Coverage Report

Created: 2025-06-22 06:45

/src/fftw3/rdft/scalar/r2cf/hc2cf_8.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Sun Jun 22 06:44:00 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -n 8 -dit -name hc2cf_8 -include rdft/scalar/hc2cf.h */
29
30
/*
31
 * This function contains 66 FP additions, 36 FP multiplications,
32
 * (or, 44 additions, 14 multiplications, 22 fused multiply/add),
33
 * 34 stack variables, 1 constants, and 32 memory accesses
34
 */
35
#include "rdft/scalar/hc2cf.h"
36
37
static void hc2cf_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
40
     {
41
    INT m;
42
    for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) {
43
         E T1, T1m, T7, T1l, Tk, TS, Te, TQ, TF, T14, TL, T16, T12, T17, Ts;
44
         E TX, Ty, TZ, TV, T10;
45
         T1 = Rp[0];
46
         T1m = Rm[0];
47
         {
48
        E T3, T6, T4, T1k, T2, T5;
49
        T3 = Rp[WS(rs, 2)];
50
        T6 = Rm[WS(rs, 2)];
51
        T2 = W[6];
52
        T4 = T2 * T3;
53
        T1k = T2 * T6;
54
        T5 = W[7];
55
        T7 = FMA(T5, T6, T4);
56
        T1l = FNMS(T5, T3, T1k);
57
         }
58
         {
59
        E Tg, Tj, Th, TR, Tf, Ti;
60
        Tg = Rp[WS(rs, 3)];
61
        Tj = Rm[WS(rs, 3)];
62
        Tf = W[10];
63
        Th = Tf * Tg;
64
        TR = Tf * Tj;
65
        Ti = W[11];
66
        Tk = FMA(Ti, Tj, Th);
67
        TS = FNMS(Ti, Tg, TR);
68
         }
69
         {
70
        E Ta, Td, Tb, TP, T9, Tc;
71
        Ta = Rp[WS(rs, 1)];
72
        Td = Rm[WS(rs, 1)];
73
        T9 = W[2];
74
        Tb = T9 * Ta;
75
        TP = T9 * Td;
76
        Tc = W[3];
77
        Te = FMA(Tc, Td, Tb);
78
        TQ = FNMS(Tc, Ta, TP);
79
         }
80
         {
81
        E TB, TE, TC, T13, TH, TK, TI, T15, TA, TG, TD, TJ;
82
        TB = Ip[WS(rs, 3)];
83
        TE = Im[WS(rs, 3)];
84
        TA = W[12];
85
        TC = TA * TB;
86
        T13 = TA * TE;
87
        TH = Ip[WS(rs, 1)];
88
        TK = Im[WS(rs, 1)];
89
        TG = W[4];
90
        TI = TG * TH;
91
        T15 = TG * TK;
92
        TD = W[13];
93
        TF = FMA(TD, TE, TC);
94
        T14 = FNMS(TD, TB, T13);
95
        TJ = W[5];
96
        TL = FMA(TJ, TK, TI);
97
        T16 = FNMS(TJ, TH, T15);
98
        T12 = TF - TL;
99
        T17 = T14 - T16;
100
         }
101
         {
102
        E To, Tr, Tp, TW, Tu, Tx, Tv, TY, Tn, Tt, Tq, Tw;
103
        To = Ip[0];
104
        Tr = Im[0];
105
        Tn = W[0];
106
        Tp = Tn * To;
107
        TW = Tn * Tr;
108
        Tu = Ip[WS(rs, 2)];
109
        Tx = Im[WS(rs, 2)];
110
        Tt = W[8];
111
        Tv = Tt * Tu;
112
        TY = Tt * Tx;
113
        Tq = W[1];
114
        Ts = FMA(Tq, Tr, Tp);
115
        TX = FNMS(Tq, To, TW);
116
        Tw = W[9];
117
        Ty = FMA(Tw, Tx, Tv);
118
        TZ = FNMS(Tw, Tu, TY);
119
        TV = Ts - Ty;
120
        T10 = TX - TZ;
121
         }
122
         {
123
        E TU, T1a, T1t, T1v, T19, T1w, T1d, T1u;
124
        {
125
       E TO, TT, T1r, T1s;
126
       TO = T1 - T7;
127
       TT = TQ - TS;
128
       TU = TO + TT;
129
       T1a = TO - TT;
130
       T1r = T1m - T1l;
131
       T1s = Te - Tk;
132
       T1t = T1r - T1s;
133
       T1v = T1s + T1r;
134
        }
135
        {
136
       E T11, T18, T1b, T1c;
137
       T11 = TV + T10;
138
       T18 = T12 - T17;
139
       T19 = T11 + T18;
140
       T1w = T18 - T11;
141
       T1b = T10 - TV;
142
       T1c = T12 + T17;
143
