/src/fftw3/rdft/scalar/r2cb/hb2_5.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Sun Jun 22 06:44:42 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 5 -dif -name hb2_5 -include rdft/scalar/hb.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 44 FP additions, 40 FP multiplications, |
32 | | * (or, 14 additions, 10 multiplications, 30 fused multiply/add), |
33 | | * 37 stack variables, 4 constants, and 20 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hb.h" |
36 | | |
37 | | static void hb2_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
40 | | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
41 | | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
42 | | DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
43 | | { |
44 | | INT m; |
45 | | for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) { |
46 | | E T9, TB, Tz, Tm, TC, TO, TG, TJ, TA, TF; |
47 | | T9 = W[0]; |
48 | | TB = W[3]; |
49 | | Tz = W[2]; |
50 | | TA = T9 * Tz; |
51 | | TF = T9 * TB; |
52 | | Tm = W[1]; |
53 | | TC = FNMS(Tm, TB, TA); |
54 | | TO = FNMS(Tm, Tz, TF); |
55 | | TG = FMA(Tm, Tz, TF); |
56 | | TJ = FMA(Tm, TB, TA); |
57 | | { |
58 | | E T1, Tb, TQ, Tw, T8, Ta, Tn, Tj, TL, Ts, Tq, Tr; |
59 | | { |
60 | | E T4, Tu, T7, Tv; |
61 | | T1 = cr[0]; |
62 | | { |
63 | | E T2, T3, T5, T6; |
64 | | T2 = cr[WS(rs, 1)]; |
65 | | T3 = ci[0]; |
66 | | T4 = T2 + T3; |
67 | | Tu = T2 - T3; |
68 | | T5 = cr[WS(rs, 2)]; |
69 | | T6 = ci[WS(rs, 1)]; |
70 | | T7 = T5 + T6; |
71 | | Tv = T5 - T6; |
72 | | } |
73 | | Tb = T4 - T7; |
74 | | TQ = FNMS(KP618033988, Tu, Tv); |
75 | | Tw = FMA(KP618033988, Tv, Tu); |
76 | | T8 = T4 + T7; |
77 | | Ta = FNMS(KP250000000, T8, T1); |
78 | | } |
79 | | { |
80 | | E Tf, To, Ti, Tp; |
81 | | Tn = ci[WS(rs, 4)]; |
82 | | { |
83 | | E Td, Te, Tg, Th; |
84 | | Td = ci[WS(rs, 3)]; |
85 | | Te = cr[WS(rs, 4)]; |
86 | | Tf = Td + Te; |
87 | | To = Td - Te; |
88 | | Tg = ci[WS(rs, 2)]; |
89 | | Th = cr[WS(rs, 3)]; |
90 | | Ti = Tg + Th; |
91 | | Tp = Tg - Th; |
92 | | } |
93 | | Tj = FMA(KP618033988, Ti, Tf); |
94 | | TL = FNMS(KP618033988, Tf, Ti); |
95 | | Ts = To - Tp; |
96 | | Tq = To + Tp; |
97 | | Tr = FNMS(KP250000000, Tq, Tn); |
98 | | } |
99 | | cr[0] = T1 + T8; |
100 | | ci[0] = Tn + Tq; |
101 | | { |
102 | | E Tk, TD, Tx, TH, Tc, Tt; |
103 | | Tc = FMA(KP559016994, Tb, Ta); |
104 | | Tk = FNMS(KP951056516, Tj, Tc); |
105 | | TD = FMA(KP951056516, Tj, Tc); |
106 | | Tt = FMA(KP559016994, Ts, Tr); |
107 | | Tx = FMA(KP951056516, Tw, Tt); |
108 | | TH = FNMS(KP951056516, Tw, Tt); |
109 | | { |
110 | | E Tl, Ty, TE, TI; |
111 | | Tl = T9 * Tk; |
