS(rs, 6)]; |
909 | 631 | T19 = ii[WS(rs, 6)]; |
910 | 631 | T1a = FMA(T14, T15, T18 * T19); |
911 | 631 | T2A = FNMS(T18, T15, T14 * T19); |
912 | 631 | } |
913 | 631 | T1b = T11 + T1a; |
914 | 631 | T3K = T2z + T2A; |
915 | 631 | T2B = T2z - T2A; |
916 | 631 | T2Q = T11 - T1a; |
917 | 631 | } |
918 | 631 | TW = TO - TV; |
919 | 631 | T1r = T1b - T1q; |
920 | 631 | T1s = TW + T1r; |
921 | 631 | T3J = T3H - T3I; |
922 | 631 | T3M = T3K - T3L; |
923 | 631 | T4n = T3J + T3M; |
924 | 631 | T3U = T3H + T3I; |
925 | 631 | T3V = T3K + T3L; |
926 | 631 | T43 = T3U + T3V; |
927 | 631 | T2c = TO + TV; |
928 | 631 | T2d = T1b + T1q; |
929 | 631 | T2e = T2c + T2d; |
930 | 631 | T2y = T2w + T2x; |
931 | 631 | T2D = T2B + T2C; |
932 | 631 | T4K = T2y + T2D; |
933 | 631 | T3d = T2w - T2x; |
934 | 631 | T3e = T2B - T2C; |
935 | 631 | T4v = T3d + T3e; |
936 | 631 | T3k = T2L + T2O; |
937 | 631 | T3l = T2Q + T2T; |
938 | 631 | T3m = T3k + T3l; |
939 | 631 | T2P = T2L - T2O; |
940 | 631 | T2U = T2Q - T2T; |
941 | 631 | T2V = T2P + T2U; |
942 | 631 | } |
943 | 631 | { |
944 | 631 | E T3y, T2a, T3x, T3O, T3Q, T3G, T3N, T3P, T3z; |
945 | 631 | T3y = KP559016994 * (T1s - T29); |
946 | 631 | T2a = T1s + T29; |
947 | 631 | T3x = FNMS(KP250000000, T2a, TF); |
948 | 631 | T3G = T3C - T3F; |
949 | 631 | T3N = T3J - T3M; |
950 | 631 | T3O = FNMS(KP587785252, T3N, KP951056516 * T3G); |
951 | 631 | T3Q = FMA(KP951056516, T3N, KP587785252 * T3G); |
952 | 631 | ri[WS(rs, 10)] = TF + T2a; |
953 | 631 | T3P = T3y + T3x; |
954 | 631 | ri[WS(rs, 14)] = T3P - T3Q; |
955 | 631 | ri[WS(rs, 6)] = T3P + T3Q; |
956 | 631 | T3z = T3x - T3y; |
957 | 631 | ri[WS(rs, 2)] = T3z - T3O; |
958 | 631 | ri[WS(rs, 18)] = T3z + T3O; |
959 | 631 | } |
960 | 631 | { |
961 | 631 | E T4r, T4p, T4q, T4l, T4u, T4j, T4k, T4t, T4s; |
962 | 631 | T4r = KP559016994 * (T4n - T4o); |
963 | 631 | T4p = T4n + T4o; |
964 | 631 | T4q = FNMS(KP250000000, T4p, T4m); |
965 | 631 | T4j = T1N - T28; |
966 | 631 | T4k = TW - T1r; |
967 | 631 | T4l = FNMS(KP587785252, T4k, KP951056516 * T4j); |
968 | 631 | T4u = FMA(KP951056516, T4k, KP587785252 * T4j); |
969 | 631 | ii[WS(rs, 10)] = T4p + T4m; |
970 | 631 | T4t = T4r + T4q; |
971 | 631 | ii[WS(rs, 6)] = T4t - T4u; |
972 | 631 | ii[WS(rs, 14)] = T4u + T4t; |
973 | 631 | T4s = T4q - T4r; |
974 | 631 | ii[WS(rs, 2)] = T4l + T4s; |
