/src/fftw3/rdft/scalar/r2cf/hc2cf_8.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Sun Jun 22 06:44:00 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -n 8 -dit -name hc2cf_8 -include rdft/scalar/hc2cf.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 66 FP additions, 36 FP multiplications, |
32 | | * (or, 44 additions, 14 multiplications, 22 fused multiply/add), |
33 | | * 34 stack variables, 1 constants, and 32 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hc2cf.h" |
36 | | |
37 | | static void hc2cf_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
40 | | { |
41 | | INT m; |
42 | | for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) { |
43 | | E T1, T1m, T7, T1l, Tk, TS, Te, TQ, TF, T14, TL, T16, T12, T17, Ts; |
44 | | E TX, Ty, TZ, TV, T10; |
45 | | T1 = Rp[0]; |
46 | | T1m = Rm[0]; |
47 | | { |
48 | | E T3, T6, T4, T1k, T2, T5; |
49 | | T3 = Rp[WS(rs, 2)]; |
50 | | T6 = Rm[WS(rs, 2)]; |
51 | | T2 = W[6]; |
52 | | T4 = T2 * T3; |
53 | | T1k = T2 * T6; |
54 | | T5 = W[7]; |
55 | | T7 = FMA(T5, T6, T4); |
56 | | T1l = FNMS(T5, T3, T1k); |
57 | | } |
58 | | { |
59 | | E Tg, Tj, Th, TR, Tf, Ti; |
60 | | Tg = Rp[WS(rs, 3)]; |
61 | | Tj = Rm[WS(rs, 3)]; |
62 | | Tf = W[10]; |
63 | | Th = Tf * Tg; |
64 | | TR = Tf * Tj; |
65 | | Ti = W[11]; |
66 | | Tk = FMA(Ti, Tj, Th); |
67 | | TS = FNMS(Ti, Tg, TR); |
68 | | } |
69 | | { |
70 | | E Ta, Td, Tb, TP, T9, Tc; |
71 | | Ta = Rp[WS(rs, 1)]; |
72 | | Td = Rm[WS(rs, 1)]; |
73 | | T9 = W[2]; |
74 | | Tb = T9 * Ta; |
75 | | TP = T9 * Td; |
76 | | Tc = W[3]; |
77 | | Te = FMA(Tc, Td, Tb); |
78 | | TQ = FNMS(Tc, Ta, TP); |
79 | | } |
80 | | { |
81 | | E TB, TE, TC, T13, TH, TK, TI, T15, TA, TG, TD, TJ; |
82 | | TB = Ip[WS(rs, 3)]; |
83 | | TE = Im[WS(rs, 3)]; |
84 | | TA = W[12]; |
85 | | TC = TA * TB; |
86 | | T13 = TA * TE; |
87 | | TH = Ip[WS(rs, 1)]; |
88 | | TK = Im[WS(rs, 1)]; |
89 | | TG = W[4]; |
90 | | TI = TG * TH; |
91 | | T15 = TG * TK; |
92 | | TD = W[13]; |
93 | | TF = FMA(TD, TE, TC); |
94 | | T14 = FNMS(TD, TB, T13); |
95 | | TJ = W[5]; |
96 | | TL = FMA(TJ, TK, TI); |
97 | | T16 = FNMS(TJ, TH, T15); |
98 | | T12 = TF - TL; |
99 | | T17 = T14 - T16; |
100 | | } |
101 | | { |
102 | | E To, Tr, Tp, TW, Tu, Tx, Tv, TY, Tn, Tt, Tq, Tw; |
103 | | To = Ip[0]; |
104 | | Tr = Im[0]; |
105 | | Tn = W[0]; |
106 | | Tp = Tn * To; |
107 | | TW = Tn * Tr; |
108 | | Tu = Ip[WS(rs, 2)]; |
109 | | Tx = Im[WS(rs, 2)]; |
110 | | Tt = W[8]; |
111 | | Tv = Tt * Tu; |
112 | | TY = Tt * Tx; |
113 | | Tq = W[1]; |