112 | | cr[WS(rs, 1)] = FNMS(Tm, Tx, Tl); |
113 | | Ty = Tm * Tk; |
114 | | ci[WS(rs, 1)] = FMA(T9, Tx, Ty); |
115 | | TE = TC * TD; |
116 | | cr[WS(rs, 4)] = FNMS(TG, TH, TE); |
117 | | TI = TG * TD; |
118 | | ci[WS(rs, 4)] = FMA(TC, TH, TI); |
119 | | } |
120 | | } |
121 | | { |
122 | | E TM, TT, TR, TV, TK, TP; |
123 | | TK = FNMS(KP559016994, Tb, Ta); |
124 | | TM = FMA(KP951056516, TL, TK); |
125 | | TT = FNMS(KP951056516, TL, TK); |
126 | | TP = FNMS(KP559016994, Ts, Tr); |
127 | | TR = FNMS(KP951056516, TQ, TP); |
128 | | TV = FMA(KP951056516, TQ, TP); |
129 | | { |
130 | | E TN, TS, TU, TW; |
131 | | TN = TJ * TM; |
132 | | cr[WS(rs, 2)] = FNMS(TO, TR, TN); |
133 | | TS = TO * TM; |
134 | | ci[WS(rs, 2)] = FMA(TJ, TR, TS); |
135 | | TU = Tz * TT; |
136 | | cr[WS(rs, 3)] = FNMS(TB, TV, TU); |
137 | | TW = TB * TT; |
138 | | ci[WS(rs, 3)] = FMA(Tz, TV, TW); |
139 | | } |
140 | | } |
141 | | } |
142 | | } |
143 | | } |
144 | | } |
145 | | |
146 | | static const tw_instr twinstr[] = { |
147 | | { TW_CEXP, 1, 1 }, |
148 | | { TW_CEXP, 1, 3 }, |
149 | | { TW_NEXT, 1, 0 } |
150 | | }; |
151 | | |
152 | | static const hc2hc_desc desc = { 5, "hb2_5", twinstr, &GENUS, { 14, 10, 30, 0 } }; |
153 | | |
154 | | void X(codelet_hb2_5) (planner *p) { |
155 | | X(khc2hc_register) (p, hb2_5, &desc); |
156 | | } |
157 | | #else |
158 | | |
159 | | /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 5 -dif -name hb2_5 -include rdft/scalar/hb.h */ |
160 | | |
161 | | /* |
162 | | * This function contains 44 FP additions, 32 FP multiplications, |
163 | | * (or, 30 additions, 18 multiplications, 14 fused multiply/add), |
164 | | * 33 stack variables, 4 constants, and 20 memory accesses |
165 | | */ |
166 | | #include "rdft/scalar/hb.h" |
167 | | |
168 | | static void hb2_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) |
169 | 0 | { |
170 | 0 | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
171 | 0 | DK(KP587785252, +0.587785252292473129168705954639072768597652438); |
172 | 0 | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
173 | 0 | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
174 | 0 | { |
175 | 0 | INT m; |
176 | 0 | for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) { |
177 | 0 | E Th, Tk, Ti, Tl, Tn, TP, Tx, TN; |
178 | 0 | { |
179 | 0 | E Tj, Tw, Tm, Tv; |
180 | 0 | Th = W[0]; |
181 | 0 | Tk = W[1]; |
182 | 0 | Ti = W[2]; |
183 | 0 | Tl = W[3]; |
184 | 0 | Tj = Th * Ti; |
185 | 0 | Tw = Tk * Ti; |
186 | 0 | Tm = Tk * Tl; |
187 | 0 | Tv = Th * Tl; |
188 | 0 | Tn = Tj + Tm; |
189 | 0 | TP = Tv + Tw; |
190 | 0 | Tx = Tv - Tw; |
191 | 0 | TN = Tj - Tm; |
192 | 0 | } |
