/src/fftw3/rdft/rdft-dht.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | |
22 | | /* Solve an R2HC/HC2R problem via post/pre processing of a DHT. This |
23 | | is mainly useful because we can use Rader to compute DHTs of prime |
24 | | sizes. It also allows us to express hc2r problems in terms of r2hc |
25 | | (via dht-r2hc), and to do hc2r problems without destroying the input. */ |
26 | | |
27 | | #include "rdft/rdft.h" |
28 | | |
29 | | typedef struct { |
30 | | solver super; |
31 | | } S; |
32 | | |
33 | | typedef struct { |
34 | | plan_rdft super; |
35 | | plan *cld; |
36 | | INT is, os; |
37 | | INT n; |
38 | | } P; |
39 | | |
40 | | static void apply_r2hc(const plan *ego_, R *I, R *O) |
41 | 0 | { |
42 | 0 | const P *ego = (const P *) ego_; |
43 | 0 | INT os; |
44 | 0 | INT i, n; |
45 | |
|
46 | 0 | { |
47 | 0 | plan_rdft *cld = (plan_rdft *) ego->cld; |
48 | 0 | cld->apply((plan *) cld, I, O); |
49 | 0 | } |
50 | |
|
51 | 0 | n = ego->n; |
52 | 0 | os = ego->os; |
53 | 0 | for (i = 1; i < n - i; ++i) { |
54 | 0 | E a, b; |
55 | 0 | a = K(0.5) * O[os * i]; |
56 | 0 | b = K(0.5) * O[os * (n - i)]; |
57 | 0 | O[os * i] = a + b; |
58 | 0 | #if FFT_SIGN == -1 |
59 | 0 | O[os * (n - i)] = b - a; |
60 | | #else |
61 | | O[os * (n - i)] = a - b; |
62 | | #endif |
63 | 0 | } |
64 | 0 | } |
65 | | |
66 | | /* hc2r, destroying input as usual */ |
67 | | static void apply_hc2r(const plan *ego_, R *I, R *O) |
68 | 0 | { |
69 | 0 | const P *ego = (const P *) ego_; |
70 | 0 | INT is = ego->is; |
71 | 0 | INT i, n = ego->n; |
72 | |
|
73 | 0 | for (i = 1; i < n - i; ++i) { |
74 | 0 | E a, b; |
75 | 0 | a = I[is * i]; |
76 | 0 | b = I[is * (n - i)]; |
77 | 0 | #if FFT_SIGN == -1 |
78 | 0 | I[is * i] = a - b; |
79 | 0 | I[is * (n - i)] = a + b; |
80 | | #else |
81 | | I[is * i] = a + b; |
82 | | I[is * (n - i)] = a - b; |
83 | | #endif |
84 | 0 | } |
85 | |
|
86 | 0 | { |
87 | 0 | plan_rdft *cld = (plan_rdft *) ego->cld; |
88 | 0 | cld->apply((plan *) cld, I, O); |
89 | 0 | } |
90 | 0 | } |
91 | | |
92 | | /* hc2r, without destroying input */ |
93 | | static void apply_hc2r_save(const plan *ego_, R *I, R *O) |
94 | 0 | { |
95 | 0 | const P *ego = (const P *) ego_; |
96 | 0 | INT is = ego->is, os = ego->os; |
97 | 0 | INT i, n = ego->n; |
98 | |
|
99 | 0 | O[0] = I[0]; |
100 | 0 | for (i = 1; i < n - i; ++i) { |
101 | 0 | E a, b; |
102 | 0 | a = I[is * i]; |
103 | 0 | b = I[is * (n - i)]; |
104 | 0 | #if FFT_SIGN == -1 |
105 | 0 | O[os * i] = a - b; |
106 | 0 | O[os * (n - i)] = a + b; |
107 | | #else |
108 | | O[os * i] = a + b; |
109 | | O[os * (n - i)] = a - b; |
110 | | #endif |
111 | 0 | } |
112 | 0 | if (i == n - i) |
113 | 0 | O[os * i] = I[is * i]; |
114 | |
|
115 | 0 | { |
116 | 0 | plan_rdft *cld = (plan_rdft *) ego->cld; |
117 | 0 | cld->apply((plan *) cld, O, O); |
118 | 0 | } |
119 | 0 | } |
120 | | |
121 | | static void awake(plan *ego_, enum wakefulness wakefulness) |
122 | 0 | { |
123 | 0 | P *ego = (P *) ego_; |
124 | 0 | X(plan_awake)(ego->cld, wakefulness); |
125 | 0 | } |
126 | | |
127 | | static void destroy(plan *ego_) |
128 | 0 | { |
129 | 0 | P *ego = (P *) ego_; |
130 | 0 | X(plan_destroy_internal)(ego->cld); |
