Coverage Report

Created: 2025-06-22 06:45

/src/fftw3/rdft/scalar/r2cb/hc2cbdft2_8.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Sun Jun 22 06:45:08 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hc2cbdft2_8 -include rdft/scalar/hc2cb.h */
29
30
/*
31
 * This function contains 82 FP additions, 36 FP multiplications,
32
 * (or, 60 additions, 14 multiplications, 22 fused multiply/add),
33
 * 41 stack variables, 1 constants, and 32 memory accesses
34
 */
35
#include "rdft/scalar/hc2cb.h"
36
37
static void hc2cbdft2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
40
     {
41
    INT m;
42
    for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) {
43
         E Tl, T1p, T1g, TM, T1k, TE, TP, T1f, T7, Te, TU, TH, T1l, Tw, T1q;
44
         E T1c, T1y;
45
         {
46
        E T3, TA, Tk, TN, T6, Th, TD, TO, Ta, Tm, Tp, TK, Td, Tr, Tu;
47
        E TL, TF, TG;
48
        {
49
       E T1, T2, Ti, Tj;
50
       T1 = Rp[0];
51
       T2 = Rm[WS(rs, 3)];
52
       T3 = T1 + T2;
53
       TA = T1 - T2;
54
       Ti = Ip[0];
55
       Tj = Im[WS(rs, 3)];
56
       Tk = Ti + Tj;
57
       TN = Ti - Tj;
58
        }
59
        {
60
       E T4, T5, TB, TC;
61
       T4 = Rp[WS(rs, 2)];
62
       T5 = Rm[WS(rs, 1)];
63
       T6 = T4 + T5;
64
       Th = T4 - T5;
65
       TB = Ip[WS(rs, 2)];
66
       TC = Im[WS(rs, 1)];
67
       TD = TB + TC;
68
       TO = TB - TC;
69
        }
70
        {
71
       E T8, T9, Tn, To;
72
       T8 = Rp[WS(rs, 1)];
73
       T9 = Rm[WS(rs, 2)];
74
       Ta = T8 + T9;
75
       Tm = T8 - T9;
76
       Tn = Ip[WS(rs, 1)];
77
       To = Im[WS(rs, 2)];
78
       Tp = Tn + To;
79
       TK = Tn - To;
80
        }
81
        {
82
       E Tb, Tc, Ts, Tt;
83
       Tb = Rm[0];
84
       Tc = Rp[WS(rs, 3)];
85
       Td = Tb + Tc;
86
       Tr = Tb - Tc;
87
       Ts = Im[0];
88
       Tt = Ip[WS(rs, 3)];
89
       Tu = Ts + Tt;
90
       TL = Tt - Ts;
91
        }
92
        Tl = Th + Tk;
93
        T1p = TA + TD;
94
        T1g = TN - TO;
95
        TM = TK + TL;
96
        T1k = Tk - Th;
97
        TE = TA - TD;
98
        TP = TN + TO;
99
        T1f = Ta - Td;
100
        T7 = T3 + T6;
101
        Te = Ta + Td;
102
        TU = T7 - Te;
103
        TF = Tm - Tp;
104
        TG = Tr - Tu;
105
        TH = TF + TG;
106
        T1l = TF - TG;
107
        {
108
       E Tq, Tv, T1a, T1b;
109
       Tq = Tm + Tp;
110
       Tv = Tr + Tu;
111
       Tw = Tq - Tv;
112
       T1q = Tq + Tv;
113
       T1a = T3 - T6;
114
       T1b = TL - TK;
115
       T1c = T1a + T1b;
116
       T1y = T1a - T1b;
117
        }
118
         }
119
         {
120
        E Tf, TQ, Tx, TI, Ty, TR, Tg, TJ, TS, Tz;
121
        Tf = T7 + Te;
122
        TQ = TM + TP;
123
        Tx = FMA(KP707106781, Tw, Tl);
124
        TI = FMA(KP707106781, TH, TE);
125
        Tg = W[0];
126
        Ty = Tg * Tx;
127
        TR = Tg * TI;
128
        Tz = W[1];
129