975 | 631 | ii[WS(rs, 18)] = T4s - T4l; |
976 | 631 | } |
977 | 631 | { |
978 | 631 | E T3R, T2i, T3S, T40, T42, T3W, T3Z, T41, T3T; |
979 | 631 | T3R = KP559016994 * (T2e - T2h); |
980 | 631 | T2i = T2e + T2h; |
981 | 631 | T3S = FNMS(KP250000000, T2i, T2b); |
982 | 631 | T3W = T3U - T3V; |
983 | 631 | T3Z = T3X - T3Y; |
984 | 631 | T40 = FMA(KP951056516, T3W, KP587785252 * T3Z); |
985 | 631 | T42 = FNMS(KP587785252, T3W, KP951056516 * T3Z); |
986 | 631 | ri[0] = T2b + T2i; |
987 | 631 | T41 = T3S - T3R; |
988 | 631 | ri[WS(rs, 12)] = T41 - T42; |
989 | 631 | ri[WS(rs, 8)] = T41 + T42; |
990 | 631 | T3T = T3R + T3S; |
991 | 631 | ri[WS(rs, 4)] = T3T - T40; |
992 | 631 | ri[WS(rs, 16)] = T3T + T40; |
993 | 631 | } |
994 | 631 | { |
995 | 631 | E T4e, T45, T4f, T4d, T4i, T4b, T4c, T4h, T4g; |
996 | 631 | T4e = KP559016994 * (T43 - T44); |
997 | 631 | T45 = T43 + T44; |
998 | 631 | T4f = FNMS(KP250000000, T45, T4a); |
999 | 631 | T4b = T2c - T2d; |
1000 | 631 | T4c = T2f - T2g; |
1001 | 631 | T4d = FMA(KP951056516, T4b, KP587785252 * T4c); |
1002 | 631 | T4i = FNMS(KP587785252, T4b, KP951056516 * T4c); |
1003 | 631 | ii[0] = T45 + T4a; |
1004 | 631 | T4h = T4f - T4e; |
1005 | 631 | ii[WS(rs, 8)] = T4h - T4i; |
1006 | 631 | ii[WS(rs, 12)] = T4i + T4h; |
1007 | 631 | T4g = T4e + T4f; |
1008 | 631 | ii[WS(rs, 4)] = T4d + T4g; |
1009 | 631 | ii[WS(rs, 16)] = T4g - T4d; |
1010 | 631 | } |
1011 | 631 | { |
1012 | 631 | E T39, T37, T38, T2F, T3b, T2t, T2E, T3c, T3a; |
1013 | 631 | T39 = KP559016994 * (T2V - T36); |
1014 | 631 | T37 = T2V + T36; |
1015 | 631 | T38 = FNMS(KP250000000, T37, T2K); |
1016 | 631 | T2t = T2n - T2s; |
1017 | 631 | T2E = T2y - T2D; |
1018 | 631 | T2F = FNMS(KP587785252, T2E, KP951056516 * T2t); |
1019 | 631 | T3b = FMA(KP951056516, T2E, KP587785252 * T2t); |
1020 | 631 | ri[WS(rs, 15)] = T2K + T37; |
1021 | 631 | T3c = T39 + T38; |
1022 | 631 | ri[WS(rs, 11)] = T3b + T3c; |
1023 | 631 | ri[WS(rs, 19)] = T3c - T3b; |
1024 | 631 | T3a = T38 - T39; |
1025 | 631 | ri[WS(rs, 3)] = T2F + T3a; |
1026 | 631 | ri[WS(rs, 7)] = T3a - T2F; |
1027 | 631 | } |
1028 | 631 | { |
1029 | 631 | E T4O, T4M, T4N, T4S, T4U, T4Q, T4R, T4T, T4P; |
1030 | 631 | T4O = KP559016994 * (T4K - T4L); |
1031 | 631 | T4M = T4K + T4L; |
1032 | 631 | T4N = FNMS(KP250000000, T4M, T4J); |
1033 | 631 | T4Q = T30 - T35; |
1034 | 631 | T4R = T2P - T2U; |
