/src/fftw3/rdft/scalar/r2cb/hc2cbdft_12.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Sun Jun 22 06:45:06 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hc2cbdft_12 -include rdft/scalar/hc2cb.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 142 FP additions, 68 FP multiplications, |
32 | | * (or, 96 additions, 22 multiplications, 46 fused multiply/add), |
33 | | * 55 stack variables, 2 constants, and 48 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hc2cb.h" |
36 | | |
37 | | static void hc2cbdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
40 | | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
41 | | { |
42 | | INT m; |
43 | | for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) { |
44 | | E Tv, TC, TD, T1L, T1M, T2y, Tb, T1Z, T1E, T2D, T1e, T1U, TY, T2o, T13; |
45 | | E T18, T19, T1O, T1P, T2E, Tm, T1V, T1H, T2z, T1h, T20, TO, T2p; |
46 | | { |
47 | | E T1, T4, Tu, TS, Tp, Ts, Tt, TT, T6, T9, TB, TV, Tw, Tz, TA; |
48 | | E TW; |
49 | | { |
50 | | E T2, T3, Tq, Tr; |
51 | | T1 = Rp[0]; |
52 | | T2 = Rp[WS(rs, 4)]; |
53 | | T3 = Rm[WS(rs, 3)]; |
54 | | T4 = T2 + T3; |
55 | | Tu = T2 - T3; |
56 | | TS = FNMS(KP500000000, T4, T1); |
57 | | Tp = Ip[0]; |
58 | | Tq = Ip[WS(rs, 4)]; |
59 | | Tr = Im[WS(rs, 3)]; |
60 | | Ts = Tq - Tr; |
61 | | Tt = FNMS(KP500000000, Ts, Tp); |
62 | | TT = Tr + Tq; |
63 | | } |
64 | | { |
65 | | E T7, T8, Tx, Ty; |
66 | | T6 = Rm[WS(rs, 5)]; |
67 | | T7 = Rm[WS(rs, 1)]; |
68 | | T8 = Rp[WS(rs, 2)]; |
69 | | T9 = T7 + T8; |
70 | | TB = T7 - T8; |
71 | | TV = FNMS(KP500000000, T9, T6); |
72 | | Tw = Im[WS(rs, 5)]; |
73 | | Tx = Im[WS(rs, 1)]; |
74 | | Ty = Ip[WS(rs, 2)]; |
75 | | Tz = Tx - Ty; |
76 | | TA = FNMS(KP500000000, Tz, Tw); |
77 | | TW = Tx + Ty; |
78 | | } |
79 | | { |
80 | | E T5, Ta, T1C, T1D; |
81 | | Tv = FMA(KP866025403, Tu, Tt); |
82 | | TC = FNMS(KP866025403, TB, TA); |
83 | | TD = Tv + TC; |
84 | | T1L = FNMS(KP866025403, Tu, Tt); |
85 | | T1M = FMA(KP866025403, TB, TA); |
86 | | T2y = T1L + T1M; |
87 | | T5 = T1 + T4; |
88 | | Ta = T6 + T9; |
89 | | Tb = T5 + Ta; |
90 | | T1Z = T5 - Ta; |
91 | | T1C = FMA(KP866025403, TT, TS); |
92 | | T1D = FNMS(KP866025403, TW, TV); |
93 | | T1E = T1C + T1D; |
94 | | T2D = T1C - T1D; |
95 | | { |
96 | | E T1c, T1d, TU, TX; |
