/src/fftw3/rdft/scalar/r2cf/r2cf_32.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Sun Jun 22 06:43:30 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 32 -name r2cf_32 -include rdft/scalar/r2cf.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 156 FP additions, 68 FP multiplications, |
32 | | * (or, 88 additions, 0 multiplications, 68 fused multiply/add), |
33 | | * 54 stack variables, 7 constants, and 64 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/r2cf.h" |
36 | | |
37 | | static void r2cf_32(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
38 | | { |
39 | | DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
40 | | DK(KP668178637, +0.668178637919298919997757686523080761552472251); |
41 | | DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
42 | | DK(KP198912367, +0.198912367379658006911597622644676228597850501); |
43 | | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
44 | | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
45 | | DK(KP414213562, +0.414213562373095048801688724209698078569671875); |
46 | | { |
47 | | INT i; |
48 | | for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(128, rs), MAKE_VOLATILE_STRIDE(128, csr), MAKE_VOLATILE_STRIDE(128, csi)) { |
49 | | E T7, T2b, Tv, T1h, Te, T2n, Ty, T1i, Tt, T2d, TF, T1l, Tm, T2c, TC; |
50 | | E T1k, T1Z, T22, T2k, T2j, T1e, T1C, T19, T1B, T1S, T1V, T2h, T2g, TX, T1z; |
51 | | E TS, T1y; |
52 | | { |
53 | | E T1, T2, T3, T4, T5, T6; |
54 | | T1 = R0[0]; |
55 | | T2 = R0[WS(rs, 8)]; |
56 | | T3 = T1 + T2; |
57 | | T4 = R0[WS(rs, 4)]; |
58 | | T5 = R0[WS(rs, 12)]; |
59 | | T6 = T4 + T5; |
60 | | T7 = T3 + T6; |
61 | | T2b = T3 - T6; |
62 | | Tv = T1 - T2; |
63 | | T1h = T4 - T5; |
64 | | } |
65 | | { |
66 | | E Ta, Tw, Td, Tx; |
67 | | { |
68 | | E T8, T9, Tb, Tc; |
69 | | T8 = R0[WS(rs, 2)]; |
70 | | T9 = R0[WS(rs, 10)]; |
71 | | Ta = T8 + T9; |
72 | | Tw = T8 - T9; |
73 | | Tb = R0[WS(rs, 14)]; |
74 | | Tc = R0[WS(rs, 6)]; |
75 | | Td = Tb + Tc; |
76 | | Tx = Tb - Tc; |
77 | | } |
78 | | Te = Ta + Td; |
79 | | T2n = Td - Ta; |
80 | | Ty = Tw + Tx; |
81 | | T1i = Tx - Tw; |
82 | | } |
83 | | { |
84 | | E Tp, TD, Ts, TE; |
85 | | { |
86 | | E Tn, To, Tq, Tr; |
87 | | Tn = R0[WS(rs, 15)]; |
88 | | To = R0[WS(rs, 7)]; |
89 | | Tp = Tn + To; |
90 | | TD = Tn - To; |
91 | | Tq = R0[WS(rs, 3)]; |
92 | | Tr = R0[WS(rs, 11)]; |
93 | | Ts = Tq + Tr; |
94 | | TE = Tq - Tr; |
95 | | } |
96 | | Tt = Tp + Ts; |
97 | | T2d = Tp - Ts; |
98 | | TF = FMA(KP414213562, TE, TD); |
99 | | T1l = FNMS(KP414213562, TD, TE); |
100 | | } |
101 | | { |
102 | | E Ti, TA, Tl, TB; |
103 | | { |
104 | | E Tg, Th, Tj, Tk; |
105 | | Tg = R0[WS(rs, 1)]; |
106 | | Th = R0[WS(rs, 9)]; |