        TJ = FMA(Tz, TI, Ty);
130
        TS = FNMS(Tz, Tx, TR);
131
        Rp[0] = Tf - TJ;
132
        Ip[0] = TQ + TS;
133
        Rm[0] = Tf + TJ;
134
        Im[0] = TS - TQ;
135
         }
136
         {
137
        E T1B, T1A, T1J, T1x, T1z, T1E, T1H, T1F, T1L, T1D;
138
        T1B = T1g - T1f;
139
        T1A = W[11];
140
        T1J = T1A * T1y;
141
        T1x = W[10];
142
        T1z = T1x * T1y;
143
        T1E = FNMS(KP707106781, T1l, T1k);
144
        T1H = FMA(KP707106781, T1q, T1p);
145
        T1D = W[12];
146
        T1F = T1D * T1E;
147
        T1L = T1D * T1H;
148
        {
149
       E T1C, T1K, T1I, T1M, T1G;
150
       T1C = FNMS(T1A, T1B, T1z);
151
       T1K = FMA(T1x, T1B, T1J);
152
       T1G = W[13];
153
       T1I = FMA(T1G, T1H, T1F);
154
       T1M = FNMS(T1G, T1E, T1L);
155
       Rp[WS(rs, 3)] = T1C - T1I;
156
       Ip[WS(rs, 3)] = T1K + T1M;
157
       Rm[WS(rs, 3)] = T1C + T1I;
158
       Im[WS(rs, 3)] = T1M - T1K;
159
        }
160
         }
161
         {
162
        E TX, TW, T15, TT, TV, T10, T13, T11, T17, TZ;
163
        TX = TP - TM;
164
        TW = W[7];
165
        T15 = TW * TU;
166
        TT = W[6];
167
        TV = TT * TU;
168
        T10 = FNMS(KP707106781, Tw, Tl);
169
        T13 = FNMS(KP707106781, TH, TE);
170
        TZ = W[8];
171
        T11 = TZ * T10;
172
        T17 = TZ * T13;
173
        {
174
       E TY, T16, T14, T18, T12;
175
       TY = FNMS(TW, TX, TV);
176
       T16 = FMA(TT, TX, T15);
177
       T12 = W[9];
178
       T14 = FMA(T12, T13, T11);
179
       T18 = FNMS(T12, T10, T17);
180
       Rp[WS(rs, 2)] = TY - T14;
181
       Ip[WS(rs, 2)] = T16 + T18;
182
       Rm[WS(rs, 2)] = TY + T14;
183
       Im[WS(rs, 2)] = T18 - T16;
184
        }
185
         }
186
         {
187
        E T1h, T1e, T1t, T19, T1d, T1m, T1r, T1n, T1v, T1j;
188
        T1h = T1f + T1g;
189
        T1e = W[3];
190
        T1t = T1e * T1c;
191
        T19 = W[2];
192
        T1d = T19 * T1c;
193
        T1m = FMA(KP707106781, T1l, T1k);
194
        T1r = FNMS(KP707106781, T1q, T1p);
195
        T1j = W[4];
196
        T1n = T1j * T1m;
197
        T1v = T1j * T1r;
198
        {
199
       E T1i, T1u, T1s, T1w, T1o;
200
       T1i = FNMS(T1e, T1h, T1d);
201
       T1u = FMA(T19, T1h, T1t);
202
       T1o = W[5];
203
       T1s = FMA(T1o, T1r, T1n);
204
       T1w = FNMS(T1o, T1m, T1v);
205
       Rp[WS(rs, 1)] = T1i - T1s;
206
       Ip[WS(rs, 1)] = T1u + T1w;
207
       Rm[WS(rs, 1)] = T1i + T1s;
208
       Im[WS(rs, 1)] = T1w - T1u;
209
        }
210
         }
211
    }
212
     }
213
}
214
215
static const tw_instr twinstr[] = {
216
     { TW_FULL, 1, 8 },
217
     { TW_NEXT, 1, 0 }
218
};
219
220
static const hc2c_desc desc = { 8, "hc2cbdft2_8", twinstr, &GENUS, { 60, 14, 22, 0 } };
221
222
void X(codelet_hc2cbdft2_8) (planner *p) {
223
     X(khc2c_register) (p, hc2cbdft2_8, &desc, HC2C_VIA_DFT);
224
}
225
#else
226
227
