/src/fftw3/rdft/scalar/r2cf/hf_15.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Sun Jun 22 06:43:34 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -n 15 -dit -name hf_15 -include rdft/scalar/hf.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 184 FP additions, 140 FP multiplications, |
32 | | * (or, 72 additions, 28 multiplications, 112 fused multiply/add), |
33 | | * 51 stack variables, 6 constants, and 60 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hf.h" |
36 | | |
37 | | static void hf_15(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
40 | | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
41 | | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
42 | | DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
43 | | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
44 | | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
45 | | { |
46 | | INT m; |
47 | | for (m = mb, W = W + ((mb - 1) * 28); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 28, MAKE_VOLATILE_STRIDE(30, rs)) { |
48 | | E T1, T3i, T1G, T3l, Te, T1B, T3j, T3k, T1y, T2i, T2a, T2M, T37, T2Y, Tz; |
49 | | E T2e, T1O, T2t, T39, T2U, TT, T2f, T1V, T2z, T3a, T2V, T1e, T2h, T23, T2G; |
50 | | E T36, T2X; |
51 | | { |
52 | | E T7, T1D, Td, T1F; |
53 | | T1 = cr[0]; |
54 | | T3i = ci[0]; |
55 | | { |
56 | | E T3, T6, T4, T1C, T2, T5; |
57 | | T3 = cr[WS(rs, 5)]; |
58 | | T6 = ci[WS(rs, 5)]; |
59 | | T2 = W[8]; |
60 | | T4 = T2 * T3; |
61 | | T1C = T2 * T6; |
62 | | T5 = W[9]; |
63 | | T7 = FMA(T5, T6, T4); |
64 | | T1D = FNMS(T5, T3, T1C); |
65 | | } |
66 | | { |
67 | | E T9, Tc, Ta, T1E, T8, Tb; |
68 | | T9 = cr[WS(rs, 10)]; |
69 | | Tc = ci[WS(rs, 10)]; |
70 | | T8 = W[18]; |
71 | | Ta = T8 * T9; |
72 | | T1E = T8 * Tc; |
73 | | Tb = W[19]; |
74 | | Td = FMA(Tb, Tc, Ta); |
75 | | T1F = FNMS(Tb, T9, T1E); |
76 | | } |
77 | | T1G = T1D - T1F; |
78 | | T3l = Td - T7; |
79 | | Te = T7 + Td; |
80 | | T1B = FNMS(KP500000000, Te, T1); |
81 | | T3j = T1D + T1F; |
82 | | T3k = FNMS(KP500000000, T3j, T3i); |
83 | | } |
84 | | { |
85 | | E T1k, T2I, T1w, T28, T1q, T26; |
86 | | { |
87 | | E T1g, T1j, T1h, T2H, T1f, T1i; |
88 | | T1g = cr[WS(rs, 9)]; |
89 | | T1j = ci[WS(rs, 9)]; |
90 | | T1f = W[16]; |
91 | | T1h = T1f * T1g; |
92 | | T2H = T1f * T1j; |
93 | | T1i = W[17]; |
94 | | T1k = FMA(T1i, T1j, T1h); |
95 | | T2I = FNMS(T1i, T1g, T2H); |
96 | | } |
97 | | { |
98 | | E T1s, T1v, T1t, T27, T1r, T1u; |
99 | | T1s = cr[WS(rs, 4)]; |
100 | | T1v = ci[WS(rs, 4)]; |
101 | | T1r = W[6]; |
102 | | T1t = T1r * T1s; |
103 | | T27 = T1r * T1v; |
104 | | T1u = W[7]; |
105 | | T1w = FMA(T1u, T1v, T1t); |
106 | | T28 = FNMS(T1u, T1s, T27); |
107 | | } |
108 | | { |
109 | | E T1m, T1p, T1n, T25, T1l, T1o; |
110 | | T1m = cr[WS(rs, 14)]; |
111 | | T1p = ci[WS(rs, 14)]; |
112 | | T1l = W[26]; |
113 | | T1n = T1l * T1m; |
114 | | T25 = T1l * T1p; |
115 | | T1o = W[27]; |
116 | | T1q = FMA(T1o, T1p, T1n); |
117 | | T26 = FNMS(T1o, T1m, T25); |
118 | | } |
119 | | { |
120 | | E T29, T1x, T24, T2L, T2J, T2K; |
121 | | T29 = T26 - T28; |
122 | | T1x = T1q + T1w; |
123 | | T24 = FNMS(KP500000000, T1x, T1k); |
124 | | T1y = T1k + T1x; |