107 | | Ti = Tg + Th; |
108 | | TA = Tg - Th; |
109 | | Tj = R0[WS(rs, 5)]; |
110 | | Tk = R0[WS(rs, 13)]; |
111 | | Tl = Tj + Tk; |
112 | | TB = Tj - Tk; |
113 | | } |
114 | | Tm = Ti + Tl; |
115 | | T2c = Ti - Tl; |
116 | | TC = FNMS(KP414213562, TB, TA); |
117 | | T1k = FMA(KP414213562, TA, TB); |
118 | | } |
119 | | { |
120 | | E T11, T1X, T1c, T1Y, T14, T20, T17, T21, T1d, T18; |
121 | | { |
122 | | E TZ, T10, T1a, T1b; |
123 | | TZ = R1[WS(rs, 15)]; |
124 | | T10 = R1[WS(rs, 7)]; |
125 | | T11 = TZ - T10; |
126 | | T1X = TZ + T10; |
127 | | T1a = R1[WS(rs, 11)]; |
128 | | T1b = R1[WS(rs, 3)]; |
129 | | T1c = T1a - T1b; |
130 | | T1Y = T1b + T1a; |
131 | | } |
132 | | { |
133 | | E T12, T13, T15, T16; |
134 | | T12 = R1[WS(rs, 1)]; |
135 | | T13 = R1[WS(rs, 9)]; |
136 | | T14 = T12 - T13; |
137 | | T20 = T12 + T13; |
138 | | T15 = R1[WS(rs, 13)]; |
139 | | T16 = R1[WS(rs, 5)]; |
140 | | T17 = T15 - T16; |
141 | | T21 = T15 + T16; |
142 | | } |
143 | | T1Z = T1X + T1Y; |
144 | | T22 = T20 + T21; |
145 | | T2k = T21 - T20; |
146 | | T2j = T1X - T1Y; |
147 | | T1d = T17 - T14; |
148 | | T1e = FMA(KP707106781, T1d, T1c); |
149 | | T1C = FNMS(KP707106781, T1d, T1c); |
150 | | T18 = T14 + T17; |
151 | | T19 = FMA(KP707106781, T18, T11); |
152 | | T1B = FNMS(KP707106781, T18, T11); |
153 | | } |
154 | | { |
155 | | E TK, T1Q, TV, T1R, TN, T1T, TQ, T1U, TW, TR; |
156 | | { |
157 | | E TI, TJ, TT, TU; |
158 | | TI = R1[0]; |
159 | | TJ = R1[WS(rs, 8)]; |
160 | | TK = TI - TJ; |
161 | | T1Q = TI + TJ; |
162 | | TT = R1[WS(rs, 4)]; |
163 | | TU = R1[WS(rs, 12)]; |
164 | | TV = TT - TU; |
165 | | T1R = TT + TU; |
166 | | } |
167 | | { |
168 | | E TL, TM, TO, TP; |
169 | | TL = R1[WS(rs, 2)]; |
170 | | TM = R1[WS(rs, 10)]; |
171 | | TN = TL - TM; |
172 | | T1T = TL + TM; |
173 | | TO = R1[WS(rs, 14)]; |
174 | | TP = R1[WS(rs, 6)]; |
175 | | TQ = TO - TP; |
176 | | T1U = TO + TP; |
177 | | } |
178 | | T1S = T1Q + T1R; |
179 | | T1V = T1T + T1U; |
180 | | T2h = T1U - T1T; |
181 | | T2g = T1Q - T1R; |
182 | | TW = TN - TQ; |
183 | | TX = FMA(KP707106781, TW, TV); |
184 | | T1z = FNMS(KP707106781, TW, TV); |
185 | | TR = TN + TQ; |
186 | | TS = FMA(KP707106781, TR, TK); |
187 | | T1y = FNMS(KP707106781, TR, TK); |
188 | | } |
189 | | { |
190 | | E Tf, Tu, T27, T28, T29, T2a; |
191 | | Tf = T7 + Te; |
192 | | Tu = Tm + Tt; |
193 | | T27 = Tf + Tu; |
194 | | T28 = T1S + T1V; |
195 | | T29 = T1Z + T22; |
196 | | T2a = T28 + T29; |
197 | | Cr[WS(csr, 8)] = Tf - Tu; |
198 | | Ci[WS(csi, 8)] = T29 - T28; |
199 | | Cr[WS(csr, 16)] = T27 - T2a; |
200 | | Cr[0] = T27 + T2a; |
201 | | } |
202 | | { |
203 | | E T1P, T25, T24, T26, T1W, T23; |
204 | | T1P = T7 - Te; |
