Coverage Report

Created: 2025-06-22 06:45

/src/fftw3/rdft/scalar/r2cb/hc2cbdft_12.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Sun Jun 22 06:45:06 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hc2cbdft_12 -include rdft/scalar/hc2cb.h */
29
30
/*
31
 * This function contains 142 FP additions, 68 FP multiplications,
32
 * (or, 96 additions, 22 multiplications, 46 fused multiply/add),
33
 * 55 stack variables, 2 constants, and 48 memory accesses
34
 */
35
#include "rdft/scalar/hc2cb.h"
36
37
static void hc2cbdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
40
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
41
     {
42
    INT m;
43
    for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) {
44
         E Tv, TC, TD, T1L, T1M, T2y, Tb, T1Z, T1E, T2D, T1e, T1U, TY, T2o, T13;
45
         E T18, T19, T1O, T1P, T2E, Tm, T1V, T1H, T2z, T1h, T20, TO, T2p;
46
         {
47
        E T1, T4, Tu, TS, Tp, Ts, Tt, TT, T6, T9, TB, TV, Tw, Tz, TA;
48
        E TW;
49
        {
50
       E T2, T3, Tq, Tr;
51
       T1 = Rp[0];
52
       T2 = Rp[WS(rs, 4)];
53
       T3 = Rm[WS(rs, 3)];
54
       T4 = T2 + T3;
55
       Tu = T2 - T3;
56
       TS = FNMS(KP500000000, T4, T1);
57
       Tp = Ip[0];
58
       Tq = Ip[WS(rs, 4)];
59
       Tr = Im[WS(rs, 3)];
60
       Ts = Tq - Tr;
61
       Tt = FNMS(KP500000000, Ts, Tp);
62
       TT = Tr + Tq;
63
        }
64
        {
65
       E T7, T8, Tx, Ty;
66
       T6 = Rm[WS(rs, 5)];
67
       T7 = Rm[WS(rs, 1)];
68
       T8 = Rp[WS(rs, 2)];
69
       T9 = T7 + T8;
70
       TB = T7 - T8;
71
       TV = FNMS(KP500000000, T9, T6);
72
       Tw = Im[WS(rs, 5)];
73
       Tx = Im[WS(rs, 1)];
74
       Ty = Ip[WS(rs, 2)];
75
       Tz = Tx - Ty;
76
       TA = FNMS(KP500000000, Tz, Tw);
77
       TW = Tx + Ty;
78
        }
79
        {
80
       E T5, Ta, T1C, T1D;
81
       Tv = FMA(KP866025403, Tu, Tt);
82
       TC = FNMS(KP866025403, TB, TA);
83
       TD = Tv + TC;
84
       T1L = FNMS(KP866025403, Tu, Tt);
85
       T1M = FMA(KP866025403, TB, TA);
86
       T2y = T1L + T1M;
87
       T5 = T1 + T4;
88
       Ta = T6 + T9;
89
       Tb = T5 + Ta;
90
       T1Z = T5 - Ta;
91
       T1C = FMA(KP866025403, TT, TS);
92
       T1D = FNMS(KP866025403, TW, TV);
93
       T1E = T1C + T1D;
94
       T2D = T1C - T1D;
95
       {
96
            E T1c, T1d, TU, TX;
97
            T1c = Tp + Ts;
98
            T1d = Tw + Tz;
99
            T1e = T1c - T1d;
100
            T1U = T1c + T1d;
101
            TU = FNMS(KP866025403, TT, TS);
102
            TX = FMA(KP866025403, TW, TV);
103
            TY = TU - TX;
104
            T2o = TU + TX;
105
       }
106
        }
107
         }
108
         {
109