97 | | T1c = Tp + Ts; |
98 | | T1d = Tw + Tz; |
99 | | T1e = T1c - T1d; |
100 | | T1U = T1c + T1d; |
101 | | TU = FNMS(KP866025403, TT, TS); |
102 | | TX = FMA(KP866025403, TW, TV); |
103 | | TY = TU - TX; |
104 | | T2o = TU + TX; |
105 | | } |
106 | | } |
107 | | } |
108 | | { |
109 | | E Tc, Tf, TE, T12, TZ, T10, TH, T11, Th, Tk, TJ, T17, T14, T15, TM; |
110 | | E T16; |
111 | | { |
112 | | E Td, Te, TF, TG; |
113 | | Tc = Rp[WS(rs, 3)]; |
114 | | Td = Rm[WS(rs, 4)]; |
115 | | Te = Rm[0]; |
116 | | Tf = Td + Te; |
117 | | TE = FNMS(KP500000000, Tf, Tc); |
118 | | T12 = Td - Te; |
119 | | TZ = Ip[WS(rs, 3)]; |
120 | | TF = Im[WS(rs, 4)]; |
121 | | TG = Im[0]; |
122 | | T10 = TF + TG; |
123 | | TH = TF - TG; |
124 | | T11 = FMA(KP500000000, T10, TZ); |
125 | | } |
126 | | { |
127 | | E Ti, Tj, TK, TL; |
128 | | Th = Rm[WS(rs, 2)]; |
129 | | Ti = Rp[WS(rs, 1)]; |
130 | | Tj = Rp[WS(rs, 5)]; |
131 | | Tk = Ti + Tj; |
132 | | TJ = FNMS(KP500000000, Tk, Th); |
133 | | T17 = Ti - Tj; |
134 | | T14 = Im[WS(rs, 2)]; |
135 | | TK = Ip[WS(rs, 5)]; |
136 | | TL = Ip[WS(rs, 1)]; |
137 | | T15 = TK + TL; |
138 | | TM = TK - TL; |
139 | | T16 = FMA(KP500000000, T15, T14); |
140 | | } |
141 | | { |
142 | | E Tg, Tl, T1F, T1G; |
143 | | T13 = FMA(KP866025403, T12, T11); |
144 | | T18 = FNMS(KP866025403, T17, T16); |
145 | | T19 = T13 + T18; |
146 | | T1O = FNMS(KP866025403, T12, T11); |
147 | | T1P = FMA(KP866025403, T17, T16); |
148 | | T2E = T1O + T1P; |
149 | | Tg = Tc + Tf; |
150 | | Tl = Th + Tk; |
151 | | Tm = Tg + Tl; |
152 | | T1V = Tg - Tl; |
153 | | T1F = FNMS(KP866025403, TH, TE); |
154 | | T1G = FNMS(KP866025403, TM, TJ); |
155 | | T1H = T1F + T1G; |
156 | | T2z = T1F - T1G; |
157 | | { |
158 | | E T1f, T1g, TI, TN; |
159 | | T1f = TZ - T10; |
160 | | T1g = T15 - T14; |
161 | | T1h = T1f + T1g; |
162 | | T20 = T1f - T1g; |
163 | | TI = FMA(KP866025403, TH, TE); |
164 | | TN = FMA(KP866025403, TM, TJ); |
165 | | TO = TI - TN; |
166 | | T2p = TI + TN; |
167 | | } |
168 | | } |
169 | | } |
170 | | { |
171 | | E Tn, T1i, TP, T1a, TQ, T1j, To, T1b, T1k, TR; |
172 | | Tn = Tb + Tm; |
173 | | T1i = T1e + T1h; |
174 | | TP = TD + TO; |
175 | | T1a = TY - T19; |
176 | | To = W[0]; |
177 | | TQ = To * TP; |
178 | | T1j = To * T1a; |
179 | | TR = W[1]; |
