/src/fftw3/rdft/scalar/r2cb/hc2cbdft2_8.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Sun Jun 22 06:45:08 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hc2cbdft2_8 -include rdft/scalar/hc2cb.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 82 FP additions, 36 FP multiplications, |
32 | | * (or, 60 additions, 14 multiplications, 22 fused multiply/add), |
33 | | * 41 stack variables, 1 constants, and 32 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hc2cb.h" |
36 | | |
37 | | static void hc2cbdft2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
40 | | { |
41 | | INT m; |
42 | | for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) { |
43 | | E Tl, T1p, T1g, TM, T1k, TE, TP, T1f, T7, Te, TU, TH, T1l, Tw, T1q; |
44 | | E T1c, T1y; |
45 | | { |
46 | | E T3, TA, Tk, TN, T6, Th, TD, TO, Ta, Tm, Tp, TK, Td, Tr, Tu; |
47 | | E TL, TF, TG; |
48 | | { |
49 | | E T1, T2, Ti, Tj; |
50 | | T1 = Rp[0]; |
51 | | T2 = Rm[WS(rs, 3)]; |
52 | | T3 = T1 + T2; |
53 | | TA = T1 - T2; |
54 | | Ti = Ip[0]; |
55 | | Tj = Im[WS(rs, 3)]; |
56 | | Tk = Ti + Tj; |
57 | | TN = Ti - Tj; |
58 | | } |
59 | | { |
60 | | E T4, T5, TB, TC; |
61 | | T4 = Rp[WS(rs, 2)]; |
62 | | T5 = Rm[WS(rs, 1)]; |
63 | | T6 = T4 + T5; |
64 | | Th = T4 - T5; |
65 | | TB = Ip[WS(rs, 2)]; |
66 | | TC = Im[WS(rs, 1)]; |
67 | | TD = TB + TC; |
68 | | TO = TB - TC; |
69 | | } |
70 | | { |
71 | | E T8, T9, Tn, To; |
72 | | T8 = Rp[WS(rs, 1)]; |
73 | | T9 = Rm[WS(rs, 2)]; |
74 | | Ta = T8 + T9; |
75 | | Tm = T8 - T9; |
76 | | Tn = Ip[WS(rs, 1)]; |
77 | | To = Im[WS(rs, 2)]; |
78 | | Tp = Tn + To; |
79 | | TK = Tn - To; |
80 | | } |
81 | | { |
82 | | E Tb, Tc, Ts, Tt; |
83 | | Tb = Rm[0]; |
84 | | Tc = Rp[WS(rs, 3)]; |
85 | | Td = Tb + Tc; |
86 | | Tr = Tb - Tc; |
87 | | Ts = Im[0]; |
88 | | Tt = Ip[WS(rs, 3)]; |
89 | | Tu = Ts + Tt; |
90 | | TL = Tt - Ts; |
91 | | } |
92 | | Tl = Th + Tk; |
93 | | T1p = TA + TD; |
94 | | T1g = TN - TO; |
95 | | TM = TK + TL; |
96 | | T1k = Tk - Th; |
97 | | TE = TA - TD; |
98 | | TP = TN + TO; |
99 | | T1f = Ta - Td; |
100 | | T7 = T3 + T6; |
101 | | Te = Ta + Td; |
102 | | TU = T7 - Te; |
103 | | TF = Tm - Tp; |
104 | | TG = Tr - Tu; |
105 | | TH = TF + TG; |
106 | | T1l = TF - TG; |
107 | | { |
108 | | E Tq, Tv, T1a, T1b; |