        E Tc, Tf, TE, T12, TZ, T10, TH, T11, Th, Tk, TJ, T17, T14, T15, TM;
110
        E T16;
111
        {
112
       E Td, Te, TF, TG;
113
       Tc = Rp[WS(rs, 3)];
114
       Td = Rm[WS(rs, 4)];
115
       Te = Rm[0];
116
       Tf = Td + Te;
117
       TE = FNMS(KP500000000, Tf, Tc);
118
       T12 = Td - Te;
119
       TZ = Ip[WS(rs, 3)];
120
       TF = Im[WS(rs, 4)];
121
       TG = Im[0];
122
       T10 = TF + TG;
123
       TH = TF - TG;
124
       T11 = FMA(KP500000000, T10, TZ);
125
        }
126
        {
127
       E Ti, Tj, TK, TL;
128
       Th = Rm[WS(rs, 2)];
129
       Ti = Rp[WS(rs, 1)];
130
       Tj = Rp[WS(rs, 5)];
131
       Tk = Ti + Tj;
132
       TJ = FNMS(KP500000000, Tk, Th);
133
       T17 = Ti - Tj;
134
       T14 = Im[WS(rs, 2)];
135
       TK = Ip[WS(rs, 5)];
136
       TL = Ip[WS(rs, 1)];
137
       T15 = TK + TL;
138
       TM = TK - TL;
139
       T16 = FMA(KP500000000, T15, T14);
140
        }
141
        {
142
       E Tg, Tl, T1F, T1G;
143
       T13 = FMA(KP866025403, T12, T11);
144
       T18 = FNMS(KP866025403, T17, T16);
145
       T19 = T13 + T18;
146
       T1O = FNMS(KP866025403, T12, T11);
147
       T1P = FMA(KP866025403, T17, T16);
148
       T2E = T1O + T1P;
149
       Tg = Tc + Tf;
150
       Tl = Th + Tk;
151
       Tm = Tg + Tl;
152
       T1V = Tg - Tl;
153
       T1F = FNMS(KP866025403, TH, TE);
154
       T1G = FNMS(KP866025403, TM, TJ);
155
       T1H = T1F + T1G;
156
       T2z = T1F - T1G;
157
       {
158
            E T1f, T1g, TI, TN;
159
            T1f = TZ - T10;
160
            T1g = T15 - T14;
161
            T1h = T1f + T1g;
162
            T20 = T1f - T1g;
163
            TI = FMA(KP866025403, TH, TE);
164
            TN = FMA(KP866025403, TM, TJ);
165
            TO = TI - TN;
166
            T2p = TI + TN;
167
       }
168
        }
169
         }
170
         {
171
        E Tn, T1i, TP, T1a, TQ, T1j, To, T1b, T1k, TR;
172
        Tn = Tb + Tm;
173
        T1i = T1e + T1h;
174
        TP = TD + TO;
175
        T1a = TY - T19;
176
        To = W[0];
177
        TQ = To * TP;
178
        T1j = To * T1a;
179
        TR = W[1];
180
        T1b = FMA(TR, T1a, TQ);
181
        T1k = FNMS(TR, TP, T1j);
182
        Rp[0] = Tn - T1b;
183
        Ip[0] = T1i + T1k;
184
        Rm[0] = Tn + T1b;
185
        Im[0] = T1k - T1i;
186
         }
187
         {
188
        E T1p, T1l, T1n, T1o, T1x, T1s, T1v, T1t, T1z, T1m, T1r;
189
        T1p = T1e - T1h;
190
        T1m = Tb - Tm;
191
        T1l = W[10];
192
        T1n = T1l * T1m;
193
        T1o = W[11];
194
        T1x = T1o * T1m;
195
        T1s = TD - TO;
196
        T1v = TY + T19;
197
        T1r = W[12];
198
        T1t = T1r * T1s;
199
        T1z = T1r * T1v;
200
        {
201
       E T1q, T1y, T1w, T1A, T1u;