180 | | T1b = FMA(TR, T1a, TQ); |
181 | | T1k = FNMS(TR, TP, T1j); |
182 | | Rp[0] = Tn - T1b; |
183 | | Ip[0] = T1i + T1k; |
184 | | Rm[0] = Tn + T1b; |
185 | | Im[0] = T1k - T1i; |
186 | | } |
187 | | { |
188 | | E T1p, T1l, T1n, T1o, T1x, T1s, T1v, T1t, T1z, T1m, T1r; |
189 | | T1p = T1e - T1h; |
190 | | T1m = Tb - Tm; |
191 | | T1l = W[10]; |
192 | | T1n = T1l * T1m; |
193 | | T1o = W[11]; |
194 | | T1x = T1o * T1m; |
195 | | T1s = TD - TO; |
196 | | T1v = TY + T19; |
197 | | T1r = W[12]; |
198 | | T1t = T1r * T1s; |
199 | | T1z = T1r * T1v; |
200 | | { |
201 | | E T1q, T1y, T1w, T1A, T1u; |
202 | | T1q = FNMS(T1o, T1p, T1n); |
203 | | T1y = FMA(T1l, T1p, T1x); |
204 | | T1u = W[13]; |
205 | | T1w = FMA(T1u, T1v, T1t); |
206 | | T1A = FNMS(T1u, T1s, T1z); |
207 | | Rp[WS(rs, 3)] = T1q - T1w; |
208 | | Ip[WS(rs, 3)] = T1y + T1A; |
209 | | Rm[WS(rs, 3)] = T1q + T1w; |
210 | | Im[WS(rs, 3)] = T1A - T1y; |
211 | | } |
212 | | } |
213 | | { |
214 | | E T1R, T2b, T27, T29, T2a, T2l, T1B, T1J, T1K, T25, T1W, T21, T1X, T23, T2e; |
215 | | E T2h, T2f, T2j; |
216 | | { |
217 | | E T1N, T1Q, T28, T1I, T1T, T2d; |
218 | | T1N = T1L - T1M; |
219 | | T1Q = T1O - T1P; |
220 | | T1R = T1N - T1Q; |
221 | | T2b = T1N + T1Q; |
222 | | T28 = T1E + T1H; |
223 | | T27 = W[14]; |
224 | | T29 = T27 * T28; |
225 | | T2a = W[15]; |
226 | | T2l = T2a * T28; |
227 | | T1I = T1E - T1H; |
228 | | T1B = W[2]; |
229 | | T1J = T1B * T1I; |
230 | | T1K = W[3]; |
231 | | T25 = T1K * T1I; |
232 | | T1W = T1U - T1V; |
233 | | T21 = T1Z + T20; |
234 | | T1T = W[4]; |
235 | | T1X = T1T * T1W; |
236 | | T23 = T1T * T21; |
237 | | T2e = T1V + T1U; |
238 | | T2h = T1Z - T20; |
239 | | T2d = W[16]; |
240 | | T2f = T2d * T2e; |
241 | | T2j = T2d * T2h; |
242 | | } |
243 | | { |
244 | | E T1S, T26, T22, T24, T1Y; |
245 | | T1S = FNMS(T1K, T1R, T1J); |
246 | | T26 = FMA(T1B, T1R, T25); |
247 | | T1Y = W[5]; |
248 | | T22 = FMA(T1Y, T21, T1X); |
249 | | T24 = FNMS(T1Y, T1W, T23); |
250 | | Rp[WS(rs, 1)] = T1S - T22; |
251 | | Ip[WS(rs, 1)] = T24 + T26; |
252 | | Rm[WS(rs, 1)] = T22 + T1S; |
253 | | Im[WS(rs, 1)] = T24 - T26; |
254 | | } |
255 | | { |
256 | | E T2c, T2m, T2i, T2k, T2g; |
257 | | T2c = FNMS(T2a, T2b, T29); |
258 | | T2m = FMA(T27, T2b, T2l); |
259 | | T2g = W[17]; |
260 | | T2i = FMA(T2g, T2h, T2f); |