/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hc2cbdft2_8 -include rdft/scalar/hc2cb.h */
228
229
/*
230
 * This function contains 82 FP additions, 32 FP multiplications,
231
 * (or, 68 additions, 18 multiplications, 14 fused multiply/add),
232
 * 30 stack variables, 1 constants, and 32 memory accesses
233
 */
234
#include "rdft/scalar/hc2cb.h"
235
236
static void hc2cbdft2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
237
0
{
238
0
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
239
0
     {
240
0
    INT m;
241
0
    for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) {
242
0
         E T7, T1d, T1h, Tl, TG, T14, T19, TO, Te, TL, T18, T15, TB, T1e, Tw;
243
0
         E T1i;
244
0
         {
245
0
        E T3, TC, Tk, TM, T6, Th, TF, TN;
246
0
        {
247
0
       E T1, T2, Ti, Tj;
248
0
       T1 = Rp[0];
249
0
       T2 = Rm[WS(rs, 3)];
250
0
       T3 = T1 + T2;
251
0
       TC = T1 - T2;
252
0
       Ti = Ip[0];
253
0
       Tj = Im[WS(rs, 3)];
254
0
       Tk = Ti + Tj;
255
0
       TM = Ti - Tj;
256
0
        }
257
0
        {
258
0
       E T4, T5, TD, TE;
259
0
       T4 = Rp[WS(rs, 2)];
260
0
       T5 = Rm[WS(rs, 1)];
261
0
       T6 = T4 + T5;
262
0
       Th = T4 - T5;
263
0
       TD = Ip[WS(rs, 2)];
264
0
       TE = Im[WS(rs, 1)];
265
0
       TF = TD + TE;
266
0
       TN = TD - TE;
267
0
        }
268
0
        T7 = T3 + T6;
269
0
        T1d = Tk - Th;
270
0
        T1h = TC + TF;
271
0
        Tl = Th + Tk;
272
0
        TG = TC - TF;
273
0
        T14 = T3 - T6;
274
0
        T19 = TM - TN;
275
0
        TO = TM + TN;
276
0
         }
277
0
         {
278
0
        E Ta, Tm, Tp, TJ, Td, Tr, Tu, TK;
279
0
        {
280
0
       E T8, T9, Tn, To;
281
0
       T8 = Rp[WS(rs, 1)];
282
0
       T9 = Rm[WS(rs, 2)];
283
0
       Ta = T8 + T9;
284
0
       Tm = T8 - T9;
285
0
       Tn = Ip[WS(rs, 1)];
286
0
       To = Im[WS(rs, 2)];
287
0
       Tp = Tn + To;
288
0
       TJ = Tn - To;
289
0
        }
290
0
        {
291
0
       E Tb, Tc, Ts, Tt;
292
0
       Tb = Rm[0];
293
0
       Tc = Rp[WS(rs, 3)];
294
0
       Td = Tb + Tc;
295
0
       Tr = Tb - Tc;
296
0
       Ts = Im[0];
297
0
       Tt = Ip[WS(rs, 3)];
298
0
       Tu = Ts + Tt;
299
0
       TK = Tt - Ts;
300
0
        }
301
0
        Te = Ta + Td;
302
0
        TL = TJ + TK;
303
0
        T18 = Ta - Td;
304
0
        T15 = TK - TJ;
305
0
        {
306
0
       E Tz, TA, Tq, Tv;
307
0
       Tz = Tm - Tp;
308
0
       TA = Tr - Tu;
309
0
       TB = KP707106781 * (Tz + TA);
310
0
       T1e = KP707106781 * (Tz - TA);
311
0
       Tq = Tm + Tp;
312
0
       Tv = Tr + Tu;
313
0
       Tw = KP707106781 * (Tq - Tv);
314
0
       T1i = KP707106781 * (Tq + Tv);
315
0
        }
316
0
         }
317
0
         {
318
0
        E Tf, TP, TI, TQ;
319
0
        Tf = T7 + Te;
320
0
        TP = TL + TO;
321
0
        {
322
0
       E Tx, TH, Tg, Ty;
323
0
       Tx = Tl + Tw;
324
0
       TH = TB + TG;