202
       T1q = FNMS(T1o, T1p, T1n);
203
       T1y = FMA(T1l, T1p, T1x);
204
       T1u = W[13];
205
       T1w = FMA(T1u, T1v, T1t);
206
       T1A = FNMS(T1u, T1s, T1z);
207
       Rp[WS(rs, 3)] = T1q - T1w;
208
       Ip[WS(rs, 3)] = T1y + T1A;
209
       Rm[WS(rs, 3)] = T1q + T1w;
210
       Im[WS(rs, 3)] = T1A - T1y;
211
        }
212
         }
213
         {
214
        E T1R, T2b, T27, T29, T2a, T2l, T1B, T1J, T1K, T25, T1W, T21, T1X, T23, T2e;
215
        E T2h, T2f, T2j;
216
        {
217
       E T1N, T1Q, T28, T1I, T1T, T2d;
218
       T1N = T1L - T1M;
219
       T1Q = T1O - T1P;
220
       T1R = T1N - T1Q;
221
       T2b = T1N + T1Q;
222
       T28 = T1E + T1H;
223
       T27 = W[14];
224
       T29 = T27 * T28;
225
       T2a = W[15];
226
       T2l = T2a * T28;
227
       T1I = T1E - T1H;
228
       T1B = W[2];
229
       T1J = T1B * T1I;
230
       T1K = W[3];
231
       T25 = T1K * T1I;
232
       T1W = T1U - T1V;
233
       T21 = T1Z + T20;
234
       T1T = W[4];
235
       T1X = T1T * T1W;
236
       T23 = T1T * T21;
237
       T2e = T1V + T1U;
238
       T2h = T1Z - T20;
239
       T2d = W[16];
240
       T2f = T2d * T2e;
241
       T2j = T2d * T2h;
242
        }
243
        {
244
       E T1S, T26, T22, T24, T1Y;
245
       T1S = FNMS(T1K, T1R, T1J);
246
       T26 = FMA(T1B, T1R, T25);
247
       T1Y = W[5];
248
       T22 = FMA(T1Y, T21, T1X);
249
       T24 = FNMS(T1Y, T1W, T23);
250
       Rp[WS(rs, 1)] = T1S - T22;
251
       Ip[WS(rs, 1)] = T24 + T26;
252
       Rm[WS(rs, 1)] = T22 + T1S;
253
       Im[WS(rs, 1)] = T24 - T26;
254
        }
255
        {
256
       E T2c, T2m, T2i, T2k, T2g;
257
       T2c = FNMS(T2a, T2b, T29);
258
       T2m = FMA(T27, T2b, T2l);
259
       T2g = W[17];
260
       T2i = FMA(T2g, T2h, T2f);
261
       T2k = FNMS(T2g, T2e, T2j);
262
       Rp[WS(rs, 4)] = T2c - T2i;
263
       Ip[WS(rs, 4)] = T2k + T2m;
264
       Rm[WS(rs, 4)] = T2i + T2c;
265
       Im[WS(rs, 4)] = T2k - T2m;
266
        }
267
         }
268
         {
269
        E T2v, T2P, T2L, T2N, T2O, T2X, T2n, T2r, T2s, T2H, T2A, T2F, T2B, T2J, T2S;
270
        E T2V, T2T, T2Z;
271
        {
272
       E T2t, T2u, T2M, T2q, T2x, T2R;
273
       T2t = Tv - TC;
274
       T2u = T13 - T18;
275
       T2v = T2t + T2u;
276
       T2P = T2t - T2u;
277
       T2M = T2o - T2p;
278
       T2L = W[18];
279
       T2N = T2L * T2M;
280
       T2O = W[19];
281
       T2X = T2O * T2M;
282
       T2q = T2o + T2p;
283
       T2n = W[6];
284
       T2r = T2n * T2q;
285
       T2s = W[7];
286
       T2H = T2s * T2q;
287
       T2A = T2y + T2z;
288
       T2F = T2D - T2E;
289
       T2x = W[8];
290
       T2B = T2x * T2A;
291
       T2J = T2x * T2F;
292
       T2S = T2y - T2z;
