Coverage Report

Created: 2025-06-22 06:45

/src/fftw3/rdft/scalar/r2cb/hb2_5.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Sun Jun 22 06:44:42 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 5 -dif -name hb2_5 -include rdft/scalar/hb.h */
29
30
/*
31
 * This function contains 44 FP additions, 40 FP multiplications,
32
 * (or, 14 additions, 10 multiplications, 30 fused multiply/add),
33
 * 37 stack variables, 4 constants, and 20 memory accesses
34
 */
35
#include "rdft/scalar/hb.h"
36
37
static void hb2_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
42
     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
43
     {
44
    INT m;
45
    for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) {
46
         E T9, TB, Tz, Tm, TC, TO, TG, TJ, TA, TF;
47
         T9 = W[0];
48
         TB = W[3];
49
         Tz = W[2];
50
         TA = T9 * Tz;
51
         TF = T9 * TB;
52
         Tm = W[1];
53
         TC = FNMS(Tm, TB, TA);
54
         TO = FNMS(Tm, Tz, TF);
55
         TG = FMA(Tm, Tz, TF);
56
         TJ = FMA(Tm, TB, TA);
57
         {
58
        E T1, Tb, TQ, Tw, T8, Ta, Tn, Tj, TL, Ts, Tq, Tr;
59
        {
60
       E T4, Tu, T7, Tv;
61
       T1 = cr[0];
62
       {
63
            E T2, T3, T5, T6;
64
            T2 = cr[WS(rs, 1)];
65
            T3 = ci[0];
66
            T4 = T2 + T3;
67
            Tu = T2 - T3;
68
            T5 = cr[WS(rs, 2)];
69
            T6 = ci[WS(rs, 1)];
70
            T7 = T5 + T6;
71
            Tv = T5 - T6;
72
       }
73
       Tb = T4 - T7;
74
       TQ = FNMS(KP618033988, Tu, Tv);
75
       Tw = FMA(KP618033988, Tv, Tu);
76
       T8 = T4 + T7;
77
       Ta = FNMS(KP250000000, T8, T1);
78
        }
79
        {
80
       E Tf, To, Ti, Tp;
81
       Tn = ci[WS(rs, 4)];
82
       {
83
            E Td, Te, Tg, Th;
84
            Td = ci[WS(rs, 3)];
85
            Te = cr[WS(rs, 4)];
86
            Tf = Td + Te;
87
            To = Td - Te;
88
            Tg = ci[WS(rs, 2)];
89
            Th = cr[WS(rs, 3)];
90
            Ti = Tg + Th;
91
            Tp = Tg - Th;
92
       }
93
       Tj = FMA(KP618033988, Ti, Tf);
94
       TL = FNMS(KP618033988, Tf, Ti);
95
       Ts = To - Tp;
96
       Tq = To + Tp;
97
       Tr = FNMS(KP250000000, Tq, Tn);
98
        }
99
        cr[0] = T1 + T8;
100
        ci[0] = Tn + Tq;
101
        {
102
       E Tk, TD, Tx, TH, Tc, Tt;
103
       Tc = FMA(KP559016994, Tb, Ta);
104
       Tk = FNMS(KP951056516, Tj, Tc);
105
       TD = FMA(KP951056516, Tj, Tc);
106
       Tt = FMA(KP559016994, Ts, Tr);
107
       Tx = FMA(KP951056516, Tw, Tt);
108
       TH = FNMS(KP951056516, Tw, Tt);
109
       {
110
            E Tl, Ty, TE, TI;
111
            Tl = T9 * Tk;
112
            cr[WS(rs, 1)] = FNMS(Tm, Tx, Tl);
113
            Ty = Tm * Tk;
114
            ci[WS(rs, 1)] = FMA(T9, Tx, Ty);
115
            TE = TC * TD;
116
            cr[WS(rs, 4)] = FNMS(TG, TH, TE);
117
            TI = TG * TD;
118
            ci[WS(rs, 4)] = FMA(TC, TH, TI);
119
       }
120
        }
121
        {
122
       E TM, TT, TR, TV, TK, TP;
123
       TK = FNMS(KP559016994, Tb, Ta);
124
       TM = FMA(KP951056516, TL, TK);
125
       TT = FNMS(KP951056516, TL, TK);
126
       TP = FNMS(KP559016994, Ts, Tr);
127
       TR = FNMS(KP951056516, TQ, TP);
128
       TV = FMA(KP951056516, TQ, TP);
129
       {
130
            E TN, TS, TU, TW;
131
            TN = TJ * TM;
132
            cr[WS(rs, 2)] = FNMS(TO, TR, TN);
133
            TS = TO * TM;
134
            ci[WS(rs, 2)] = FMA(TJ, TR, TS);
135
            TU = Tz * TT;
136
            cr[WS(rs, 3)] = FNMS(TB, TV, TU);
137
            TW = TB * TT;
138
            ci[WS(rs, 3)] = FMA(Tz, TV, TW);
139
       }
140
        }
141
         }
142
    }
143
     }
144
}
145
146
static const tw_instr twinstr[] = {
147
     { TW_CEXP, 1, 1 },
148
     { TW_CEXP, 1, 3 },
149
     { TW_NEXT, 1, 0 }
150
};
151
152
static const hc2hc_desc desc = { 5, "hb2_5", twinstr, &GENUS, { 14, 10, 30, 0 } };
153
154
void X(codelet_hb2_5) (planner *p) {
155