109 | | Tq = Tm + Tp; |
110 | | Tv = Tr + Tu; |
111 | | Tw = Tq - Tv; |
112 | | T1q = Tq + Tv; |
113 | | T1a = T3 - T6; |
114 | | T1b = TL - TK; |
115 | | T1c = T1a + T1b; |
116 | | T1y = T1a - T1b; |
117 | | } |
118 | | } |
119 | | { |
120 | | E Tf, TQ, Tx, TI, Ty, TR, Tg, TJ, TS, Tz; |
121 | | Tf = T7 + Te; |
122 | | TQ = TM + TP; |
123 | | Tx = FMA(KP707106781, Tw, Tl); |
124 | | TI = FMA(KP707106781, TH, TE); |
125 | | Tg = W[0]; |
126 | | Ty = Tg * Tx; |
127 | | TR = Tg * TI; |
128 | | Tz = W[1]; |
129 | | TJ = FMA(Tz, TI, Ty); |
130 | | TS = FNMS(Tz, Tx, TR); |
131 | | Rp[0] = Tf - TJ; |
132 | | Ip[0] = TQ + TS; |
133 | | Rm[0] = Tf + TJ; |
134 | | Im[0] = TS - TQ; |
135 | | } |
136 | | { |
137 | | E T1B, T1A, T1J, T1x, T1z, T1E, T1H, T1F, T1L, T1D; |
138 | | T1B = T1g - T1f; |
139 | | T1A = W[11]; |
140 | | T1J = T1A * T1y; |
141 | | T1x = W[10]; |
142 | | T1z = T1x * T1y; |
143 | | T1E = FNMS(KP707106781, T1l, T1k); |
144 | | T1H = FMA(KP707106781, T1q, T1p); |
145 | | T1D = W[12]; |
146 | | T1F = T1D * T1E; |
147 | | T1L = T1D * T1H; |
148 | | { |
149 | | E T1C, T1K, T1I, T1M, T1G; |
150 | | T1C = FNMS(T1A, T1B, T1z); |
151 | | T1K = FMA(T1x, T1B, T1J); |
152 | | T1G = W[13]; |
153 | | T1I = FMA(T1G, T1H, T1F); |
154 | | T1M = FNMS(T1G, T1E, T1L); |
155 | | Rp[WS(rs, 3)] = T1C - T1I; |
156 | | Ip[WS(rs, 3)] = T1K + T1M; |
157 | | Rm[WS(rs, 3)] = T1C + T1I; |
158 | | Im[WS(rs, 3)] = T1M - T1K; |
159 | | } |
160 | | } |
161 | | { |
162 | | E TX, TW, T15, TT, TV, T10, T13, T11, T17, TZ; |
163 | | TX = TP - TM; |
164 | | TW = W[7]; |
165 | | T15 = TW * TU; |
166 | | TT = W[6]; |
167 | | TV = TT * TU; |
168 | | T10 = FNMS(KP707106781, Tw, Tl); |
169 | | T13 = FNMS(KP707106781, TH, TE); |
170 | | TZ = W[8]; |
171 | | T11 = TZ * T10; |
172 | | T17 = TZ * T13; |
173 | | { |
174 | | E TY, T16, T14, T18, T12; |
175 | | TY = FNMS(TW, TX, TV); |
176 | | T16 = FMA(TT, TX, T15); |
177 | | T12 = W[9]; |
178 | | T14 = FMA(T12, T13, T11); |
179 | | T18 = FNMS(T12, T10, T17); |
180 | | Rp[WS(rs, 2)] = TY - T14; |
181 | | Ip[WS(rs, 2)] = T16 + T18; |
182 | | Rm[WS(rs, 2)] = TY + T14; |
183 | | Im[WS(rs, 2)] = T18 - T16; |
184 | | } |
185 | | } |
186 | | { |
187 | | E T1h, T1e, T1t, T19, T1d, T1m, T1r, T1n, T1v, T1j; |
188 | | T1h = T1f + T1g; |
189 | | T1e = W[3]; |