261 | | T2k = FNMS(T2g, T2e, T2j); |
262 | | Rp[WS(rs, 4)] = T2c - T2i; |
263 | | Ip[WS(rs, 4)] = T2k + T2m; |
264 | | Rm[WS(rs, 4)] = T2i + T2c; |
265 | | Im[WS(rs, 4)] = T2k - T2m; |
266 | | } |
267 | | } |
268 | | { |
269 | | E T2v, T2P, T2L, T2N, T2O, T2X, T2n, T2r, T2s, T2H, T2A, T2F, T2B, T2J, T2S; |
270 | | E T2V, T2T, T2Z; |
271 | | { |
272 | | E T2t, T2u, T2M, T2q, T2x, T2R; |
273 | | T2t = Tv - TC; |
274 | | T2u = T13 - T18; |
275 | | T2v = T2t + T2u; |
276 | | T2P = T2t - T2u; |
277 | | T2M = T2o - T2p; |
278 | | T2L = W[18]; |
279 | | T2N = T2L * T2M; |
280 | | T2O = W[19]; |
281 | | T2X = T2O * T2M; |
282 | | T2q = T2o + T2p; |
283 | | T2n = W[6]; |
284 | | T2r = T2n * T2q; |
285 | | T2s = W[7]; |
286 | | T2H = T2s * T2q; |
287 | | T2A = T2y + T2z; |
288 | | T2F = T2D - T2E; |
289 | | T2x = W[8]; |
290 | | T2B = T2x * T2A; |
291 | | T2J = T2x * T2F; |
292 | | T2S = T2y - T2z; |
293 | | T2V = T2D + T2E; |
294 | | T2R = W[20]; |
295 | | T2T = T2R * T2S; |
296 | | T2Z = T2R * T2V; |
297 | | } |
298 | | { |
299 | | E T2w, T2I, T2G, T2K, T2C; |
300 | | T2w = FNMS(T2s, T2v, T2r); |
301 | | T2I = FMA(T2n, T2v, T2H); |
302 | | T2C = W[9]; |
303 | | T2G = FMA(T2C, T2F, T2B); |
304 | | T2K = FNMS(T2C, T2A, T2J); |
305 | | Rp[WS(rs, 2)] = T2w - T2G; |
306 | | Ip[WS(rs, 2)] = T2I + T2K; |
307 | | Rm[WS(rs, 2)] = T2w + T2G; |
308 | | Im[WS(rs, 2)] = T2K - T2I; |
309 | | } |
310 | | { |
311 | | E T2Q, T2Y, T2W, T30, T2U; |
312 | | T2Q = FNMS(T2O, T2P, T2N); |
313 | | T2Y = FMA(T2L, T2P, T2X); |
314 | | T2U = W[21]; |
315 | | T2W = FMA(T2U, T2V, T2T); |
316 | | T30 = FNMS(T2U, T2S, T2Z); |
317 | | Rp[WS(rs, 5)] = T2Q - T2W; |
318 | | Ip[WS(rs, 5)] = T2Y + T30; |
319 | | Rm[WS(rs, 5)] = T2Q + T2W; |
320 | | Im[WS(rs, 5)] = T30 - T2Y; |
321 | | } |
322 | | } |
323 | | } |
324 | | } |
325 | | } |
326 | | |
327 | | static const tw_instr twinstr[] = { |
328 | | { TW_FULL, 1, 12 }, |
329 | | { TW_NEXT, 1, 0 } |
330 | | }; |
331 | | |
332 | | static const hc2c_desc desc = { 12, "hc2cbdft_12", twinstr, &GENUS, { 96, 22, 46, 0 } }; |
333 | | |
334 | | void X(codelet_hc2cbdft_12) (planner *p) { |
335 | | X(khc2c_register) (p, hc2cbdft_12, &desc, HC2C_VIA_DFT); |
336 | | } |
337 | | #else |
338 | | |