     X(khc2hc_register) (p, hb2_5, &desc);
156
}
157
#else
158
159
/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 5 -dif -name hb2_5 -include rdft/scalar/hb.h */
160
161
/*
162
 * This function contains 44 FP additions, 32 FP multiplications,
163
 * (or, 30 additions, 18 multiplications, 14 fused multiply/add),
164
 * 33 stack variables, 4 constants, and 20 memory accesses
165
 */
166
#include "rdft/scalar/hb.h"
167
168
static void hb2_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
169
0
{
170
0
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
171
0
     DK(KP587785252, +0.587785252292473129168705954639072768597652438);
172
0
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
173
0
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
174
0
     {
175
0
    INT m;
176
0
    for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) {
177
0
         E Th, Tk, Ti, Tl, Tn, TP, Tx, TN;
178
0
         {
179
0
        E Tj, Tw, Tm, Tv;
180
0
        Th = W[0];
181
0
        Tk = W[1];
182
0
        Ti = W[2];
183
0
        Tl = W[3];
184
0
        Tj = Th * Ti;
185
0
        Tw = Tk * Ti;
186
0
        Tm = Tk * Tl;
187
0
        Tv = Th * Tl;
188
0
        Tn = Tj + Tm;
189
0
        TP = Tv + Tw;
190
0
        Tx = Tv - Tw;
191
0
        TN = Tj - Tm;
192
0
         }
193
0
         {
194
0
        E T1, Tp, TK, TA, T8, To, T9, Tt, TI, TC, Tg, TB;
195
0
        {
196
0
       E T4, Ty, T7, Tz;
197
0
       T1 = cr[0];
198
0
       {
199
0
            E T2, T3, T5, T6;
200
0
            T2 = cr[WS(rs, 1)];
201
0
            T3 = ci[0];
202
0
            T4 = T2 + T3;
203
0
            Ty = T2 - T3;
204
0
            T5 = cr[WS(rs, 2)];
205
0
            T6 = ci[WS(rs, 1)];
206
0
            T7 = T5 + T6;
207
0
            Tz = T5 - T6;
208
0
       }
209
0
       Tp = KP559016994 * (T4 - T7);
210
0
       TK = FMA(KP951056516, Ty, KP587785252 * Tz);
211
0
       TA = FNMS(KP951056516, Tz, KP587785252 * Ty);
212
0
       T8 = T4 + T7;
213
0
       To = FNMS(KP250000000, T8, T1);
214
0
        }
215
0
        {
216
0
       E Tc, Tr, Tf, Ts;
217
0
       T9 = ci[WS(rs, 4)];
218
0
       {
219
0
            E Ta, Tb, Td, Te;
220
0
            Ta = ci[WS(rs, 3)];
221
0
            Tb = cr[WS(rs, 4)];
222
0
            Tc = Ta - Tb;
223
0
            Tr = Ta + Tb;
224
0
            Td = ci[WS(rs, 2)];
225
0
            Te = cr[WS(rs, 3)];
226
0
            Tf = Td - Te;
227
0
            Ts = Td + Te;
228
0
       }
229
0
       Tt = FNMS(KP951056516, Ts, KP587785252 * Tr);
230
0
       TI = FMA(KP951056516, Tr, KP587785252 * Ts);
231
0
       TC = KP559016994 * (Tc - Tf);
232
0
       Tg = Tc + Tf;
233
0
       TB = FNMS(KP250000000, Tg, T9);
234
0
        }
235
0
        cr[0] = T1 + T8;
236
0
        ci[0] = T9 + Tg;
237
0
        {
238
0
       E Tu, TF, TE, TG, Tq, TD;
239
0
       Tq = To - Tp;
240
0
       Tu = Tq - Tt;
241
0
       TF = Tq + Tt;
242
0
       TD = TB - TC;
243
0
       TE = TA + TD;
244
0
       TG = TD - TA;
245
0
       cr[WS(rs, 2)] = FNMS(Tx, TE, Tn * Tu);
246
0
       ci[WS(rs, 2)] = FMA(Tn, TE, Tx * Tu);
247
0
       cr[WS(rs, 3)] = FNMS(Tl, TG, Ti * TF);
248
0
       ci[WS(rs, 3)] = FMA(Ti, TG, Tl * TF);
249
0
        }
250
0
        {
251
0
       E TJ, TO, TM, TQ, TH, TL;
252
0
       TH = Tp + To;
253
0
       TJ = TH - TI;
254
0
       TO = TH + TI;
255
0
       TL = TC + TB;
256
0
       TM = TK + TL;
257
0
       TQ = TL - TK;
258
0
       cr[WS(rs, 1)] = FNMS(Tk, TM, Th * TJ);
259
0
       ci[WS(rs, 1)] = FMA(Th, TM, Tk * TJ);
260
0
       cr[WS(rs, 4)] = FNMS(TP, TQ, TN * TO);
261
0
       ci[WS(rs, 4)] = FMA(TN, TQ, TP * TO);
262
0
        }
263
0
         }
264
0
    }
265
0
     }
266
0
}
267
268
static const tw_instr twinstr[] = {
269
     { TW_CEXP, 1, 1 },
270
     { TW_CEXP, 1, 3 },
271
     { TW_NEXT, 1, 0 }
272
};
273
274
static const hc2hc_desc desc = { 5, "hb2_5", twinstr, &GENUS, { 30, 18, 14, 0 } };
275
276
1
void X(codelet_hb2_5) (planner *p) {
277
1
     X(khc2hc_register) (p, hb2_5, &desc);
278
1
}
279
#endif