114 | | Ts = FMA(Tq, Tr, Tp); |
115 | | TX = FNMS(Tq, To, TW); |
116 | | Tw = W[9]; |
117 | | Ty = FMA(Tw, Tx, Tv); |
118 | | TZ = FNMS(Tw, Tu, TY); |
119 | | TV = Ts - Ty; |
120 | | T10 = TX - TZ; |
121 | | } |
122 | | { |
123 | | E TU, T1a, T1t, T1v, T19, T1w, T1d, T1u; |
124 | | { |
125 | | E TO, TT, T1r, T1s; |
126 | | TO = T1 - T7; |
127 | | TT = TQ - TS; |
128 | | TU = TO + TT; |
129 | | T1a = TO - TT; |
130 | | T1r = T1m - T1l; |
131 | | T1s = Te - Tk; |
132 | | T1t = T1r - T1s; |
133 | | T1v = T1s + T1r; |
134 | | } |
135 | | { |
136 | | E T11, T18, T1b, T1c; |
137 | | T11 = TV + T10; |
138 | | T18 = T12 - T17; |
139 | | T19 = T11 + T18; |
140 | | T1w = T18 - T11; |
141 | | T1b = T10 - TV; |
142 | | T1c = T12 + T17; |
143 | | T1d = T1b - T1c; |
144 | | T1u = T1b + T1c; |
145 | | } |
146 | | Rm[WS(rs, 2)] = FNMS(KP707106781, T19, TU); |
147 | | Im[WS(rs, 2)] = FMS(KP707106781, T1u, T1t); |
148 | | Rp[WS(rs, 1)] = FMA(KP707106781, T19, TU); |
149 | | Ip[WS(rs, 1)] = FMA(KP707106781, T1u, T1t); |
150 | | Rm[0] = FNMS(KP707106781, T1d, T1a); |
151 | | Im[0] = FMS(KP707106781, T1w, T1v); |
152 | | Rp[WS(rs, 3)] = FMA(KP707106781, T1d, T1a); |
153 | | Ip[WS(rs, 3)] = FMA(KP707106781, T1w, T1v); |
154 | | } |
155 | | { |
156 | | E Tm, T1e, T1o, T1q, TN, T1p, T1h, T1i; |
157 | | { |
158 | | E T8, Tl, T1j, T1n; |
159 | | T8 = T1 + T7; |
160 | | Tl = Te + Tk; |
161 | | Tm = T8 + Tl; |
162 | | T1e = T8 - Tl; |
163 | | T1j = TQ + TS; |
164 | | T1n = T1l + T1m; |
165 | | T1o = T1j + T1n; |
166 | | T1q = T1n - T1j; |
167 | | } |
168 | | { |
169 | | E Tz, TM, T1f, T1g; |
170 | | Tz = Ts + Ty; |
171 | | TM = TF + TL; |
172 | | TN = Tz + TM; |
173 | | T1p = TM - Tz; |
174 | | T1f = TX + TZ; |
175 | | T1g = T14 + T16; |
176 | | T1h = T1f - T1g; |
177 | | T1i = T1f + T1g; |
178 | | } |
179 | | Rm[WS(rs, 3)] = Tm - TN; |
180 | | Im[WS(rs, 3)] = T1i - T1o; |
181 | | Rp[0] = Tm + TN; |
182 | | Ip[0] = T1i + T1o; |
183 | | Rm[WS(rs, 1)] = T1e - T1h; |
184 | | Im[WS(rs, 1)] = T1p - T1q; |
185 | | Rp[WS(rs, 2)] = T1e + T1h; |
186 | | Ip[WS(rs, 2)] = T1p + T1q; |
187 | | } |
188 | | } |
189 | | } |
190 | | } |
191 | | |
192 | | static const tw_instr twinstr[] = { |
193 | | { TW_FULL, 1, 8 }, |
194 | | { TW_NEXT, 1, 0 } |
195 | | }; |
196 | | |
197 | | static const hc2c_desc desc = { 8, "hc2cf_8", twinstr, &GENUS, { 44, 14, 22, 0 } }; |
198 | | |
199 | | void X(codelet_hc2cf_8) (planner *p) { |
200 | | X(khc2c_register) (p, hc2cf_8, &desc, HC2C_VIA_RDFT); |
201 | | } |
202 | | #else |
203 | | |