339 | | /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hc2cbdft_12 -include rdft/scalar/hc2cb.h */ |
340 | | |
341 | | /* |
342 | | * This function contains 142 FP additions, 60 FP multiplications, |
343 | | * (or, 112 additions, 30 multiplications, 30 fused multiply/add), |
344 | | * 47 stack variables, 2 constants, and 48 memory accesses |
345 | | */ |
346 | | #include "rdft/scalar/hc2cb.h" |
347 | | |
348 | | static void hc2cbdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
349 | 0 | { |
350 | 0 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
351 | 0 | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
352 | 0 | { |
353 | 0 | INT m; |
354 | 0 | for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) { |
355 | 0 | E Tv, T1E, TC, T1F, TW, T1x, TT, T1w, T1d, T1N, Tb, T1R, TI, T1z, TN; |
356 | 0 | E T1A, T17, T1I, T12, T1H, T1g, T1S, Tm, T1O; |
357 | 0 | { |
358 | 0 | E T1, Tq, T6, TA, T4, Tp, Tt, TS, T9, Tw, Tz, TV; |
359 | 0 | T1 = Rp[0]; |
360 | 0 | Tq = Ip[0]; |
361 | 0 | T6 = Rm[WS(rs, 5)]; |
362 | 0 | TA = Im[WS(rs, 5)]; |
363 | 0 | { |
364 | 0 | E T2, T3, Tr, Ts; |
365 | 0 | T2 = Rp[WS(rs, 4)]; |
366 | 0 | T3 = Rm[WS(rs, 3)]; |
367 | 0 | T4 = T2 + T3; |
368 | 0 | Tp = KP866025403 * (T2 - T3); |
369 | 0 | Tr = Im[WS(rs, 3)]; |
370 | 0 | Ts = Ip[WS(rs, 4)]; |
371 | 0 | Tt = Tr - Ts; |
372 | 0 | TS = KP866025403 * (Tr + Ts); |
373 | 0 | } |
374 | 0 | { |
375 | 0 | E T7, T8, Tx, Ty; |
376 | 0 | T7 = Rm[WS(rs, 1)]; |
377 | 0 | T8 = Rp[WS(rs, 2)]; |
378 | 0 | T9 = T7 + T8; |
379 | 0 | Tw = KP866025403 * (T7 - T8); |
380 | 0 | Tx = Im[WS(rs, 1)]; |
381 | 0 | Ty = Ip[WS(rs, 2)]; |
382 | 0 | Tz = Tx - Ty; |
383 | 0 | TV = KP866025403 * (Tx + Ty); |
384 | 0 | } |
385 | 0 | { |
386 | 0 | E Tu, TB, TU, TR; |
387 | 0 | Tu = FMA(KP500000000, Tt, Tq); |
388 | 0 | Tv = Tp + Tu; |
389 | 0 | T1E = Tu - Tp; |
390 | 0 | TB = FMS(KP500000000, Tz, TA); |
391 | 0 | TC = Tw + TB; |
392 | 0 | T1F = TB - Tw; |
393 | 0 | TU = FNMS(KP500000000, T9, T6); |
394 | 0 | TW = TU + TV; |
395 | 0 | T1x = TU - TV; |
396 | 0 | TR = FNMS(KP500000000, T4, T1); |
397 | 0 | TT = TR - TS; |
398 | 0 | T1w = TR + TS; |
399 | 0 | { |
400 | 0 | E T1b, T1c, T5, Ta; |
401 | 0 | T1b = Tq - Tt; |
402 | 0 | T1c = Tz + TA; |
403 | 0 | T1d = T1b - T1c; |
404 | 0 | T1N = T1b + T1c; |
405 | 0 | T5 = T1 + T4; |