       T1d = T1b - T1c;
144
       T1u = T1b + T1c;
145
        }
146
        Rm[WS(rs, 2)] = FNMS(KP707106781, T19, TU);
147
        Im[WS(rs, 2)] = FMS(KP707106781, T1u, T1t);
148
        Rp[WS(rs, 1)] = FMA(KP707106781, T19, TU);
149
        Ip[WS(rs, 1)] = FMA(KP707106781, T1u, T1t);
150
        Rm[0] = FNMS(KP707106781, T1d, T1a);
151
        Im[0] = FMS(KP707106781, T1w, T1v);
152
        Rp[WS(rs, 3)] = FMA(KP707106781, T1d, T1a);
153
        Ip[WS(rs, 3)] = FMA(KP707106781, T1w, T1v);
154
         }
155
         {
156
        E Tm, T1e, T1o, T1q, TN, T1p, T1h, T1i;
157
        {
158
       E T8, Tl, T1j, T1n;
159
       T8 = T1 + T7;
160
       Tl = Te + Tk;
161
       Tm = T8 + Tl;
162
       T1e = T8 - Tl;
163
       T1j = TQ + TS;
164
       T1n = T1l + T1m;
165
       T1o = T1j + T1n;
166
       T1q = T1n - T1j;
167
        }
168
        {
169
       E Tz, TM, T1f, T1g;
170
       Tz = Ts + Ty;
171
       TM = TF + TL;
172
       TN = Tz + TM;
173
       T1p = TM - Tz;
174
       T1f = TX + TZ;
175
       T1g = T14 + T16;
176
       T1h = T1f - T1g;
177
       T1i = T1f + T1g;
178
        }
179
        Rm[WS(rs, 3)] = Tm - TN;
180
        Im[WS(rs, 3)] = T1i - T1o;
181
        Rp[0] = Tm + TN;
182
        Ip[0] = T1i + T1o;
183
        Rm[WS(rs, 1)] = T1e - T1h;
184
        Im[WS(rs, 1)] = T1p - T1q;
185
        Rp[WS(rs, 2)] = T1e + T1h;
186
        Ip[WS(rs, 2)] = T1p + T1q;
187
         }
188
    }
189
     }
190
}
191
192
static const tw_instr twinstr[] = {
193
     { TW_FULL, 1, 8 },
194
     { TW_NEXT, 1, 0 }
195
};
196
197
static const hc2c_desc desc = { 8, "hc2cf_8", twinstr, &GENUS, { 44, 14, 22, 0 } };
198
199
void X(codelet_hc2cf_8) (planner *p) {
200
     X(khc2c_register) (p, hc2cf_8, &desc, HC2C_VIA_RDFT);
201
}
202
#else
203
204
/* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -n 8 -dit -name hc2cf_8 -include rdft/scalar/hc2cf.h */
205
206
/*
207
 * This function contains 66 FP additions, 32 FP multiplications,
208
 * (or, 52 additions, 18 multiplications, 14 fused multiply/add),
209
 * 28 stack variables, 1 constants, and 32 memory accesses
210
 */
211
#include "rdft/scalar/hc2cf.h"
212
213
static void hc2cf_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
214
0
{
215
0
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
216
0
     {
217
0
    INT m;
218
0
    for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) {
219
0
         E T7, T1e, TH, T19, TF, T13, TR, TU, Ti, T1f, TK, T16, Tu, T12, TM;
220
0
         E TP;
221
0
         {
222
0
        E T1, T18, T6, T17;
223
0
        T1 = Rp[0];
224
0
        T18 = Rm[0];
225
0
        {
226
0
       E T3, T5, T2, T4;
227
0
       T3 = Rp[WS(rs, 2)];
228
0
       T5 = Rm[WS(rs, 2)];
229
0
       T2 = W[6];
230
0
       T4 = W[7];
231
0
       T6 = FMA(T2, T3, T4 * T5);
232
0
       T17 = FNMS(T4, T3, T2 * T5);
233
0
        }
234
0
        T7 = T1 + T6;
235
0
        T1e = T18 - T17;
236
0
        TH = T1 - T6;
237
0
        T19 = T17 + T18;
238
0
         }
239
0
         {
240
0
        E Tz, TS, TE, TT;
241
0
        {
242
0
       E Tw, Ty, Tv, Tx;
243
0
       Tw = Ip[WS(rs, 3)];
244
0
       Ty = Im[WS(rs, 3)];
245
0
       Tv = W[12];
246
0
       Tx = W[13];
247
0
       Tz = FMA(Tv, Tw, Tx * Ty);
248
0
       TS = FNMS(Tx, Tw, Tv * Ty);
249
0
        }
250
0
        {
251
0
       E TB, TD, TA, TC;
252
0
       TB = Ip[WS(rs, 1)];
253
0
       TD = Im[WS(rs, 1)];
254
0
       TA = W[4];
255
0
       TC = W[5];
256
0