204 | | /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -n 8 -dit -name hc2cf_8 -include rdft/scalar/hc2cf.h */ |
205 | | |
206 | | /* |
207 | | * This function contains 66 FP additions, 32 FP multiplications, |
208 | | * (or, 52 additions, 18 multiplications, 14 fused multiply/add), |
209 | | * 28 stack variables, 1 constants, and 32 memory accesses |
210 | | */ |
211 | | #include "rdft/scalar/hc2cf.h" |
212 | | |
213 | | static void hc2cf_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
214 | 0 | { |
215 | 0 | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
216 | 0 | { |
217 | 0 | INT m; |
218 | 0 | for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) { |
219 | 0 | E T7, T1e, TH, T19, TF, T13, TR, TU, Ti, T1f, TK, T16, Tu, T12, TM; |
220 | 0 | E TP; |
221 | 0 | { |
222 | 0 | E T1, T18, T6, T17; |
223 | 0 | T1 = Rp[0]; |
224 | 0 | T18 = Rm[0]; |
225 | 0 | { |
226 | 0 | E T3, T5, T2, T4; |
227 | 0 | T3 = Rp[WS(rs, 2)]; |
228 | 0 | T5 = Rm[WS(rs, 2)]; |
229 | 0 | T2 = W[6]; |
230 | 0 | T4 = W[7]; |
231 | 0 | T6 = FMA(T2, T3, T4 * T5); |
232 | 0 | T17 = FNMS(T4, T3, T2 * T5); |
233 | 0 | } |
234 | 0 | T7 = T1 + T6; |
235 | 0 | T1e = T18 - T17; |
236 | 0 | TH = T1 - T6; |
237 | 0 | T19 = T17 + T18; |
238 | 0 | } |
239 | 0 | { |
240 | 0 | E Tz, TS, TE, TT; |
241 | 0 | { |
242 | 0 | E Tw, Ty, Tv, Tx; |
243 | 0 | Tw = Ip[WS(rs, 3)]; |
244 | 0 | Ty = Im[WS(rs, 3)]; |
245 | 0 | Tv = W[12]; |
246 | 0 | Tx = W[13]; |
247 | 0 | Tz = FMA(Tv, Tw, Tx * Ty); |
248 | 0 | TS = FNMS(Tx, Tw, Tv * Ty); |
249 | 0 | } |
250 | 0 | { |
251 | 0 | E TB, TD, TA, TC; |
252 | 0 | TB = Ip[WS(rs, 1)]; |
253 | 0 | TD = Im[WS(rs, 1)]; |
254 | 0 | TA = W[4]; |
255 | 0 | TC = W[5]; |
256 | 0 | TE = FMA(TA, TB, TC * TD); |
257 | 0 | TT = FNMS(TC, TB, TA * TD); |
258 | 0 | } |
259 | 0 | TF = Tz + TE; |
260 | 0 | T13 = TS + TT; |
261 | 0 | TR = Tz - TE; |
262 | 0 | TU = TS - TT; |
263 | 0 | } |
264 | 0 | { |
265 | 0 | E Tc, TI, Th, TJ; |
266 | 0 | { |
267 | 0 | E T9, Tb, T8, Ta; |
268 | 0 | T9 = Rp[WS(rs, 1)]; |
269 | 0 | Tb = Rm[WS(rs, 1)]; |
270 | 0 | T8 = W[2]; |
271 | 0 | Ta = W[3]; |
272 | 0 | Tc = FMA(T8, T9, Ta * Tb); |
273 | 0 | TI = FNMS(Ta, T9, T8 * Tb); |
274 | 0 | } |
275 | 0 | { |
276 | 0 | E Te, Tg, Td, Tf; |
277 | 0 | Te = Rp[WS(rs, 3)]; |
278 | 0 | Tg = Rm[WS(rs, 3)]; |
279 | 0 | Td = W[10]; |
280 | 0 | Tf = W[11]; |
281 | 0 | Th = FMA(Td, Te, Tf * Tg); |
282 | 0 | TJ = FNMS(Tf, Te, Td * Tg); |
283 | 0 | } |
284 | 0 | Ti = Tc + Th; |
285 | 0 | T1f = Tc - Th; |
286 | 0 | TK = TI - TJ; |
287 | 0 | T16 = TI + TJ; |