190 | | T1t = T1e * T1c; |
191 | | T19 = W[2]; |
192 | | T1d = T19 * T1c; |
193 | | T1m = FMA(KP707106781, T1l, T1k); |
194 | | T1r = FNMS(KP707106781, T1q, T1p); |
195 | | T1j = W[4]; |
196 | | T1n = T1j * T1m; |
197 | | T1v = T1j * T1r; |
198 | | { |
199 | | E T1i, T1u, T1s, T1w, T1o; |
200 | | T1i = FNMS(T1e, T1h, T1d); |
201 | | T1u = FMA(T19, T1h, T1t); |
202 | | T1o = W[5]; |
203 | | T1s = FMA(T1o, T1r, T1n); |
204 | | T1w = FNMS(T1o, T1m, T1v); |
205 | | Rp[WS(rs, 1)] = T1i - T1s; |
206 | | Ip[WS(rs, 1)] = T1u + T1w; |
207 | | Rm[WS(rs, 1)] = T1i + T1s; |
208 | | Im[WS(rs, 1)] = T1w - T1u; |
209 | | } |
210 | | } |
211 | | } |
212 | | } |
213 | | } |
214 | | |
215 | | static const tw_instr twinstr[] = { |
216 | | { TW_FULL, 1, 8 }, |
217 | | { TW_NEXT, 1, 0 } |
218 | | }; |
219 | | |
220 | | static const hc2c_desc desc = { 8, "hc2cbdft2_8", twinstr, &GENUS, { 60, 14, 22, 0 } }; |
221 | | |
222 | | void X(codelet_hc2cbdft2_8) (planner *p) { |
223 | | X(khc2c_register) (p, hc2cbdft2_8, &desc, HC2C_VIA_DFT); |
224 | | } |
225 | | #else |
226 | | |
227 | | /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hc2cbdft2_8 -include rdft/scalar/hc2cb.h */ |
228 | | |
229 | | /* |
230 | | * This function contains 82 FP additions, 32 FP multiplications, |
231 | | * (or, 68 additions, 18 multiplications, 14 fused multiply/add), |
232 | | * 30 stack variables, 1 constants, and 32 memory accesses |
233 | | */ |
234 | | #include "rdft/scalar/hc2cb.h" |
235 | | |
236 | | static void hc2cbdft2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
237 | 0 | { |
238 | 0 | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
239 | 0 | { |
240 | 0 | INT m; |
241 | 0 | for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) { |
242 | 0 | E T7, T1d, T1h, Tl, TG, T14, T19, TO, Te, TL, T18, T15, TB, T1e, Tw; |
243 | 0 | E T1i; |
244 | 0 | { |
245 | 0 | E T3, TC, Tk, TM, T6, Th, TF, TN; |
246 | 0 | { |
247 | 0 | E T1, T2, Ti, Tj; |
248 | 0 | T1 = Rp[0]; |
249 | 0 | T2 = Rm[WS(rs, 3)]; |
250 | 0 | T3 = T1 + T2; |
251 | 0 | TC = T1 - T2; |
252 | 0 | Ti = Ip[0]; |
253 | 0 | Tj = Im[WS(rs, 3)]; |
254 | 0 | Tk = Ti + Tj; |
255 | 0 | TM = Ti - Tj; |
256 | 0 | } |
257 | 0 | { |
258 | 0 | E T4, T5, TD, TE; |
259 | 0 | T4 = Rp[WS(rs, 2)]; |