       TE = FMA(TA, TB, TC * TD);
257
0
       TT = FNMS(TC, TB, TA * TD);
258
0
        }
259
0
        TF = Tz + TE;
260
0
        T13 = TS + TT;
261
0
        TR = Tz - TE;
262
0
        TU = TS - TT;
263
0
         }
264
0
         {
265
0
        E Tc, TI, Th, TJ;
266
0
        {
267
0
       E T9, Tb, T8, Ta;
268
0
       T9 = Rp[WS(rs, 1)];
269
0
       Tb = Rm[WS(rs, 1)];
270
0
       T8 = W[2];
271
0
       Ta = W[3];
272
0
       Tc = FMA(T8, T9, Ta * Tb);
273
0
       TI = FNMS(Ta, T9, T8 * Tb);
274
0
        }
275
0
        {
276
0
       E Te, Tg, Td, Tf;
277
0
       Te = Rp[WS(rs, 3)];
278
0
       Tg = Rm[WS(rs, 3)];
279
0
       Td = W[10];
280
0
       Tf = W[11];
281
0
       Th = FMA(Td, Te, Tf * Tg);
282
0
       TJ = FNMS(Tf, Te, Td * Tg);
283
0
        }
284
0
        Ti = Tc + Th;
285
0
        T1f = Tc - Th;
286
0
        TK = TI - TJ;
287
0
        T16 = TI + TJ;
288
0
         }
289
0
         {
290
0
        E To, TN, Tt, TO;
291
0
        {
292
0
       E Tl, Tn, Tk, Tm;
293
0
       Tl = Ip[0];
294
0
       Tn = Im[0];
295
0
       Tk = W[0];
296
0
       Tm = W[1];
297
0
       To = FMA(Tk, Tl, Tm * Tn);
298
0
       TN = FNMS(Tm, Tl, Tk * Tn);
299
0
        }
300
0
        {
301
0
       E Tq, Ts, Tp, Tr;
302
0
       Tq = Ip[WS(rs, 2)];
303
0
       Ts = Im[WS(rs, 2)];
304
0
       Tp = W[8];
305
0
       Tr = W[9];
306
0
       Tt = FMA(Tp, Tq, Tr * Ts);
307
0
       TO = FNMS(Tr, Tq, Tp * Ts);
308
0
        }
309
0
        Tu = To + Tt;
310
0
        T12 = TN + TO;
311
0
        TM = To - Tt;
312
0
        TP = TN - TO;
313
0
         }
314
0
         {
315
0
        E Tj, TG, T1b, T1c;
316
0
        Tj = T7 + Ti;
317
0
        TG = Tu + TF;
318
0
        Rm[WS(rs, 3)] = Tj - TG;
319
0
        Rp[0] = Tj + TG;
320
0
        {
321
0
       E T15, T1a, T11, T14;
322
0
       T15 = T12 + T13;
323
0
       T1a = T16 + T19;
324
0
       Im[WS(rs, 3)] = T15 - T1a;
325
0
       Ip[0] = T15 + T1a;
326
0
       T11 = T7 - Ti;
327
0
       T14 = T12 - T13;
328
0
       Rm[WS(rs, 1)] = T11 - T14;
329
0
       Rp[WS(rs, 2)] = T11 + T14;
330
0
        }
331
0
        T1b = TF - Tu;
332
0
        T1c = T19 - T16;
333
0
        Im[WS(rs, 1)] = T1b - T1c;
334
0
        Ip[WS(rs, 2)] = T1b + T1c;
335
0
        {
336
0
       E TX, T1g, T10, T1d, TY, TZ;
337
0
       TX = TH - TK;
338
0
       T1g = T1e - T1f;
339
0
       TY = TP - TM;
340
0
       TZ = TR + TU;
341
0
       T10 = KP707106781 * (TY - TZ);
342
0
       T1d = KP707106781 * (TY + TZ);
343
0
       Rm[0] = TX - T10;
344
0
       Ip[WS(rs, 1)] = T1d + T1g;
345
0
       Rp[WS(rs, 3)] = TX + T10;
346
0
       Im[WS(rs, 2)] = T1d - T1g;
347
0
        }
348
0
        {
349
0
       E TL, T1i, TW, T1h, TQ, TV;
350
0
       TL = TH + TK;
351
0
       T1i = T1f + T1e;
352
0
       TQ = TM + TP;
353
0
       TV = TR - TU;
354
0
       TW = KP707106781 * (TQ + TV);
355
0
       T1h = KP707106781 * (TV - TQ);
356
0
       Rm[WS(rs, 2)] = TL - TW;
357
0
       Ip[WS(rs, 3)] = T1h + T1i;
358
0
       Rp[WS(rs, 1)] = TL + TW;
359
0
       Im[0] = T1h - T1i;
360
0
        }
361
0
         }
362
0
    }
363
0
     }
364
0
}
365
366
static const tw_instr twinstr[] = {
367
     { TW_FULL, 1, 8 },
368
     { TW_NEXT, 1, 0 }
369
};
370
371
static const hc2c_desc desc = { 8, "hc2cf_8", twinstr, &GENUS, { 52, 18, 14, 0 } };
372
373
1
void X(codelet_hc2cf_8) (planner *p) {
374
1
     X(khc2c_register) (p, hc2cf_8, &desc, HC2C_VIA_RDFT);
375
1
}
376
#endif