288 | 0 | } |
289 | 0 | { |
290 | 0 | E To, TN, Tt, TO; |
291 | 0 | { |
292 | 0 | E Tl, Tn, Tk, Tm; |
293 | 0 | Tl = Ip[0]; |
294 | 0 | Tn = Im[0]; |
295 | 0 | Tk = W[0]; |
296 | 0 | Tm = W[1]; |
297 | 0 | To = FMA(Tk, Tl, Tm * Tn); |
298 | 0 | TN = FNMS(Tm, Tl, Tk * Tn); |
299 | 0 | } |
300 | 0 | { |
301 | 0 | E Tq, Ts, Tp, Tr; |
302 | 0 | Tq = Ip[WS(rs, 2)]; |
303 | 0 | Ts = Im[WS(rs, 2)]; |
304 | 0 | Tp = W[8]; |
305 | 0 | Tr = W[9]; |
306 | 0 | Tt = FMA(Tp, Tq, Tr * Ts); |
307 | 0 | TO = FNMS(Tr, Tq, Tp * Ts); |
308 | 0 | } |
309 | 0 | Tu = To + Tt; |
310 | 0 | T12 = TN + TO; |
311 | 0 | TM = To - Tt; |
312 | 0 | TP = TN - TO; |
313 | 0 | } |
314 | 0 | { |
315 | 0 | E Tj, TG, T1b, T1c; |
316 | 0 | Tj = T7 + Ti; |
317 | 0 | TG = Tu + TF; |
318 | 0 | Rm[WS(rs, 3)] = Tj - TG; |
319 | 0 | Rp[0] = Tj + TG; |
320 | 0 | { |
321 | 0 | E T15, T1a, T11, T14; |
322 | 0 | T15 = T12 + T13; |
323 | 0 | T1a = T16 + T19; |
324 | 0 | Im[WS(rs, 3)] = T15 - T1a; |
325 | 0 | Ip[0] = T15 + T1a; |
326 | 0 | T11 = T7 - Ti; |
327 | 0 | T14 = T12 - T13; |
328 | 0 | Rm[WS(rs, 1)] = T11 - T14; |
329 | 0 | Rp[WS(rs, 2)] = T11 + T14; |
330 | 0 | } |
331 | 0 | T1b = TF - Tu; |
332 | 0 | T1c = T19 - T16; |
333 | 0 | Im[WS(rs, 1)] = T1b - T1c; |
334 | 0 | Ip[WS(rs, 2)] = T1b + T1c; |
335 | 0 | { |
336 | 0 | E TX, T1g, T10, T1d, TY, TZ; |
337 | 0 | TX = TH - TK; |
338 | 0 | T1g = T1e - T1f; |
339 | 0 | TY = TP - TM; |
340 | 0 | TZ = TR + TU; |
341 | 0 | T10 = KP707106781 * (TY - TZ); |
342 | 0 | T1d = KP707106781 * (TY + TZ); |
343 | 0 | Rm[0] = TX - T10; |
344 | 0 | Ip[WS(rs, 1)] = T1d + T1g; |
345 | 0 | Rp[WS(rs, 3)] = TX + T10; |
346 | 0 | Im[WS(rs, 2)] = T1d - T1g; |
347 | 0 | } |
348 | 0 | { |
349 | 0 | E TL, T1i, TW, T1h, TQ, TV; |
350 | 0 | TL = TH + TK; |
351 | 0 | T1i = T1f + T1e; |
352 | 0 | TQ = TM + TP; |
353 | 0 | TV = TR - TU; |
354 | 0 | TW = KP707106781 * (TQ + TV); |
355 | 0 | T1h = KP707106781 * (TV - TQ); |
356 | 0 | Rm[WS(rs, 2)] = TL - TW; |
357 | 0 | Ip[WS(rs, 3)] = T1h + T1i; |
358 | 0 | Rp[WS(rs, 1)] = TL + TW; |
359 | 0 | Im[0] = T1h - T1i; |
360 | 0 | } |
361 | 0 | } |
362 | 0 | } |
363 | 0 | } |
364 | 0 | } |
365 | | |
366 | | static const tw_instr twinstr[] = { |
367 | | { TW_FULL, 1, 8 }, |
368 | | { TW_NEXT, 1, 0 } |
369 | | }; |
370 | | |
371 | | static const hc2c_desc desc = { 8, "hc2cf_8", twinstr, &GENUS, { 52, 18, 14, 0 } }; |
372 | | |
373 | 1 | void X(codelet_hc2cf_8) (planner *p) { |
374 | 1 | X(khc2c_register) (p, hc2cf_8, &desc, HC2C_VIA_RDFT); |
375 | 1 | } |
376 | | #endif |