125 | | T2i = FMA(KP866025403, T29, T24); |
126 | | T2a = FNMS(KP866025403, T29, T24); |
127 | | T2L = T1q - T1w; |
128 | | T2J = T26 + T28; |
129 | | T2K = FNMS(KP500000000, T2J, T2I); |
130 | | T2M = FNMS(KP866025403, T2L, T2K); |
131 | | T37 = T2I + T2J; |
132 | | T2Y = FMA(KP866025403, T2L, T2K); |
133 | | } |
134 | | } |
135 | | { |
136 | | E Tl, T2p, Tx, T1M, Tr, T1K; |
137 | | { |
138 | | E Th, Tk, Ti, T2o, Tg, Tj; |
139 | | Th = cr[WS(rs, 3)]; |
140 | | Tk = ci[WS(rs, 3)]; |
141 | | Tg = W[4]; |
142 | | Ti = Tg * Th; |
143 | | T2o = Tg * Tk; |
144 | | Tj = W[5]; |
145 | | Tl = FMA(Tj, Tk, Ti); |
146 | | T2p = FNMS(Tj, Th, T2o); |
147 | | } |
148 | | { |
149 | | E Tt, Tw, Tu, T1L, Ts, Tv; |
150 | | Tt = cr[WS(rs, 13)]; |
151 | | Tw = ci[WS(rs, 13)]; |
152 | | Ts = W[24]; |
153 | | Tu = Ts * Tt; |
154 | | T1L = Ts * Tw; |
155 | | Tv = W[25]; |
156 | | Tx = FMA(Tv, Tw, Tu); |
157 | | T1M = FNMS(Tv, Tt, T1L); |
158 | | } |
159 | | { |
160 | | E Tn, Tq, To, T1J, Tm, Tp; |
161 | | Tn = cr[WS(rs, 8)]; |
162 | | Tq = ci[WS(rs, 8)]; |
163 | | Tm = W[14]; |
164 | | To = Tm * Tn; |
165 | | T1J = Tm * Tq; |
166 | | Tp = W[15]; |
167 | | Tr = FMA(Tp, Tq, To); |
168 | | T1K = FNMS(Tp, Tn, T1J); |
169 | | } |
170 | | { |
171 | | E T1N, Ty, T1I, T2s, T2q, T2r; |
172 | | T1N = T1K - T1M; |
173 | | Ty = Tr + Tx; |
174 | | T1I = FNMS(KP500000000, Ty, Tl); |
175 | | Tz = Tl + Ty; |
176 | | T2e = FMA(KP866025403, T1N, T1I); |
177 | | T1O = FNMS(KP866025403, T1N, T1I); |
178 | | T2s = Tr - Tx; |
179 | | T2q = T1K + T1M; |
180 | | T2r = FNMS(KP500000000, T2q, T2p); |
181 | | T2t = FNMS(KP866025403, T2s, T2r); |
182 | | T39 = T2p + T2q; |
183 | | T2U = FMA(KP866025403, T2s, T2r); |
184 | | } |
185 | | } |
186 | | { |
187 | | E TF, T2v, TR, T1T, TL, T1R; |
188 | | { |
189 | | E TB, TE, TC, T2u, TA, TD; |
190 | | TB = cr[WS(rs, 12)]; |
191 | | TE = ci[WS(rs, 12)]; |
192 | | TA = W[22]; |
193 | | TC = TA * TB; |
194 | | T2u = TA * TE; |
195 | | TD = W[23]; |
196 | | TF = FMA(TD, TE, TC); |
197 | | T2v = FNMS(TD, TB, T2u); |
198 | | } |
199 | | { |
200 | | E TN, TQ, TO, T1S, TM, TP; |
201 | | TN = cr[WS(rs, 7)]; |
202 | | TQ = ci[WS(rs, 7)]; |
203 | | TM = W[12]; |
204 | | TO = TM * TN; |
205 | | T1S = TM * TQ; |
206 | | TP = W[13]; |
207 | | TR = FMA(TP, TQ, TO); |
208 | | T1T = FNMS(TP, TN, T1S); |
209 | | } |
210 | | { |
211 | | E TH, TK, TI, T1Q, TG, TJ; |
212 | | TH = cr[WS(rs, 2)]; |
213 | | TK = ci[WS(rs, 2)]; |
214 | | TG = W[2]; |
215 | | TI = TG * TH; |
216 | | T1Q = TG * TK; |
217 | | TJ = W[3]; |
218 | | TL = FMA(TJ, TK, TI); |
219 | | T1R = FNMS(TJ, TH, T1Q); |
220 | | } |
221 | | { |
222 | | E T1U, TS, T1P, T2y, T2w, T2x; |
223 | | T1U = T1R - T1T; |
224 | | TS = TL + TR; |
225 | | T1P = FNMS(KP500000000, TS, TF); |
226 | | TT = TF + TS; |
227 | | T2f = FMA(KP866025403, T1U, T1P); |
228 | | T1V = FNMS(KP866025403, T1U, T1P); |
229 | | T2y = TL - TR; |
230 | | T2w = T1R + T1T; |
231 | | T2x = FNMS(KP500000000, T2w, T2v); |
232 | | T2z = FNMS(KP866025403, T2y, T2x); |
233 | | T3a = T2v + T2w; |
234 | | T2V = FMA(KP866025403, T2y, T2x); |
235 | | } |
236 | | } |
237 | | { |
238 | | E T10, T2C, T1c, T21, T16, T1Z; |