260 | 0 | T5 = Rm[WS(rs, 1)]; |
261 | 0 | T6 = T4 + T5; |
262 | 0 | Th = T4 - T5; |
263 | 0 | TD = Ip[WS(rs, 2)]; |
264 | 0 | TE = Im[WS(rs, 1)]; |
265 | 0 | TF = TD + TE; |
266 | 0 | TN = TD - TE; |
267 | 0 | } |
268 | 0 | T7 = T3 + T6; |
269 | 0 | T1d = Tk - Th; |
270 | 0 | T1h = TC + TF; |
271 | 0 | Tl = Th + Tk; |
272 | 0 | TG = TC - TF; |
273 | 0 | T14 = T3 - T6; |
274 | 0 | T19 = TM - TN; |
275 | 0 | TO = TM + TN; |
276 | 0 | } |
277 | 0 | { |
278 | 0 | E Ta, Tm, Tp, TJ, Td, Tr, Tu, TK; |
279 | 0 | { |
280 | 0 | E T8, T9, Tn, To; |
281 | 0 | T8 = Rp[WS(rs, 1)]; |
282 | 0 | T9 = Rm[WS(rs, 2)]; |
283 | 0 | Ta = T8 + T9; |
284 | 0 | Tm = T8 - T9; |
285 | 0 | Tn = Ip[WS(rs, 1)]; |
286 | 0 | To = Im[WS(rs, 2)]; |
287 | 0 | Tp = Tn + To; |
288 | 0 | TJ = Tn - To; |
289 | 0 | } |
290 | 0 | { |
291 | 0 | E Tb, Tc, Ts, Tt; |
292 | 0 | Tb = Rm[0]; |
293 | 0 | Tc = Rp[WS(rs, 3)]; |
294 | 0 | Td = Tb + Tc; |
295 | 0 | Tr = Tb - Tc; |
296 | 0 | Ts = Im[0]; |
297 | 0 | Tt = Ip[WS(rs, 3)]; |
298 | 0 | Tu = Ts + Tt; |
299 | 0 | TK = Tt - Ts; |
300 | 0 | } |
301 | 0 | Te = Ta + Td; |
302 | 0 | TL = TJ + TK; |
303 | 0 | T18 = Ta - Td; |
304 | 0 | T15 = TK - TJ; |
305 | 0 | { |
306 | 0 | E Tz, TA, Tq, Tv; |
307 | 0 | Tz = Tm - Tp; |
308 | 0 | TA = Tr - Tu; |
309 | 0 | TB = KP707106781 * (Tz + TA); |
310 | 0 | T1e = KP707106781 * (Tz - TA); |
311 | 0 | Tq = Tm + Tp; |
312 | 0 | Tv = Tr + Tu; |
313 | 0 | Tw = KP707106781 * (Tq - Tv); |
314 | 0 | T1i = KP707106781 * (Tq + Tv); |
315 | 0 | } |
316 | 0 | } |
317 | 0 | { |
318 | 0 | E Tf, TP, TI, TQ; |
319 | 0 | Tf = T7 + Te; |
320 | 0 | TP = TL + TO; |
321 | 0 | { |
322 | 0 | E Tx, TH, Tg, Ty; |
323 | 0 | Tx = Tl + Tw; |
324 | 0 | TH = TB + TG; |
325 | 0 | Tg = W[0]; |
326 | 0 | Ty = W[1]; |
327 | 0 | TI = FMA(Tg, Tx, Ty * TH); |
328 | 0 | TQ = FNMS(Ty, Tx, Tg * TH); |
329 | 0 | } |
330 | 0 | Rp[0] = Tf - TI; |
331 | 0 | Ip[0] = TP + TQ; |
332 | 0 | Rm[0] = Tf + TI; |
333 | 0 | Im[0] = TQ - TP; |
334 | 0 | } |
335 | 0 | { |
336 | 0 | E T1r, T1x, T1w, T1y; |
337 | 0 | { |
338 | 0 | E T1o, T1q, T1n, T1p; |
339 | 0 | T1o = T14 - T15; |
340 | 0 | T1q = T19 - T18; |
341 | 0 | T1n = W[10]; |
342 | 0 | T1p = W[11]; |
343 | 0 | T1r = FNMS(T1p, T1q, T1n * T1o); |
344 | 0 | T1x = FMA(T1p, T1o, T1n * T1q); |
345 | 0 | } |
346 | 0 | { |