1035 | 631 | T4S = FNMS(KP587785252, T4R, KP951056516 * T4Q); |
1036 | 631 | T4U = FMA(KP951056516, T4R, KP587785252 * T4Q); |
1037 | 631 | ii[WS(rs, 15)] = T4M + T4J; |
1038 | 631 | T4T = T4O + T4N; |
1039 | 631 | ii[WS(rs, 11)] = T4T - T4U; |
1040 | 631 | ii[WS(rs, 19)] = T4U + T4T; |
1041 | 631 | T4P = T4N - T4O; |
1042 | 631 | ii[WS(rs, 3)] = T4P - T4S; |
1043 | 631 | ii[WS(rs, 7)] = T4S + T4P; |
1044 | 631 | } |
1045 | 631 | { |
1046 | 631 | E T3q, T3s, T3t, T3j, T3v, T3f, T3i, T3w, T3u; |
1047 | 631 | T3q = KP559016994 * (T3m - T3p); |
1048 | 631 | T3s = T3m + T3p; |
1049 | 631 | T3t = FNMS(KP250000000, T3s, T3r); |
1050 | 631 | T3f = T3d - T3e; |
1051 | 631 | T3i = T3g - T3h; |
1052 | 631 | T3j = FMA(KP951056516, T3f, KP587785252 * T3i); |
1053 | 631 | T3v = FNMS(KP587785252, T3f, KP951056516 * T3i); |
1054 | 631 | ri[WS(rs, 5)] = T3r + T3s; |
1055 | 631 | T3w = T3t - T3q; |
1056 | 631 | ri[WS(rs, 13)] = T3v + T3w; |
1057 | 631 | ri[WS(rs, 17)] = T3w - T3v; |
1058 | 631 | T3u = T3q + T3t; |
1059 | 631 | ri[WS(rs, 1)] = T3j + T3u; |
1060 | 631 | ri[WS(rs, 9)] = T3u - T3j; |
1061 | 631 | } |
1062 | 631 | { |
1063 | 631 | E T4x, T4B, T4C, T4G, T4I, T4E, T4F, T4H, T4D; |
1064 | 631 | T4x = KP559016994 * (T4v - T4w); |
1065 | 631 | T4B = T4v + T4w; |
1066 | 631 | T4C = FNMS(KP250000000, T4B, T4A); |
1067 | 631 | T4E = T3k - T3l; |
1068 | 631 | T4F = T3n - T3o; |
1069 | 631 | T4G = FMA(KP951056516, T4E, KP587785252 * T4F); |
1070 | 631 | T4I = FNMS(KP587785252, T4E, KP951056516 * T4F); |
1071 | 631 | ii[WS(rs, 5)] = T4B + T4A; |
1072 | 631 | T4H = T4C - T4x; |
1073 | 631 | ii[WS(rs, 13)] = T4H - T4I; |
1074 | 631 | ii[WS(rs, 17)] = T4I + T4H; |
1075 | 631 | T4D = T4x + T4C; |
1076 | 631 | ii[WS(rs, 1)] = T4D - T4G; |
1077 | 631 | ii[WS(rs, 9)] = T4G + T4D; |
1078 | 631 | } |
1079 | 631 | } |
1080 | 631 | } |
1081 | 39 | } |
1082 | 39 | } |
1083 | | |
1084 | | static const tw_instr twinstr[] = { |
1085 | | { TW_CEXP, 0, 1 }, |
1086 | | { TW_CEXP, 0, 3 }, |
1087 | | { TW_CEXP, 0, 9 }, |
1088 | | { TW_CEXP, 0, 19 }, |
1089 | | { TW_NEXT, 1, 0 } |
1090 | | }; |
1091 | | |
1092 | | static const ct_desc desc = { 20, "t2_20", twinstr, &GENUS, { 204, 92, 72, 0 }, 0, 0, 0 }; |
1093 | | |
1094 | 1 | void X(codelet_t2_20) (planner *p) { |
1095 | 1 | X(kdft_dit_register) (p, t2_20, &desc); |
1096 | 1 | } |
1097 | | #endif |