239 | | { |
240 | | E TW, TZ, TX, T2B, TV, TY; |
241 | | TW = cr[WS(rs, 6)]; |
242 | | TZ = ci[WS(rs, 6)]; |
243 | | TV = W[10]; |
244 | | TX = TV * TW; |
245 | | T2B = TV * TZ; |
246 | | TY = W[11]; |
247 | | T10 = FMA(TY, TZ, TX); |
248 | | T2C = FNMS(TY, TW, T2B); |
249 | | } |
250 | | { |
251 | | E T18, T1b, T19, T20, T17, T1a; |
252 | | T18 = cr[WS(rs, 1)]; |
253 | | T1b = ci[WS(rs, 1)]; |
254 | | T17 = W[0]; |
255 | | T19 = T17 * T18; |
256 | | T20 = T17 * T1b; |
257 | | T1a = W[1]; |
258 | | T1c = FMA(T1a, T1b, T19); |
259 | | T21 = FNMS(T1a, T18, T20); |
260 | | } |
261 | | { |
262 | | E T12, T15, T13, T1Y, T11, T14; |
263 | | T12 = cr[WS(rs, 11)]; |
264 | | T15 = ci[WS(rs, 11)]; |
265 | | T11 = W[20]; |
266 | | T13 = T11 * T12; |
267 | | T1Y = T11 * T15; |
268 | | T14 = W[21]; |
269 | | T16 = FMA(T14, T15, T13); |
270 | | T1Z = FNMS(T14, T12, T1Y); |
271 | | } |
272 | | { |
273 | | E T22, T1d, T1X, T2F, T2D, T2E; |
274 | | T22 = T1Z - T21; |
275 | | T1d = T16 + T1c; |
276 | | T1X = FNMS(KP500000000, T1d, T10); |
277 | | T1e = T10 + T1d; |
278 | | T2h = FMA(KP866025403, T22, T1X); |
279 | | T23 = FNMS(KP866025403, T22, T1X); |
280 | | T2F = T16 - T1c; |
281 | | T2D = T1Z + T21; |
282 | | T2E = FNMS(KP500000000, T2D, T2C); |
283 | | T2G = FNMS(KP866025403, T2F, T2E); |
284 | | T36 = T2C + T2D; |
285 | | T2X = FMA(KP866025403, T2F, T2E); |
286 | | } |
287 | | } |
288 | | { |
289 | | E T3c, T3e, Tf, T1A, T33, T34, T3d, T35; |
290 | | { |
291 | | E T38, T3b, TU, T1z; |
292 | | T38 = T36 - T37; |
293 | | T3b = T39 - T3a; |
294 | | T3c = FNMS(KP618033988, T3b, T38); |
295 | | T3e = FMA(KP618033988, T38, T3b); |
296 | | Tf = T1 + Te; |
297 | | TU = Tz + TT; |
298 | | T1z = T1e + T1y; |
299 | | T1A = TU + T1z; |
300 | | T33 = FNMS(KP250000000, T1A, Tf); |
301 | | T34 = TU - T1z; |
302 | | } |
303 | | cr[0] = Tf + T1A; |
304 | | T3d = FMA(KP559016994, T34, T33); |
305 | | ci[WS(rs, 5)] = FNMS(KP951056516, T3e, T3d); |
306 | | cr[WS(rs, 6)] = FMA(KP951056516, T3e, T3d); |
307 | | T35 = FNMS(KP559016994, T34, T33); |
308 | | ci[WS(rs, 2)] = FNMS(KP951056516, T3c, T35); |
309 | | cr[WS(rs, 3)] = FMA(KP951056516, T3c, T35); |
310 | | } |
311 | | { |
312 | | E T30, T32, T1H, T2c, T2R, T2S, T31, T2T; |
313 | | { |
314 | | E T2W, T2Z, T1W, T2b; |
315 | | T2W = T2U - T2V; |
316 | | T2Z = T2X - T2Y; |
317 | | T30 = FMA(KP618033988, T2Z, T2W); |
318 | | T32 = FNMS(KP618033988, T2W, T2Z); |
319 | | T1H = FNMS(KP866025403, T1G, T1B); |
320 | | T1W = T1O + T1V; |
321 | | T2b = T23 + T2a; |
322 | | T2c = T1W + T2b; |
323 | | T2R = FNMS(KP250000000, T2c, T1H); |
324 | | T2S = T1W - T2b; |
325 | | } |
326 | | cr[WS(rs, 5)] = T1H + T2c; |
327 | | T31 = FNMS(KP559016994, T2S, T2R); |
328 | | cr[WS(rs, 2)] = FNMS(KP951056516, T32, T31); |
329 | | ci[WS(rs, 6)] = FMA(KP951056516, T32, T31); |
330 | | T2T = FMA(KP559016994, T2S, T2R); |
331 | | ci[0] = FNMS(KP951056516, T30, T2T); |
332 | | ci[WS(rs, 3)] = FMA(KP951056516, T30, T2T); |
333 | | } |
334 | | { |
335 | | E T2O, T2Q, T2d, T2k, T2l, T2m, T2n, T2P; |
336 | | { |
337 | | E T2A, T2N, T2g, T2j; |
338 | | T2A = T2t - T2z; |
339 | | T2N = T2G - T2M; |