406 | 0 | Ta = T6 + T9; |
407 | 0 | Tb = T5 + Ta; |
408 | 0 | T1R = T5 - Ta; |
409 | 0 | } |
410 | 0 | } |
411 | 0 | } |
412 | 0 | { |
413 | 0 | E Tc, T10, Th, T15, Tf, TY, TH, TZ, Tk, T13, TM, T14; |
414 | 0 | Tc = Rp[WS(rs, 3)]; |
415 | 0 | T10 = Ip[WS(rs, 3)]; |
416 | 0 | Th = Rm[WS(rs, 2)]; |
417 | 0 | T15 = Im[WS(rs, 2)]; |
418 | 0 | { |
419 | 0 | E Td, Te, TF, TG; |
420 | 0 | Td = Rm[WS(rs, 4)]; |
421 | 0 | Te = Rm[0]; |
422 | 0 | Tf = Td + Te; |
423 | 0 | TY = KP866025403 * (Td - Te); |
424 | 0 | TF = Im[WS(rs, 4)]; |
425 | 0 | TG = Im[0]; |
426 | 0 | TH = KP866025403 * (TF - TG); |
427 | 0 | TZ = TF + TG; |
428 | 0 | } |
429 | 0 | { |
430 | 0 | E Ti, Tj, TK, TL; |
431 | 0 | Ti = Rp[WS(rs, 1)]; |
432 | 0 | Tj = Rp[WS(rs, 5)]; |
433 | 0 | Tk = Ti + Tj; |
434 | 0 | T13 = KP866025403 * (Ti - Tj); |
435 | 0 | TK = Ip[WS(rs, 5)]; |
436 | 0 | TL = Ip[WS(rs, 1)]; |
437 | 0 | TM = KP866025403 * (TK - TL); |
438 | 0 | T14 = TK + TL; |
439 | 0 | } |
440 | 0 | { |
441 | 0 | E TE, TJ, T16, T11; |
442 | 0 | TE = FNMS(KP500000000, Tf, Tc); |
443 | 0 | TI = TE + TH; |
444 | 0 | T1z = TE - TH; |
445 | 0 | TJ = FNMS(KP500000000, Tk, Th); |
446 | 0 | TN = TJ + TM; |
447 | 0 | T1A = TJ - TM; |
448 | 0 | T16 = FMA(KP500000000, T14, T15); |
449 | 0 | T17 = T13 - T16; |
450 | 0 | T1I = T13 + T16; |
451 | 0 | T11 = FMA(KP500000000, TZ, T10); |
452 | 0 | T12 = TY + T11; |
453 | 0 | T1H = T11 - TY; |
454 | 0 | { |
455 | 0 | E T1e, T1f, Tg, Tl; |
456 | 0 | T1e = T10 - TZ; |
457 | 0 | T1f = T14 - T15; |
458 | 0 | T1g = T1e + T1f; |
459 | 0 | T1S = T1e - T1f; |
460 | 0 | Tg = Tc + Tf; |
461 | 0 | Tl = Th + Tk; |
462 | 0 | Tm = Tg + Tl; |
463 | 0 | T1O = Tg - Tl; |
464 | 0 | } |
465 | 0 | } |
466 | 0 | } |
467 | 0 | { |
468 | 0 | E Tn, T1h, TP, T1p, T19, T1r, T1n, T1t; |
469 | 0 | Tn = Tb + Tm; |
470 | 0 | T1h = T1d + T1g; |
471 | 0 | { |
472 | 0 | E TD, TO, TX, T18; |
473 | 0 | TD = Tv - TC; |
474 | 0 | TO = TI - TN; |
475 | 0 | TP = TD + TO; |
476 | 0 | T1p = TD - TO; |
477 | 0 | TX = TT - TW; |
478 | 0 | T18 = T12 - T17; |
479 | 0 | T19 = TX - T18; |
480 | 0 | T1r = TX + T18; |
481 | 0 | { |
482 | 0 | E T1k, T1m, T1j, T1l; |
483 | 0 | T1k = Tb - Tm; |
484 | 0 | T1m = T1d - T1g; |
485 | 0 | T1j = W[10]; |
486 | 0 | T1l = W[11]; |
487 | 0 | T1n = FNMS(T1l, T1m, T1j * T1k); |