347 | 0 | E T1t, T1v, T1s, T1u; |
348 | 0 | T1t = T1d - T1e; |
349 | 0 | T1v = T1i + T1h; |
350 | 0 | T1s = W[12]; |
351 | 0 | T1u = W[13]; |
352 | 0 | T1w = FMA(T1s, T1t, T1u * T1v); |
353 | 0 | T1y = FNMS(T1u, T1t, T1s * T1v); |
354 | 0 | } |
355 | 0 | Rp[WS(rs, 3)] = T1r - T1w; |
356 | 0 | Ip[WS(rs, 3)] = T1x + T1y; |
357 | 0 | Rm[WS(rs, 3)] = T1r + T1w; |
358 | 0 | Im[WS(rs, 3)] = T1y - T1x; |
359 | 0 | } |
360 | 0 | { |
361 | 0 | E TV, T11, T10, T12; |
362 | 0 | { |
363 | 0 | E TS, TU, TR, TT; |
364 | 0 | TS = T7 - Te; |
365 | 0 | TU = TO - TL; |
366 | 0 | TR = W[6]; |
367 | 0 | TT = W[7]; |
368 | 0 | TV = FNMS(TT, TU, TR * TS); |
369 | 0 | T11 = FMA(TT, TS, TR * TU); |
370 | 0 | } |
371 | 0 | { |
372 | 0 | E TX, TZ, TW, TY; |
373 | 0 | TX = Tl - Tw; |
374 | 0 | TZ = TG - TB; |
375 | 0 | TW = W[8]; |
376 | 0 | TY = W[9]; |
377 | 0 | T10 = FMA(TW, TX, TY * TZ); |
378 | 0 | T12 = FNMS(TY, TX, TW * TZ); |
379 | 0 | } |
380 | 0 | Rp[WS(rs, 2)] = TV - T10; |
381 | 0 | Ip[WS(rs, 2)] = T11 + T12; |
382 | 0 | Rm[WS(rs, 2)] = TV + T10; |
383 | 0 | Im[WS(rs, 2)] = T12 - T11; |
384 | 0 | } |
385 | 0 | { |
386 | 0 | E T1b, T1l, T1k, T1m; |
387 | 0 | { |
388 | 0 | E T16, T1a, T13, T17; |
389 | 0 | T16 = T14 + T15; |
390 | 0 | T1a = T18 + T19; |
391 | 0 | T13 = W[2]; |
392 | 0 | T17 = W[3]; |
393 | 0 | T1b = FNMS(T17, T1a, T13 * T16); |
394 | 0 | T1l = FMA(T17, T16, T13 * T1a); |
395 | 0 | } |
396 | 0 | { |
397 | 0 | E T1f, T1j, T1c, T1g; |
398 | 0 | T1f = T1d + T1e; |
399 | 0 | T1j = T1h - T1i; |
400 | 0 | T1c = W[4]; |
401 | 0 | T1g = W[5]; |
402 | 0 | T1k = FMA(T1c, T1f, T1g * T1j); |
403 | 0 | T1m = FNMS(T1g, T1f, T1c * T1j); |
404 | 0 | } |
405 | 0 | Rp[WS(rs, 1)] = T1b - T1k; |
406 | 0 | Ip[WS(rs, 1)] = T1l + T1m; |
407 | 0 | Rm[WS(rs, 1)] = T1b + T1k; |
408 | 0 | Im[WS(rs, 1)] = T1m - T1l; |
409 | 0 | } |
410 | 0 | } |
411 | 0 | } |
412 | 0 | } |
413 | | |
414 | | static const tw_instr twinstr[] = { |
415 | | { TW_FULL, 1, 8 }, |
416 | | { TW_NEXT, 1, 0 } |
417 | | }; |
418 | | |
419 | | static const hc2c_desc desc = { 8, "hc2cbdft2_8", twinstr, &GENUS, { 68, 18, 14, 0 } }; |
420 | | |
421 | 1 | void X(codelet_hc2cbdft2_8) (planner *p) { |
422 | 1 | X(khc2c_register) (p, hc2cbdft2_8, &desc, HC2C_VIA_DFT); |
423 | 1 | } |
424 | | #endif |