340 | | T2O = FMA(KP618033988, T2N, T2A); |
341 | | T2Q = FNMS(KP618033988, T2A, T2N); |
342 | | T2d = FMA(KP866025403, T1G, T1B); |
343 | | T2g = T2e + T2f; |
344 | | T2j = T2h + T2i; |
345 | | T2k = T2g + T2j; |
346 | | T2l = FNMS(KP250000000, T2k, T2d); |
347 | | T2m = T2g - T2j; |
348 | | } |
349 | | ci[WS(rs, 4)] = T2d + T2k; |
350 | | T2n = FMA(KP559016994, T2m, T2l); |
351 | | cr[WS(rs, 4)] = FNMS(KP951056516, T2O, T2n); |
352 | | cr[WS(rs, 1)] = FMA(KP951056516, T2O, T2n); |
353 | | T2P = FNMS(KP559016994, T2m, T2l); |
354 | | cr[WS(rs, 7)] = FNMS(KP951056516, T2Q, T2P); |
355 | | ci[WS(rs, 1)] = FMA(KP951056516, T2Q, T2P); |
356 | | } |
357 | | { |
358 | | E T3s, T3u, T3m, T3h, T3n, T3o, T3t, T3p; |
359 | | { |
360 | | E T3q, T3r, T3f, T3g; |
361 | | T3q = T2h - T2i; |
362 | | T3r = T2e - T2f; |
363 | | T3s = FNMS(KP618033988, T3r, T3q); |
364 | | T3u = FMA(KP618033988, T3q, T3r); |
365 | | T3m = FMA(KP866025403, T3l, T3k); |
366 | | T3f = T2t + T2z; |
367 | | T3g = T2G + T2M; |
368 | | T3h = T3f + T3g; |
369 | | T3n = FNMS(KP250000000, T3h, T3m); |
370 | | T3o = T3f - T3g; |
371 | | } |
372 | | cr[WS(rs, 10)] = -(T3h + T3m); |
373 | | T3t = FMA(KP559016994, T3o, T3n); |
374 | | ci[WS(rs, 10)] = FMA(KP951056516, T3u, T3t); |
375 | | ci[WS(rs, 13)] = FNMS(KP951056516, T3u, T3t); |
376 | | T3p = FNMS(KP559016994, T3o, T3n); |
377 | | cr[WS(rs, 13)] = FMS(KP951056516, T3s, T3p); |
378 | | ci[WS(rs, 7)] = FMA(KP951056516, T3s, T3p); |
379 | | } |
380 | | { |
381 | | E T3Q, T3S, T3H, T3K, T3L, T3M, T3R, T3N; |
382 | | { |
383 | | E T3O, T3P, T3I, T3J; |
384 | | T3O = TT - Tz; |
385 | | T3P = T1y - T1e; |
386 | | T3Q = FMA(KP618033988, T3P, T3O); |
387 | | T3S = FNMS(KP618033988, T3O, T3P); |
388 | | T3H = T3j + T3i; |
389 | | T3I = T39 + T3a; |
390 | | T3J = T36 + T37; |
391 | | T3K = T3I + T3J; |
392 | | T3L = FNMS(KP250000000, T3K, T3H); |
393 | | T3M = T3I - T3J; |
394 | | } |
395 | | ci[WS(rs, 14)] = T3K + T3H; |
396 | | T3R = FNMS(KP559016994, T3M, T3L); |
397 | | cr[WS(rs, 12)] = FMS(KP951056516, T3S, T3R); |
398 | | ci[WS(rs, 11)] = FMA(KP951056516, T3S, T3R); |
399 | | T3N = FMA(KP559016994, T3M, T3L); |
400 | | cr[WS(rs, 9)] = FMS(KP951056516, T3Q, T3N); |
401 | | ci[WS(rs, 8)] = FMA(KP951056516, T3Q, T3N); |
402 | | } |
403 | | { |
404 | | E T3E, T3G, T3v, T3y, T3z, T3A, T3F, T3B; |
405 | | { |
406 | | E T3C, T3D, T3w, T3x; |
407 | | T3C = T1O - T1V; |
408 | | T3D = T23 - T2a; |
409 | | T3E = FMA(KP618033988, T3D, T3C); |
410 | | T3G = FNMS(KP618033988, T3C, T3D); |
411 | | T3v = FNMS(KP866025403, T3l, T3k); |
412 | | T3w = T2U + T2V; |
413 | | T3x = T2X + T2Y; |
414 | | T3y = T3w + T3x; |
415 | | T3z = FNMS(KP250000000, T3y, T3v); |
416 | | T3A = T3x - T3w; |
417 | | } |
418 | | ci[WS(rs, 9)] = T3y + T3v; |
419 | | T3F = FMA(KP559016994, T3A, T3z); |
420 | | cr[WS(rs, 8)] = FMS(KP951056516, T3G, T3F); |
421 | | ci[WS(rs, 12)] = FMA(KP951056516, T3G, T3F); |
422 | | T3B = FNMS(KP559016994, T3A, T3z); |
423 | | cr[WS(rs, 11)] = FMS(KP951056516, T3E, T3B); |
424 | | cr[WS(rs, 14)] = -(FMA(KP951056516, T3E, T3B)); |
425 | | } |
426 | | } |
427 | | } |
428 | | } |
429 | | |
430 | | static const tw_instr twinstr[] = { |