488 | 0 | T1t = FMA(T1l, T1k, T1j * T1m); |
489 | 0 | } |
490 | 0 | } |
491 | 0 | { |
492 | 0 | E T1a, T1i, To, TQ; |
493 | 0 | To = W[0]; |
494 | 0 | TQ = W[1]; |
495 | 0 | T1a = FMA(To, TP, TQ * T19); |
496 | 0 | T1i = FNMS(TQ, TP, To * T19); |
497 | 0 | Rp[0] = Tn - T1a; |
498 | 0 | Ip[0] = T1h + T1i; |
499 | 0 | Rm[0] = Tn + T1a; |
500 | 0 | Im[0] = T1i - T1h; |
501 | 0 | } |
502 | 0 | { |
503 | 0 | E T1s, T1u, T1o, T1q; |
504 | 0 | T1o = W[12]; |
505 | 0 | T1q = W[13]; |
506 | 0 | T1s = FMA(T1o, T1p, T1q * T1r); |
507 | 0 | T1u = FNMS(T1q, T1p, T1o * T1r); |
508 | 0 | Rp[WS(rs, 3)] = T1n - T1s; |
509 | 0 | Ip[WS(rs, 3)] = T1t + T1u; |
510 | 0 | Rm[WS(rs, 3)] = T1n + T1s; |
511 | 0 | Im[WS(rs, 3)] = T1u - T1t; |
512 | 0 | } |
513 | 0 | } |
514 | 0 | { |
515 | 0 | E T1C, T1Y, T1K, T20, T1U, T1V, T26, T27; |
516 | 0 | { |
517 | 0 | E T1y, T1B, T1G, T1J; |
518 | 0 | T1y = T1w + T1x; |
519 | 0 | T1B = T1z + T1A; |
520 | 0 | T1C = T1y - T1B; |
521 | 0 | T1Y = T1y + T1B; |
522 | 0 | T1G = T1E + T1F; |
523 | 0 | T1J = T1H - T1I; |
524 | 0 | T1K = T1G - T1J; |
525 | 0 | T20 = T1G + T1J; |
526 | 0 | } |
527 | 0 | { |
528 | 0 | E T1P, T1T, T1M, T1Q; |
529 | 0 | T1P = T1N - T1O; |
530 | 0 | T1T = T1R + T1S; |
531 | 0 | T1M = W[4]; |
532 | 0 | T1Q = W[5]; |
533 | 0 | T1U = FMA(T1M, T1P, T1Q * T1T); |
534 | 0 | T1V = FNMS(T1Q, T1P, T1M * T1T); |
535 | 0 | } |
536 | 0 | { |
537 | 0 | E T23, T25, T22, T24; |
538 | 0 | T23 = T1O + T1N; |
539 | 0 | T25 = T1R - T1S; |
540 | 0 | T22 = W[16]; |
541 | 0 | T24 = W[17]; |
542 | 0 | T26 = FMA(T22, T23, T24 * T25); |
543 | 0 | T27 = FNMS(T24, T23, T22 * T25); |
544 | 0 | } |
545 | 0 | { |
546 | 0 | E T1L, T1W, T1v, T1D; |
547 | 0 | T1v = W[2]; |
548 | 0 | T1D = W[3]; |
549 | 0 | T1L = FNMS(T1D, T1K, T1v * T1C); |
550 | 0 | T1W = FMA(T1D, T1C, T1v * T1K); |
551 | 0 | Rp[WS(rs, 1)] = T1L - T1U; |
552 | 0 | Ip[WS(rs, 1)] = T1V + T1W; |
553 | 0 | Rm[WS(rs, 1)] = T1U + T1L; |
554 | 0 | Im[WS(rs, 1)] = T1V - T1W; |
555 | 0 | } |
556 | 0 | { |
557 | 0 | E T21, T28, T1X, T1Z; |
558 | 0 | T1X = W[14]; |
559 | 0 | T1Z = W[15]; |
560 | 0 | T21 = FNMS(T1Z, T20, T1X * T1Y); |
561 | 0 | T28 = FMA(T1Z, T1Y, T1X * T20); |
562 | 0 | Rp[WS(rs, 4)] = T21 - T26; |
563 | 0 | Ip[WS(rs, 4)] = T27 + T28; |
564 | 0 | Rm[WS(rs, 4)] = T26 + T21; |