325
0
       Tg = W[0];
326
0
       Ty = W[1];
327
0
       TI = FMA(Tg, Tx, Ty * TH);
328
0
       TQ = FNMS(Ty, Tx, Tg * TH);
329
0
        }
330
0
        Rp[0] = Tf - TI;
331
0
        Ip[0] = TP + TQ;
332
0
        Rm[0] = Tf + TI;
333
0
        Im[0] = TQ - TP;
334
0
         }
335
0
         {
336
0
        E T1r, T1x, T1w, T1y;
337
0
        {
338
0
       E T1o, T1q, T1n, T1p;
339
0
       T1o = T14 - T15;
340
0
       T1q = T19 - T18;
341
0
       T1n = W[10];
342
0
       T1p = W[11];
343
0
       T1r = FNMS(T1p, T1q, T1n * T1o);
344
0
       T1x = FMA(T1p, T1o, T1n * T1q);
345
0
        }
346
0
        {
347
0
       E T1t, T1v, T1s, T1u;
348
0
       T1t = T1d - T1e;
349
0
       T1v = T1i + T1h;
350
0
       T1s = W[12];
351
0
       T1u = W[13];
352
0
       T1w = FMA(T1s, T1t, T1u * T1v);
353
0
       T1y = FNMS(T1u, T1t, T1s * T1v);
354
0
        }
355
0
        Rp[WS(rs, 3)] = T1r - T1w;
356
0
        Ip[WS(rs, 3)] = T1x + T1y;
357
0
        Rm[WS(rs, 3)] = T1r + T1w;
358
0
        Im[WS(rs, 3)] = T1y - T1x;
359
0
         }
360
0
         {
361
0
        E TV, T11, T10, T12;
362
0
        {
363
0
       E TS, TU, TR, TT;
364
0
       TS = T7 - Te;
365
0
       TU = TO - TL;
366
0
       TR = W[6];
367
0
       TT = W[7];
368
0
       TV = FNMS(TT, TU, TR * TS);
369
0
       T11 = FMA(TT, TS, TR * TU);
370
0
        }
371
0
        {
372
0
       E TX, TZ, TW, TY;
373
0
       TX = Tl - Tw;
374
0
       TZ = TG - TB;
375
0
       TW = W[8];
376
0
       TY = W[9];
377
0
       T10 = FMA(TW, TX, TY * TZ);
378
0
       T12 = FNMS(TY, TX, TW * TZ);
379
0
        }
380
0
        Rp[WS(rs, 2)] = TV - T10;
381
0
        Ip[WS(rs, 2)] = T11 + T12;
382
0
        Rm[WS(rs, 2)] = TV + T10;
383
0
        Im[WS(rs, 2)] = T12 - T11;
384
0
         }
385
0
         {
386
0
        E T1b, T1l, T1k, T1m;
387
0
        {
388
0
       E T16, T1a, T13, T17;
389
0
       T16 = T14 + T15;
390
0
       T1a = T18 + T19;
391
0
       T13 = W[2];
392
0
       T17 = W[3];
393
0
       T1b = FNMS(T17, T1a, T13 * T16);
394
0
       T1l = FMA(T17, T16, T13 * T1a);
395
0
        }
396
0
        {
397
0
       E T1f, T1j, T1c, T1g;
398
0
       T1f = T1d + T1e;
399
0
       T1j = T1h - T1i;
400
0
       T1c = W[4];
401
0
       T1g = W[5];
402
0
       T1k = FMA(T1c, T1f, T1g * T1j);
403
0
       T1m = FNMS(T1g, T1f, T1c * T1j);
404
0
        }
405
0
        Rp[WS(rs, 1)] = T1b - T1k;
406
0
        Ip[WS(rs, 1)] = T1l + T1m;
407
0
        Rm[WS(rs, 1)] = T1b + T1k;
408
0
        Im[WS(rs, 1)] = T1m - T1l;
409
0
         }
410
0
    }
411
0
     }
412
0
}
413
414
static const tw_instr twinstr[] = {
415
     { TW_FULL, 1, 8 },
416
     { TW_NEXT, 1, 0 }
417
};
418
419
static const hc2c_desc desc = { 8, "hc2cbdft2_8", twinstr, &GENUS, { 68, 18, 14, 0 } };
420
421
1
void X(codelet_hc2cbdft2_8) (planner *p) {
422
1
     X(khc2c_register) (p, hc2cbdft2_8, &desc, HC2C_VIA_DFT);
423
1
}
424
#endif