431 | | { TW_FULL, 1, 15 }, |
432 | | { TW_NEXT, 1, 0 } |
433 | | }; |
434 | | |
435 | | static const hc2hc_desc desc = { 15, "hf_15", twinstr, &GENUS, { 72, 28, 112, 0 } }; |
436 | | |
437 | | void X(codelet_hf_15) (planner *p) { |
438 | | X(khc2hc_register) (p, hf_15, &desc); |
439 | | } |
440 | | #else |
441 | | |
442 | | /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -n 15 -dit -name hf_15 -include rdft/scalar/hf.h */ |
443 | | |
444 | | /* |
445 | | * This function contains 184 FP additions, 112 FP multiplications, |
446 | | * (or, 128 additions, 56 multiplications, 56 fused multiply/add), |
447 | | * 65 stack variables, 6 constants, and 60 memory accesses |
448 | | */ |
449 | | #include "rdft/scalar/hf.h" |
450 | | |
451 | | static void hf_15(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) |
452 | 0 | { |
453 | 0 | DK(KP587785252, +0.587785252292473129168705954639072768597652438); |
454 | 0 | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
455 | 0 | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
456 | 0 | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
457 | 0 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
458 | 0 | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
459 | 0 | { |
460 | 0 | INT m; |
461 | 0 | for (m = mb, W = W + ((mb - 1) * 28); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 28, MAKE_VOLATILE_STRIDE(30, rs)) { |
462 | 0 | E T1q, T2Q, Td, T1n, T2T, T3l, T13, T1k, T1l, T2E, T2F, T3j, T1H, T1T, T2k; |
463 | 0 | E T2w, T2f, T2v, T1M, T1U, Tu, TL, TM, T2H, T2I, T3i, T1w, T1Q, T29, T2t; |
464 | 0 | E T24, T2s, T1B, T1R; |
465 | 0 | { |
466 | 0 | E T1, T2R, T6, T1o, Tb, T1p, Tc, T2S; |
467 | 0 | T1 = cr[0]; |
468 | 0 | T2R = ci[0]; |
469 | 0 | { |
470 | 0 | E T3, T5, T2, T4; |
471 | 0 | T3 = cr[WS(rs, 5)]; |
472 | 0 | T5 = ci[WS(rs, 5)]; |
473 | 0 | T2 = W[8]; |
474 | 0 | T4 = W[9]; |
475 | 0 | T6 = FMA(T2, T3, T4 * T5); |
476 | 0 | T1o = FNMS(T4, T3, T2 * T5); |
477 | 0 | } |
478 | 0 | { |
479 | 0 | E T8, Ta, T7, T9; |
480 | 0 | T8 = cr[WS(rs, 10)]; |
481 | 0 | Ta = ci[WS(rs, 10)]; |
482 | 0 | T7 = W[18]; |
483 | 0 | T9 = W[19]; |
484 | 0 | Tb = FMA(T7, T8, T9 * Ta); |
485 | 0 | T1p = FNMS(T9, T8, T7 * Ta); |
486 | 0 | } |
487 | 0 | T1q = KP866025403 * (T1o - T1p); |
488 | 0 | T2Q = KP866025403 * (Tb - T6); |
489 | 0 | Tc = T6 + Tb; |
490 | 0 | Td = T1 + Tc; |
491 | 0 | T1n = FNMS(KP500000000, Tc, T1); |
492 | 0 | T2S = T1o + T1p; |
493 | 0 | T2T = FNMS(KP500000000, T2S, T2R); |
494 | 0 | T3l = T2S + T2R; |
495 | 0 | } |
496 | 0 | { |
497 | 0 | E TR, T2c, T18, T2h, TW, T1E, T11, T1F, T12, T2d, T1d, T1J, T1i, T1K, T1j; |
498 | 0 | E T2i; |
499 | 0 | { |
500 | 0 | E TO, TQ, TN, TP; |
501 | 0 | TO = cr[WS(rs, 6)]; |
502 | 0 | TQ = ci[WS(rs, 6)]; |
503 | 0 | TN = W[10]; |
504 | 0 | TP = W[11]; |
505 | 0 | TR = FMA(TN, TO, TP * TQ); |
506 | 0 | T2c = FNMS(TP, TO, TN * TQ); |
507 | 0 | } |
508 | 0 | { |
509 | 0 | E T15, T17, T14, T16; |
510 | 0 | T15 = cr[WS(rs, 9)]; |
511 | 0 | T17 = ci[WS(rs, 9)]; |
512 | 0 | T14 = W[16]; |
513 | 0 | T16 = W[17]; |
514 | 0 | T18 = FMA(T14, T15, T16 * T17); |
515 | 0 | T2h = FNMS(T16, T15, T14 * T17); |
516 | 0 | } |