565 | 0 | Im[WS(rs, 4)] = T27 - T28; |
566 | 0 | } |
567 | 0 | } |
568 | 0 | { |
569 | 0 | E T2c, T2u, T2p, T2B, T2g, T2w, T2l, T2z; |
570 | 0 | { |
571 | 0 | E T2a, T2b, T2n, T2o; |
572 | 0 | T2a = TT + TW; |
573 | 0 | T2b = TI + TN; |
574 | 0 | T2c = T2a + T2b; |
575 | 0 | T2u = T2a - T2b; |
576 | 0 | T2n = T1w - T1x; |
577 | 0 | T2o = T1H + T1I; |
578 | 0 | T2p = T2n - T2o; |
579 | 0 | T2B = T2n + T2o; |
580 | 0 | } |
581 | 0 | { |
582 | 0 | E T2e, T2f, T2j, T2k; |
583 | 0 | T2e = Tv + TC; |
584 | 0 | T2f = T12 + T17; |
585 | 0 | T2g = T2e + T2f; |
586 | 0 | T2w = T2e - T2f; |
587 | 0 | T2j = T1E - T1F; |
588 | 0 | T2k = T1z - T1A; |
589 | 0 | T2l = T2j + T2k; |
590 | 0 | T2z = T2j - T2k; |
591 | 0 | } |
592 | 0 | { |
593 | 0 | E T2h, T2r, T2q, T2s; |
594 | 0 | { |
595 | 0 | E T29, T2d, T2i, T2m; |
596 | 0 | T29 = W[6]; |
597 | 0 | T2d = W[7]; |
598 | 0 | T2h = FNMS(T2d, T2g, T29 * T2c); |
599 | 0 | T2r = FMA(T2d, T2c, T29 * T2g); |
600 | 0 | T2i = W[8]; |
601 | 0 | T2m = W[9]; |
602 | 0 | T2q = FMA(T2i, T2l, T2m * T2p); |
603 | 0 | T2s = FNMS(T2m, T2l, T2i * T2p); |
604 | 0 | } |
605 | 0 | Rp[WS(rs, 2)] = T2h - T2q; |
606 | 0 | Ip[WS(rs, 2)] = T2r + T2s; |
607 | 0 | Rm[WS(rs, 2)] = T2h + T2q; |
608 | 0 | Im[WS(rs, 2)] = T2s - T2r; |
609 | 0 | } |
610 | 0 | { |
611 | 0 | E T2x, T2D, T2C, T2E; |
612 | 0 | { |
613 | 0 | E T2t, T2v, T2y, T2A; |
614 | 0 | T2t = W[18]; |
615 | 0 | T2v = W[19]; |
616 | 0 | T2x = FNMS(T2v, T2w, T2t * T2u); |
617 | 0 | T2D = FMA(T2v, T2u, T2t * T2w); |
618 | 0 | T2y = W[20]; |
619 | 0 | T2A = W[21]; |
620 | 0 | T2C = FMA(T2y, T2z, T2A * T2B); |
621 | 0 | T2E = FNMS(T2A, T2z, T2y * T2B); |
622 | 0 | } |
623 | 0 | Rp[WS(rs, 5)] = T2x - T2C; |
624 | 0 | Ip[WS(rs, 5)] = T2D + T2E; |
625 | 0 | Rm[WS(rs, 5)] = T2x + T2C; |
626 | 0 | Im[WS(rs, 5)] = T2E - T2D; |
627 | 0 | } |
628 | 0 | } |
629 | 0 | } |
630 | 0 | } |
631 | 0 | } |
632 | | |
633 | | static const tw_instr twinstr[] = { |
634 | | { TW_FULL, 1, 12 }, |
635 | | { TW_NEXT, 1, 0 } |
636 | | }; |
637 | | |
638 | | static const hc2c_desc desc = { 12, "hc2cbdft_12", twinstr, &GENUS, { 112, 30, 30, 0 } }; |
639 | | |
640 | 1 | void X(codelet_hc2cbdft_12) (planner *p) { |
641 | 1 | X(khc2c_register) (p, hc2cbdft_12, &desc, HC2C_VIA_DFT); |
642 | 1 | } |
643 | | #endif |