293
       T2V = T2D + T2E;
294
       T2R = W[20];
295
       T2T = T2R * T2S;
296
       T2Z = T2R * T2V;
297
        }
298
        {
299
       E T2w, T2I, T2G, T2K, T2C;
300
       T2w = FNMS(T2s, T2v, T2r);
301
       T2I = FMA(T2n, T2v, T2H);
302
       T2C = W[9];
303
       T2G = FMA(T2C, T2F, T2B);
304
       T2K = FNMS(T2C, T2A, T2J);
305
       Rp[WS(rs, 2)] = T2w - T2G;
306
       Ip[WS(rs, 2)] = T2I + T2K;
307
       Rm[WS(rs, 2)] = T2w + T2G;
308
       Im[WS(rs, 2)] = T2K - T2I;
309
        }
310
        {
311
       E T2Q, T2Y, T2W, T30, T2U;
312
       T2Q = FNMS(T2O, T2P, T2N);
313
       T2Y = FMA(T2L, T2P, T2X);
314
       T2U = W[21];
315
       T2W = FMA(T2U, T2V, T2T);
316
       T30 = FNMS(T2U, T2S, T2Z);
317
       Rp[WS(rs, 5)] = T2Q - T2W;
318
       Ip[WS(rs, 5)] = T2Y + T30;
319
       Rm[WS(rs, 5)] = T2Q + T2W;
320
       Im[WS(rs, 5)] = T30 - T2Y;
321
        }
322
         }
323
    }
324
     }
325
}
326
327
static const tw_instr twinstr[] = {
328
     { TW_FULL, 1, 12 },
329
     { TW_NEXT, 1, 0 }
330
};
331
332
static const hc2c_desc desc = { 12, "hc2cbdft_12", twinstr, &GENUS, { 96, 22, 46, 0 } };
333
334
void X(codelet_hc2cbdft_12) (planner *p) {
335
     X(khc2c_register) (p, hc2cbdft_12, &desc, HC2C_VIA_DFT);
336
}
337
#else
338
339
/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hc2cbdft_12 -include rdft/scalar/hc2cb.h */
340
341
/*
342
 * This function contains 142 FP additions, 60 FP multiplications,
343
 * (or, 112 additions, 30 multiplications, 30 fused multiply/add),
344
 * 47 stack variables, 2 constants, and 48 memory accesses
345
 */
346
#include "rdft/scalar/hc2cb.h"
347
348
static void hc2cbdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
349
0
{
350
0
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
351
0
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
352
0
     {
353
0
    INT m;
354
0
    for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) {
355
0
         E Tv, T1E, TC, T1F, TW, T1x, TT, T1w, T1d, T1N, Tb, T1R, TI, T1z, TN;
356
0
         E T1A, T17, T1I, T12, T1H, T1g, T1S, Tm, T1O;
357
0
         {
358
0
        E T1, Tq, T6, TA, T4, Tp, Tt, TS, T9, Tw, Tz, TV;
359
0
        T1 = Rp[0];
360
0
        Tq = Ip[0];
361
0
        T6 = Rm[WS(rs, 5)];
362
0
        TA = Im[WS(rs, 5)];
363
0
        {
364
0
       E T2, T3, Tr, Ts;
365
0
       T2 = Rp[WS(rs, 4)];
366
0
       T3 = Rm[WS(rs, 3)];
367
0
       T4 = T2 + T3;
368
0
       Tp = KP866025403 * (T2 - T3);
369
0
       Tr = Im[WS(rs, 3)];
370
0
       Ts = Ip[WS(rs, 4)];
371
0
       Tt = Tr - Ts;
372
0
       TS = KP866025403 * (Tr + Ts);
373
0
        }
374
0
        {
375
0
       E T7, T8, Tx, Ty;
376
0
       T7 = Rm[WS(rs, 1)];