193 | 0 | { |
194 | 0 | E T1, Tp, TK, TA, T8, To, T9, Tt, TI, TC, Tg, TB; |
195 | 0 | { |
196 | 0 | E T4, Ty, T7, Tz; |
197 | 0 | T1 = cr[0]; |
198 | 0 | { |
199 | 0 | E T2, T3, T5, T6; |
200 | 0 | T2 = cr[WS(rs, 1)]; |
201 | 0 | T3 = ci[0]; |
202 | 0 | T4 = T2 + T3; |
203 | 0 | Ty = T2 - T3; |
204 | 0 | T5 = cr[WS(rs, 2)]; |
205 | 0 | T6 = ci[WS(rs, 1)]; |
206 | 0 | T7 = T5 + T6; |
207 | 0 | Tz = T5 - T6; |
208 | 0 | } |
209 | 0 | Tp = KP559016994 * (T4 - T7); |
210 | 0 | TK = FMA(KP951056516, Ty, KP587785252 * Tz); |
211 | 0 | TA = FNMS(KP951056516, Tz, KP587785252 * Ty); |
212 | 0 | T8 = T4 + T7; |
213 | 0 | To = FNMS(KP250000000, T8, T1); |
214 | 0 | } |
215 | 0 | { |
216 | 0 | E Tc, Tr, Tf, Ts; |
217 | 0 | T9 = ci[WS(rs, 4)]; |
218 | 0 | { |
219 | 0 | E Ta, Tb, Td, Te; |
220 | 0 | Ta = ci[WS(rs, 3)]; |
221 | 0 | Tb = cr[WS(rs, 4)]; |
222 | 0 | Tc = Ta - Tb; |
223 | 0 | Tr = Ta + Tb; |
224 | 0 | Td = ci[WS(rs, 2)]; |
225 | 0 | Te = cr[WS(rs, 3)]; |
226 | 0 | Tf = Td - Te; |
227 | 0 | Ts = Td + Te; |
228 | 0 | } |
229 | 0 | Tt = FNMS(KP951056516, Ts, KP587785252 * Tr); |
230 | 0 | TI = FMA(KP951056516, Tr, KP587785252 * Ts); |
231 | 0 | TC = KP559016994 * (Tc - Tf); |
232 | 0 | Tg = Tc + Tf; |
233 | 0 | TB = FNMS(KP250000000, Tg, T9); |
234 | 0 | } |
235 | 0 | cr[0] = T1 + T8; |
236 | 0 | ci[0] = T9 + Tg; |
237 | 0 | { |
238 | 0 | E Tu, TF, TE, TG, Tq, TD; |
239 | 0 | Tq = To - Tp; |
240 | 0 | Tu = Tq - Tt; |
241 | 0 | TF = Tq + Tt; |
242 | 0 | TD = TB - TC; |
243 | 0 | TE = TA + TD; |
244 | 0 | TG = TD - TA; |
245 | 0 | cr[WS(rs, 2)] = FNMS(Tx, TE, Tn * Tu); |
246 | 0 | ci[WS(rs, 2)] = FMA(Tn, TE, Tx * Tu); |
247 | 0 | cr[WS(rs, 3)] = FNMS(Tl, TG, Ti * TF); |
248 | 0 | ci[WS(rs, 3)] = FMA(Ti, TG, Tl * TF); |
249 | 0 | } |
250 | 0 | { |
251 | 0 | E TJ, TO, TM, TQ, TH, TL; |
252 | 0 | TH = Tp + To; |
253 | 0 | TJ = TH - TI; |
254 | 0 | TO = TH + TI; |
255 | 0 | TL = TC + TB; |
256 | 0 | TM = TK + TL; |
257 | 0 | TQ = TL - TK; |
258 | 0 | cr[WS(rs, 1)] = FNMS(Tk, TM, Th * TJ); |
259 | 0 | ci[WS(rs, 1)] = FMA(Th, TM, Tk * TJ); |
260 | 0 | cr[WS(rs, 4)] = FNMS(TP, TQ, TN * TO); |
261 | 0 | ci[WS(rs, 4)] = FMA(TN, TQ, TP * TO); |
262 | 0 | } |
263 | 0 | } |
264 | 0 | } |
265 | 0 | } |
266 | 0 | } |
267 | | |
268 | | static const tw_instr twinstr[] = { |
269 | | { TW_CEXP, 1, 1 }, |
270 | | { TW_CEXP, 1, 3 }, |
271 | | { TW_NEXT, 1, 0 } |
272 | | }; |
273 | | |
274 | | static const hc2hc_desc desc = { 5, "hb2_5", twinstr, &GENUS, { 30, 18, 14, 0 } }; |
275 | | |
276 | 1 | void X(codelet_hb2_5) (planner *p) { |
277 | 1 | X(khc2hc_register) (p, hb2_5, &desc); |
278 | 1 | } |
279 | | #endif |