517 | 0 | { |
518 | 0 | E TT, TV, TS, TU; |
519 | 0 | TT = cr[WS(rs, 11)]; |
520 | 0 | TV = ci[WS(rs, 11)]; |
521 | 0 | TS = W[20]; |
522 | 0 | TU = W[21]; |
523 | 0 | TW = FMA(TS, TT, TU * TV); |
524 | 0 | T1E = FNMS(TU, TT, TS * TV); |
525 | 0 | } |
526 | 0 | { |
527 | 0 | E TY, T10, TX, TZ; |
528 | 0 | TY = cr[WS(rs, 1)]; |
529 | 0 | T10 = ci[WS(rs, 1)]; |
530 | 0 | TX = W[0]; |
531 | 0 | TZ = W[1]; |
532 | 0 | T11 = FMA(TX, TY, TZ * T10); |
533 | 0 | T1F = FNMS(TZ, TY, TX * T10); |
534 | 0 | } |
535 | 0 | T12 = TW + T11; |
536 | 0 | T2d = T1E + T1F; |
537 | 0 | { |
538 | 0 | E T1a, T1c, T19, T1b; |
539 | 0 | T1a = cr[WS(rs, 14)]; |
540 | 0 | T1c = ci[WS(rs, 14)]; |
541 | 0 | T19 = W[26]; |
542 | 0 | T1b = W[27]; |
543 | 0 | T1d = FMA(T19, T1a, T1b * T1c); |
544 | 0 | T1J = FNMS(T1b, T1a, T19 * T1c); |
545 | 0 | } |
546 | 0 | { |
547 | 0 | E T1f, T1h, T1e, T1g; |
548 | 0 | T1f = cr[WS(rs, 4)]; |
549 | 0 | T1h = ci[WS(rs, 4)]; |
550 | 0 | T1e = W[6]; |
551 | 0 | T1g = W[7]; |
552 | 0 | T1i = FMA(T1e, T1f, T1g * T1h); |
553 | 0 | T1K = FNMS(T1g, T1f, T1e * T1h); |
554 | 0 | } |
555 | 0 | T1j = T1d + T1i; |
556 | 0 | T2i = T1J + T1K; |
557 | 0 | { |
558 | 0 | E T1D, T1G, T2g, T2j; |
559 | 0 | T13 = TR + T12; |
560 | 0 | T1k = T18 + T1j; |
561 | 0 | T1l = T13 + T1k; |
562 | 0 | T2E = T2c + T2d; |
563 | 0 | T2F = T2h + T2i; |
564 | 0 | T3j = T2E + T2F; |
565 | 0 | T1D = FNMS(KP500000000, T12, TR); |
566 | 0 | T1G = KP866025403 * (T1E - T1F); |
567 | 0 | T1H = T1D - T1G; |
568 | 0 | T1T = T1D + T1G; |
569 | 0 | T2g = KP866025403 * (T1d - T1i); |
570 | 0 | T2j = FNMS(KP500000000, T2i, T2h); |
571 | 0 | T2k = T2g - T2j; |
572 | 0 | T2w = T2g + T2j; |
573 | 0 | { |
574 | 0 | E T2b, T2e, T1I, T1L; |
575 | 0 | T2b = KP866025403 * (T11 - TW); |
576 | 0 | T2e = FNMS(KP500000000, T2d, T2c); |
577 | 0 | T2f = T2b + T2e; |
578 | 0 | T2v = T2e - T2b; |
579 | 0 | T1I = FNMS(KP500000000, T1j, T18); |
580 | 0 | T1L = KP866025403 * (T1J - T1K); |
581 | 0 | T1M = T1I - T1L; |
582 | 0 | T1U = T1I + T1L; |
583 | 0 | } |
584 | 0 | } |
585 | 0 | } |
586 | 0 | { |
587 | 0 | E Ti, T21, Tz, T26, Tn, T1t, Ts, T1u, Tt, T22, TE, T1y, TJ, T1z, TK; |
588 | 0 | E T27; |
589 | 0 | { |
590 | 0 | E Tf, Th, Te, Tg; |
591 | 0 | Tf = cr[WS(rs, 3)]; |
592 | 0 | Th = ci[WS(rs, 3)]; |
593 | 0 | Te = W[4]; |
594 | 0 | Tg = W[5]; |
595 | 0 | Ti = FMA(Te, Tf, Tg * Th); |
596 | 0 | T21 = FNMS(Tg, Tf, Te * Th); |
597 | 0 | } |
598 | 0 | { |
599 | 0 | E Tw, Ty, Tv, Tx; |
600 | 0 | Tw = cr[WS(rs, 12)]; |
601 | 0 | Ty = ci[WS(rs, 12)]; |
602 | 0 | Tv = W[22]; |
603 | 0 | Tx = W[23]; |
604 | 0 | Tz = FMA(Tv, Tw, Tx * Ty); |
605 | 0 | T26 = FNMS(Tx, Tw, Tv * Ty); |
606 | 0 | } |
607 | 0 | { |
608 | 0 | E Tk, Tm, Tj, Tl; |
609 | 0 | Tk = cr[WS(rs, 8)]; |
610 | 0 | Tm = ci[WS(rs, 8)]; |
611 | 0 | Tj = W[14]; |
612 | 0 | Tl = W[15]; |
613 | 0 | Tn = FMA(Tj, Tk, Tl * Tm); |
614 | 0 | T1t = FNMS(Tl, Tk, Tj * Tm); |
615 | 0 | } |
616 | 0 | { |
617 | 0 | E Tp, Tr, To, Tq; |
618 | 0 | Tp = cr[WS(rs, 13)]; |
619 | 0 | Tr = ci[WS(rs, 13)]; |
620 | 0 | To = W[24]; |
621 | 0 | Tq = W[25]; |
622 | 0 | Ts = FMA(To, Tp, Tq * Tr); |
623 | 0 | T1u = FNMS(Tq, Tp, To * Tr); |