377
0
       T8 = Rp[WS(rs, 2)];
378
0
       T9 = T7 + T8;
379
0
       Tw = KP866025403 * (T7 - T8);
380
0
       Tx = Im[WS(rs, 1)];
381
0
       Ty = Ip[WS(rs, 2)];
382
0
       Tz = Tx - Ty;
383
0
       TV = KP866025403 * (Tx + Ty);
384
0
        }
385
0
        {
386
0
       E Tu, TB, TU, TR;
387
0
       Tu = FMA(KP500000000, Tt, Tq);
388
0
       Tv = Tp + Tu;
389
0
       T1E = Tu - Tp;
390
0
       TB = FMS(KP500000000, Tz, TA);
391
0
       TC = Tw + TB;
392
0
       T1F = TB - Tw;
393
0
       TU = FNMS(KP500000000, T9, T6);
394
0
       TW = TU + TV;
395
0
       T1x = TU - TV;
396
0
       TR = FNMS(KP500000000, T4, T1);
397
0
       TT = TR - TS;
398
0
       T1w = TR + TS;
399
0
       {
400
0
            E T1b, T1c, T5, Ta;
401
0
            T1b = Tq - Tt;
402
0
            T1c = Tz + TA;
403
0
            T1d = T1b - T1c;
404
0
            T1N = T1b + T1c;
405
0
            T5 = T1 + T4;
406
0
            Ta = T6 + T9;
407
0
            Tb = T5 + Ta;
408
0
            T1R = T5 - Ta;
409
0
       }
410
0
        }
411
0
         }
412
0
         {
413
0
        E Tc, T10, Th, T15, Tf, TY, TH, TZ, Tk, T13, TM, T14;
414
0
        Tc = Rp[WS(rs, 3)];
415
0
        T10 = Ip[WS(rs, 3)];
416
0
        Th = Rm[WS(rs, 2)];
417
0
        T15 = Im[WS(rs, 2)];
418
0
        {
419
0
       E Td, Te, TF, TG;
420
0
       Td = Rm[WS(rs, 4)];
421
0
       Te = Rm[0];
422
0
       Tf = Td + Te;
423
0
       TY = KP866025403 * (Td - Te);
424
0
       TF = Im[WS(rs, 4)];
425
0
       TG = Im[0];
426
0
       TH = KP866025403 * (TF - TG);
427
0
       TZ = TF + TG;
428
0
        }
429
0
        {
430
0
       E Ti, Tj, TK, TL;
431
0
       Ti = Rp[WS(rs, 1)];
432
0
       Tj = Rp[WS(rs, 5)];
433
0
       Tk = Ti + Tj;
434
0
       T13 = KP866025403 * (Ti - Tj);
435
0
       TK = Ip[WS(rs, 5)];
436
0
       TL = Ip[WS(rs, 1)];
437
0
       TM = KP866025403 * (TK - TL);
438
0
       T14 = TK + TL;
439
0
        }
440
0
        {
441
0
       E TE, TJ, T16, T11;
442
0
       TE = FNMS(KP500000000, Tf, Tc);
443
0
       TI = TE + TH;
444
0
       T1z = TE - TH;
445
0
       TJ = FNMS(KP500000000, Tk, Th);
446
0
       TN = TJ + TM;
447
0
       T1A = TJ - TM;
448
0
       T16 = FMA(KP500000000, T14, T15);
449
0
       T17 = T13 - T16;
450
0
       T1I = T13 + T16;
451
0
       T11 = FMA(KP500000000, TZ, T10);
452
0
       T12 = TY + T11;
453
0
       T1H = T11 - TY;
454
0
       {
455
0
            E T1e, T1f, Tg, Tl;
456
0
            T1e = T10 - TZ;
457
0
            T1f = T14 - T15;
458
0
            T1g = T1e + T1f;
459
0
            T1S = T1e - T1f;
460
0
            Tg = Tc + Tf;
461
0
            Tl = Th + Tk;
462
0
            Tm = Tg + Tl;
463
0
            T1O = Tg - Tl;
464
0