131 | 0 | } |
132 | | |
133 | | static void print(const plan *ego_, printer *p) |
134 | 0 | { |
135 | 0 | const P *ego = (const P *) ego_; |
136 | 0 | p->print(p, "(%s-dht-%D%(%p%))", |
137 | 0 | ego->super.apply == apply_r2hc ? "r2hc" : "hc2r", |
138 | 0 | ego->n, ego->cld); |
139 | 0 | } |
140 | | |
141 | | static int applicable0(const solver *ego_, const problem *p_) |
142 | 0 | { |
143 | 0 | const problem_rdft *p = (const problem_rdft *) p_; |
144 | 0 | UNUSED(ego_); |
145 | |
|
146 | 0 | return (1 |
147 | 0 | && p->sz->rnk == 1 |
148 | 0 | && p->vecsz->rnk == 0 |
149 | 0 | && (p->kind[0] == R2HC || p->kind[0] == HC2R) |
150 | | |
151 | | /* hack: size-2 DHT etc. are defined as being equivalent |
152 | | to size-2 R2HC in problem.c, so we need this to prevent |
153 | | infinite loops for size 2 in EXHAUSTIVE mode: */ |
154 | 0 | && p->sz->dims[0].n > 2 |
155 | 0 | ); |
156 | 0 | } |
157 | | |
158 | | static int applicable(const solver *ego, const problem *p_, |
159 | | const planner *plnr) |
160 | 327 | { |
161 | 327 | return (!NO_SLOWP(plnr) && applicable0(ego, p_)); |
162 | 327 | } |
163 | | |
164 | | static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) |
165 | 327 | { |
166 | 327 | P *pln; |
167 | 327 | const problem_rdft *p; |
168 | 327 | problem *cldp; |
169 | 327 | plan *cld; |
170 | | |
171 | 327 | static const plan_adt padt = { |
172 | 327 | X(rdft_solve), awake, print, destroy |
173 | 327 | }; |
174 | | |
175 | 327 | if (!applicable(ego_, p_, plnr)) |
176 | 327 | return (plan *)0; |
177 | | |
178 | 0 | p = (const problem_rdft *) p_; |
179 | |
|
180 | 0 | if (p->kind[0] == R2HC || !NO_DESTROY_INPUTP(plnr)) |
181 | 0 | cldp = X(mkproblem_rdft_1)(p->sz, p->vecsz, p->I, p->O, DHT); |
182 | 0 | else { |
183 | 0 | tensor *sz = X(tensor_copy_inplace)(p->sz, INPLACE_OS); |
184 | 0 | cldp = X(mkproblem_rdft_1)(sz, p->vecsz, p->O, p->O, DHT); |
185 | 0 | X(tensor_destroy)(sz); |
186 | 0 | } |
187 | 0 | cld = X(mkplan_d)(plnr, cldp); |
188 | 0 | if (!cld) return (plan *)0; |
189 | | |
190 | 0 | pln = MKPLAN_RDFT(P, &padt, p->kind[0] == R2HC ? |
191 | 0 | apply_r2hc : (NO_DESTROY_INPUTP(plnr) ? |
192 | 0 | apply_hc2r_save : apply_hc2r)); |
193 | 0 | pln->n = p->sz->dims[0].n; |
194 | 0 | pln->is = p->sz->dims[0].is; |
195 | 0 | pln->os = p->sz->dims[0].os; |
196 | 0 | pln->cld = cld; |
197 | | |
198 | 0 | pln->super.super.ops = cld->ops; |
199 | 0 | pln->super.super.ops.other += 4 * ((pln->n - 1)/2); |
200 | 0 | pln->super.super.ops.add += 2 * ((pln->n - 1)/2); |
201 | 0 | if (p->kind[0] == R2HC) |
202 | 0 | pln->super.super.ops.mul += 2 * ((pln->n - 1)/2); |
203 | 0 | if (pln->super.apply == apply_hc2r_save) |
204 | 0 | pln->super.super.ops.other += 2 + (pln->n % 2 ? 0 : 2); |
205 | |
|
206 | 0 | return &(pln->super.super); |
207 | 0 | } |
208 | | |
209 | | /* constructor */ |
210 | | static solver *mksolver(void) |
211 | 1 | { |
212 | 1 | static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; |
213 | 1 | S *slv = MKSOLVER(S, &sadt); |
214 | 1 | return &(slv->super); |
215 | 1 | } |
216 | | |
217 | | void X(rdft_dht_register)(planner *p) |
218 | 1 | { |
219 | 1 | REGISTER_SOLVER(p, mksolver()); |
220 | 1 | } |