624 | 0 | } |
625 | 0 | Tt = Tn + Ts; |
626 | 0 | T22 = T1t + T1u; |
627 | 0 | { |
628 | 0 | E TB, TD, TA, TC; |
629 | 0 | TB = cr[WS(rs, 2)]; |
630 | 0 | TD = ci[WS(rs, 2)]; |
631 | 0 | TA = W[2]; |
632 | 0 | TC = W[3]; |
633 | 0 | TE = FMA(TA, TB, TC * TD); |
634 | 0 | T1y = FNMS(TC, TB, TA * TD); |
635 | 0 | } |
636 | 0 | { |
637 | 0 | E TG, TI, TF, TH; |
638 | 0 | TG = cr[WS(rs, 7)]; |
639 | 0 | TI = ci[WS(rs, 7)]; |
640 | 0 | TF = W[12]; |
641 | 0 | TH = W[13]; |
642 | 0 | TJ = FMA(TF, TG, TH * TI); |
643 | 0 | T1z = FNMS(TH, TG, TF * TI); |
644 | 0 | } |
645 | 0 | TK = TE + TJ; |
646 | 0 | T27 = T1y + T1z; |
647 | 0 | { |
648 | 0 | E T1s, T1v, T25, T28; |
649 | 0 | Tu = Ti + Tt; |
650 | 0 | TL = Tz + TK; |
651 | 0 | TM = Tu + TL; |
652 | 0 | T2H = T21 + T22; |
653 | 0 | T2I = T26 + T27; |
654 | 0 | T3i = T2H + T2I; |
655 | 0 | T1s = FNMS(KP500000000, Tt, Ti); |
656 | 0 | T1v = KP866025403 * (T1t - T1u); |
657 | 0 | T1w = T1s - T1v; |
658 | 0 | T1Q = T1s + T1v; |
659 | 0 | T25 = KP866025403 * (TJ - TE); |
660 | 0 | T28 = FNMS(KP500000000, T27, T26); |
661 | 0 | T29 = T25 + T28; |
662 | 0 | T2t = T28 - T25; |
663 | 0 | { |
664 | 0 | E T20, T23, T1x, T1A; |
665 | 0 | T20 = KP866025403 * (Ts - Tn); |
666 | 0 | T23 = FNMS(KP500000000, T22, T21); |
667 | 0 | T24 = T20 + T23; |
668 | 0 | T2s = T23 - T20; |
669 | 0 | T1x = FNMS(KP500000000, TK, Tz); |
670 | 0 | T1A = KP866025403 * (T1y - T1z); |
671 | 0 | T1B = T1x - T1A; |
672 | 0 | T1R = T1x + T1A; |
673 | 0 | } |
674 | 0 | } |
675 | 0 | } |
676 | 0 | { |
677 | 0 | E T2C, T1m, T2B, T2K, T2M, T2G, T2J, T2L, T2D; |
678 | 0 | T2C = KP559016994 * (TM - T1l); |
679 | 0 | T1m = TM + T1l; |
680 | 0 | T2B = FNMS(KP250000000, T1m, Td); |
681 | 0 | T2G = T2E - T2F; |
682 | 0 | T2J = T2H - T2I; |
683 | 0 | T2K = FNMS(KP587785252, T2J, KP951056516 * T2G); |
684 | 0 | T2M = FMA(KP951056516, T2J, KP587785252 * T2G); |
685 | 0 | cr[0] = Td + T1m; |
686 | 0 | T2L = T2C + T2B; |
687 | 0 | ci[WS(rs, 5)] = T2L - T2M; |
688 | 0 | cr[WS(rs, 6)] = T2L + T2M; |
689 | 0 | T2D = T2B - T2C; |
690 | 0 | ci[WS(rs, 2)] = T2D - T2K; |
691 | 0 | cr[WS(rs, 3)] = T2D + T2K; |
692 | 0 | } |
693 | 0 | { |
694 | 0 | E T3k, T3m, T3n, T3h, T3p, T3f, T3g, T3q, T3o; |
695 | 0 | T3k = KP559016994 * (T3i - T3j); |
696 | 0 | T3m = T3i + T3j; |
697 | 0 | T3n = FNMS(KP250000000, T3m, T3l); |
698 | 0 | T3f = T1k - T13; |
699 | 0 | T3g = Tu - TL; |
700 | 0 | T3h = FNMS(KP951056516, T3g, KP587785252 * T3f); |
701 | 0 | T3p = FMA(KP587785252, T3g, KP951056516 * T3f); |
702 | 0 | ci[WS(rs, 14)] = T3m + T3l; |
703 | 0 | T3q = T3n - T3k; |
704 | 0 | cr[WS(rs, 12)] = T3p - T3q; |
705 | 0 | ci[WS(rs, 11)] = T3p + T3q; |
706 | 0 | T3o = T3k + T3n; |
707 | 0 | cr[WS(rs, 9)] = T3h - T3o; |
708 | 0 | ci[WS(rs, 8)] = T3h + T3o; |
709 | 0 | } |
710 | 0 | { |
711 | 0 | E T2y, T2A, T1r, T1O, T2p, T2q, T2z, T2r; |
712 | 0 | { |
713 | 0 | E T2u, T2x, T1C, T1N; |
714 | 0 | T2u = T2s - T2t; |
715 | 0 | T2x = T2v - T2w; |
716 | 0 | T2y = FMA(KP951056516, T2u, KP587785252 * T2x); |
717 | 0 | T2A = FNMS(KP587785252, T2u, KP951056516 * T2x); |
718 | 0 | T1r = T1n - T1q; |
719 | 0 | T1C = T1w + T1B; |
720 | 0 | T1N = T1H + T1M; |