       }
465
0
        }
466
0
         }
467
0
         {
468
0
        E Tn, T1h, TP, T1p, T19, T1r, T1n, T1t;
469
0
        Tn = Tb + Tm;
470
0
        T1h = T1d + T1g;
471
0
        {
472
0
       E TD, TO, TX, T18;
473
0
       TD = Tv - TC;
474
0
       TO = TI - TN;
475
0
       TP = TD + TO;
476
0
       T1p = TD - TO;
477
0
       TX = TT - TW;
478
0
       T18 = T12 - T17;
479
0
       T19 = TX - T18;
480
0
       T1r = TX + T18;
481
0
       {
482
0
            E T1k, T1m, T1j, T1l;
483
0
            T1k = Tb - Tm;
484
0
            T1m = T1d - T1g;
485
0
            T1j = W[10];
486
0
            T1l = W[11];
487
0
            T1n = FNMS(T1l, T1m, T1j * T1k);
488
0
            T1t = FMA(T1l, T1k, T1j * T1m);
489
0
       }
490
0
        }
491
0
        {
492
0
       E T1a, T1i, To, TQ;
493
0
       To = W[0];
494
0
       TQ = W[1];
495
0
       T1a = FMA(To, TP, TQ * T19);
496
0
       T1i = FNMS(TQ, TP, To * T19);
497
0
       Rp[0] = Tn - T1a;
498
0
       Ip[0] = T1h + T1i;
499
0
       Rm[0] = Tn + T1a;
500
0
       Im[0] = T1i - T1h;
501
0
        }
502
0
        {
503
0
       E T1s, T1u, T1o, T1q;
504
0
       T1o = W[12];
505
0
       T1q = W[13];
506
0
       T1s = FMA(T1o, T1p, T1q * T1r);
507
0
       T1u = FNMS(T1q, T1p, T1o * T1r);
508
0
       Rp[WS(rs, 3)] = T1n - T1s;
509
0
       Ip[WS(rs, 3)] = T1t + T1u;
510
0
       Rm[WS(rs, 3)] = T1n + T1s;
511
0
       Im[WS(rs, 3)] = T1u - T1t;
512
0
        }
513
0
         }
514
0
         {
515
0
        E T1C, T1Y, T1K, T20, T1U, T1V, T26, T27;
516
0
        {
517
0
       E T1y, T1B, T1G, T1J;
518
0
       T1y = T1w + T1x;
519
0
       T1B = T1z + T1A;
520
0
       T1C = T1y - T1B;
521
0
       T1Y = T1y + T1B;
522
0
       T1G = T1E + T1F;
523
0
       T1J = T1H - T1I;
524
0
       T1K = T1G - T1J;
525
0
       T20 = T1G + T1J;
526
0
        }
527
0
        {
528
0
       E T1P, T1T, T1M, T1Q;
529
0
       T1P = T1N - T1O;
530
0
       T1T = T1R + T1S;
531
0
       T1M = W[4];
532
0
       T1Q = W[5];
533
0
       T1U = FMA(T1M, T1P, T1Q * T1T);
534
0
       T1V = FNMS(T1Q, T1P, T1M * T1T);
535
0
        }
536
0
        {
537
0
       E T23, T25, T22, T24;
538
0
       T23 = T1O + T1N;
539
0
       T25 = T1R - T1S;
540
0
       T22 = W[16];
541
0
       T24 = W[17];
542
0
       T26 = FMA(T22, T23, T24 * T25);
543
0
       T27 = FNMS(T24, T23, T22 * T25);
544
0
        }
545
0
        {
546
0
       E T1L, T1W, T1v, T1D;
547
0
       T1v = W[2];
548
0
       T1D = W[3];
549
0
       T1L = FNMS(T1D, T1K, T1v * T1C);
550
0
       T1W = FMA(T1D, T1C, T1v * T1K);
551
0
       Rp[WS(rs, 1)] = T1L - T1U;
552
0
       Ip[WS(rs, 1)] = T1V + T1W;
553
0
       Rm[WS(rs, 1)] = T1U + T1L;
554
0
       Im[WS(rs, 1)] = T1V - T1W;