721 | 0 | T1O = T1C + T1N; |
722 | 0 | T2p = KP559016994 * (T1C - T1N); |
723 | 0 | T2q = FNMS(KP250000000, T1O, T1r); |
724 | 0 | } |
725 | 0 | cr[WS(rs, 5)] = T1r + T1O; |
726 | 0 | T2z = T2q - T2p; |
727 | 0 | cr[WS(rs, 2)] = T2z - T2A; |
728 | 0 | ci[WS(rs, 6)] = T2z + T2A; |
729 | 0 | T2r = T2p + T2q; |
730 | 0 | ci[0] = T2r - T2y; |
731 | 0 | ci[WS(rs, 3)] = T2r + T2y; |
732 | 0 | } |
733 | 0 | { |
734 | 0 | E T35, T3d, T39, T3a, T38, T3b, T3e, T3c; |
735 | 0 | { |
736 | 0 | E T33, T34, T36, T37; |
737 | 0 | T33 = T1w - T1B; |
738 | 0 | T34 = T1H - T1M; |
739 | 0 | T35 = FMA(KP951056516, T33, KP587785252 * T34); |
740 | 0 | T3d = FNMS(KP587785252, T33, KP951056516 * T34); |
741 | 0 | T39 = T2T - T2Q; |
742 | 0 | T36 = T2v + T2w; |
743 | 0 | T37 = T2s + T2t; |
744 | 0 | T3a = T37 + T36; |
745 | 0 | T38 = KP559016994 * (T36 - T37); |
746 | 0 | T3b = FNMS(KP250000000, T3a, T39); |
747 | 0 | } |
748 | 0 | ci[WS(rs, 9)] = T3a + T39; |
749 | 0 | T3e = T38 + T3b; |
750 | 0 | cr[WS(rs, 8)] = T3d - T3e; |
751 | 0 | ci[WS(rs, 12)] = T3d + T3e; |
752 | 0 | T3c = T38 - T3b; |
753 | 0 | cr[WS(rs, 11)] = T35 + T3c; |
754 | 0 | cr[WS(rs, 14)] = T3c - T35; |
755 | 0 | } |
756 | 0 | { |
757 | 0 | E T2X, T31, T2U, T2P, T2Y, T2Z, T32, T30; |
758 | 0 | { |
759 | 0 | E T2V, T2W, T2N, T2O; |
760 | 0 | T2V = T1T - T1U; |
761 | 0 | T2W = T1Q - T1R; |
762 | 0 | T2X = FNMS(KP587785252, T2W, KP951056516 * T2V); |
763 | 0 | T31 = FMA(KP951056516, T2W, KP587785252 * T2V); |
764 | 0 | T2U = T2Q + T2T; |
765 | 0 | T2N = T2k - T2f; |
766 | 0 | T2O = T24 + T29; |
767 | 0 | T2P = T2N - T2O; |
768 | 0 | T2Y = FMA(KP250000000, T2P, T2U); |
769 | 0 | T2Z = KP559016994 * (T2O + T2N); |
770 | 0 | } |
771 | 0 | cr[WS(rs, 10)] = T2P - T2U; |
772 | 0 | T32 = T2Z + T2Y; |
773 | 0 | ci[WS(rs, 10)] = T31 + T32; |
774 | 0 | ci[WS(rs, 13)] = T32 - T31; |
775 | 0 | T30 = T2Y - T2Z; |
776 | 0 | cr[WS(rs, 13)] = T2X - T30; |
777 | 0 | ci[WS(rs, 7)] = T2X + T30; |
778 | 0 | } |
779 | 0 | { |
780 | 0 | E T2m, T2o, T1P, T1W, T1X, T1Y, T1Z, T2n; |
781 | 0 | { |
782 | 0 | E T2a, T2l, T1S, T1V; |
783 | 0 | T2a = T24 - T29; |
784 | 0 | T2l = T2f + T2k; |
785 | 0 | T2m = FMA(KP951056516, T2a, KP587785252 * T2l); |
786 | 0 | T2o = FNMS(KP587785252, T2a, KP951056516 * T2l); |
787 | 0 | T1P = T1n + T1q; |
788 | 0 | T1S = T1Q + T1R; |
789 | 0 | T1V = T1T + T1U; |
790 | 0 | T1W = T1S + T1V; |
791 | 0 | T1X = KP559016994 * (T1S - T1V); |
792 | 0 | T1Y = FNMS(KP250000000, T1W, T1P); |
793 | 0 | } |
794 | 0 | ci[WS(rs, 4)] = T1P + T1W; |
795 | 0 | T1Z = T1X + T1Y; |
796 | 0 | cr[WS(rs, 4)] = T1Z - T2m; |
797 | 0 | cr[WS(rs, 1)] = T1Z + T2m; |
798 | 0 | T2n = T1Y - T1X; |
799 | 0 | cr[WS(rs, 7)] = T2n - T2o; |
800 | 0 | ci[WS(rs, 1)] = T2n + T2o; |
801 | 0 | } |
802 | 0 | } |
803 | 0 | } |
804 | 0 | } |
805 | | |
806 | | static const tw_instr twinstr[] = { |
807 | | { TW_FULL, 1, 15 }, |
808 | | { TW_NEXT, 1, 0 } |
809 | | }; |
810 | | |
811 | | static const hc2hc_desc desc = { 15, "hf_15", twinstr, &GENUS, { 128, 56, 56, 0 } }; |
812 | | |
813 | 1 | void X(codelet_hf_15) (planner *p) { |
814 | 1 | X(khc2hc_register) (p, hf_15, &desc); |
815 | 1 | } |
816 | | #endif |