555
0
        }
556
0
        {
557
0
       E T21, T28, T1X, T1Z;
558
0
       T1X = W[14];
559
0
       T1Z = W[15];
560
0
       T21 = FNMS(T1Z, T20, T1X * T1Y);
561
0
       T28 = FMA(T1Z, T1Y, T1X * T20);
562
0
       Rp[WS(rs, 4)] = T21 - T26;
563
0
       Ip[WS(rs, 4)] = T27 + T28;
564
0
       Rm[WS(rs, 4)] = T26 + T21;
565
0
       Im[WS(rs, 4)] = T27 - T28;
566
0
        }
567
0
         }
568
0
         {
569
0
        E T2c, T2u, T2p, T2B, T2g, T2w, T2l, T2z;
570
0
        {
571
0
       E T2a, T2b, T2n, T2o;
572
0
       T2a = TT + TW;
573
0
       T2b = TI + TN;
574
0
       T2c = T2a + T2b;
575
0
       T2u = T2a - T2b;
576
0
       T2n = T1w - T1x;
577
0
       T2o = T1H + T1I;
578
0
       T2p = T2n - T2o;
579
0
       T2B = T2n + T2o;
580
0
        }
581
0
        {
582
0
       E T2e, T2f, T2j, T2k;
583
0
       T2e = Tv + TC;
584
0
       T2f = T12 + T17;
585
0
       T2g = T2e + T2f;
586
0
       T2w = T2e - T2f;
587
0
       T2j = T1E - T1F;
588
0
       T2k = T1z - T1A;
589
0
       T2l = T2j + T2k;
590
0
       T2z = T2j - T2k;
591
0
        }
592
0
        {
593
0
       E T2h, T2r, T2q, T2s;
594
0
       {
595
0
            E T29, T2d, T2i, T2m;
596
0
            T29 = W[6];
597
0
            T2d = W[7];
598
0
            T2h = FNMS(T2d, T2g, T29 * T2c);
599
0
            T2r = FMA(T2d, T2c, T29 * T2g);
600
0
            T2i = W[8];
601
0
            T2m = W[9];
602
0
            T2q = FMA(T2i, T2l, T2m * T2p);
603
0
            T2s = FNMS(T2m, T2l, T2i * T2p);
604
0
       }
605
0
       Rp[WS(rs, 2)] = T2h - T2q;
606
0
       Ip[WS(rs, 2)] = T2r + T2s;
607
0
       Rm[WS(rs, 2)] = T2h + T2q;
608
0
       Im[WS(rs, 2)] = T2s - T2r;
609
0
        }
610
0
        {
611
0
       E T2x, T2D, T2C, T2E;
612
0
       {
613
0
            E T2t, T2v, T2y, T2A;
614
0
            T2t = W[18];
615
0
            T2v = W[19];
616
0
            T2x = FNMS(T2v, T2w, T2t * T2u);
617
0
            T2D = FMA(T2v, T2u, T2t * T2w);
618
0
            T2y = W[20];
619
0
            T2A = W[21];
620
0
            T2C = FMA(T2y, T2z, T2A * T2B);
621
0
            T2E = FNMS(T2A, T2z, T2y * T2B);
622
0
       }
623
0
       Rp[WS(rs, 5)] = T2x - T2C;
624
0
       Ip[WS(rs, 5)] = T2D + T2E;
625
0
       Rm[WS(rs, 5)] = T2x + T2C;
626
0
       Im[WS(rs, 5)] = T2E - T2D;
627
0
        }
628
0
         }
629
0
    }
630
0
     }
631
0
}
632
633
static const tw_instr twinstr[] = {
634
     { TW_FULL, 1, 12 },
635
     { TW_NEXT, 1, 0 }
636
};
637
638
static const hc2c_desc desc = { 12, "hc2cbdft_12", twinstr, &GENUS, { 112, 30, 30, 0 } };
639
640
1
void X(codelet_hc2cbdft_12) (planner *p) {
641
1
     X(khc2c_register) (p, hc2cbdft_12, &desc, HC2C_VIA_DFT);
642
1
}
643
#endif