205 | | T25 = Tt - Tm; |
206 | | T1W = T1S - T1V; |
207 | | T23 = T1Z - T22; |
208 | | T24 = T1W + T23; |
209 | | T26 = T23 - T1W; |
210 | | Cr[WS(csr, 12)] = FNMS(KP707106781, T24, T1P); |
211 | | Ci[WS(csi, 12)] = FMS(KP707106781, T26, T25); |
212 | | Cr[WS(csr, 4)] = FMA(KP707106781, T24, T1P); |
213 | | Ci[WS(csi, 4)] = FMA(KP707106781, T26, T25); |
214 | | } |
215 | | { |
216 | | E T2f, T2v, T2p, T2r, T2m, T2q, T2u, T2w, T2e, T2o; |
217 | | T2e = T2c + T2d; |
218 | | T2f = FMA(KP707106781, T2e, T2b); |
219 | | T2v = FNMS(KP707106781, T2e, T2b); |
220 | | T2o = T2d - T2c; |
221 | | T2p = FNMS(KP707106781, T2o, T2n); |
222 | | T2r = FMA(KP707106781, T2o, T2n); |
223 | | { |
224 | | E T2i, T2l, T2s, T2t; |
225 | | T2i = FMA(KP414213562, T2h, T2g); |
226 | | T2l = FNMS(KP414213562, T2k, T2j); |
227 | | T2m = T2i + T2l; |
228 | | T2q = T2l - T2i; |
229 | | T2s = FNMS(KP414213562, T2g, T2h); |
230 | | T2t = FMA(KP414213562, T2j, T2k); |
231 | | T2u = T2s + T2t; |
232 | | T2w = T2t - T2s; |
233 | | } |
234 | | Cr[WS(csr, 14)] = FNMS(KP923879532, T2m, T2f); |
235 | | Ci[WS(csi, 14)] = FMS(KP923879532, T2u, T2r); |
236 | | Cr[WS(csr, 2)] = FMA(KP923879532, T2m, T2f); |
237 | | Ci[WS(csi, 2)] = FMA(KP923879532, T2u, T2r); |
238 | | Ci[WS(csi, 6)] = FMS(KP923879532, T2q, T2p); |
239 | | Cr[WS(csr, 6)] = FMA(KP923879532, T2w, T2v); |
240 | | Ci[WS(csi, 10)] = FMA(KP923879532, T2q, T2p); |
241 | | Cr[WS(csr, 10)] = FNMS(KP923879532, T2w, T2v); |
242 | | } |
243 | | { |
244 | | E TH, T1t, T1s, T1u, T1g, T1o, T1n, T1p; |
245 | | { |
246 | | E Tz, TG, T1q, T1r; |
247 | | Tz = FMA(KP707106781, Ty, Tv); |
248 | | TG = TC + TF; |
249 | | TH = FMA(KP923879532, TG, Tz); |
250 | | T1t = FNMS(KP923879532, TG, Tz); |
251 | | T1q = FMA(KP198912367, T19, T1e); |
252 | | T1r = FMA(KP198912367, TS, TX); |
253 | | T1s = T1q - T1r; |
254 | | T1u = T1r + T1q; |
255 | | } |
256 | | { |
257 | | E TY, T1f, T1j, T1m; |
258 | | TY = FNMS(KP198912367, TX, TS); |
259 | | T1f = FNMS(KP198912367, T1e, T19); |
260 | | T1g = TY + T1f; |
261 | | T1o = T1f - TY; |
262 | | T1j = FNMS(KP707106781, T1i, T1h); |
263 | | T1m = T1k + T1l; |
264 | | T1n = FNMS(KP923879532, T1m, T1j); |
265 | | T1p = FMA(KP923879532, T1m, T1j); |
266 | | } |
267 | | Cr[WS(csr, 15)] = FNMS(KP980785280, T1g, TH); |
268 | | Ci[WS(csi, 15)] = FMA(KP980785280, T1s, T1p); |
269 | | Cr[WS(csr, 1)] = FMA(KP980785280, T1g, TH); |
270 | | Ci[WS(csi, 1)] = FMS(KP980785280, T1s, T1p); |
271 | | Ci[WS(csi, 7)] = FMA(KP980785280, T1o, T1n); |
272 | | Cr[WS(csr, 7)] = FMA(KP980785280, T1u, T1t); |
273 | | Ci[WS(csi, 9)] = FMS(KP980785280, T1o, T1n); |
274 | | Cr[WS(csr, 9)] = FNMS(KP980785280, T1u, T1t); |
275 | | } |
276 | | { |
277 | | E T1x, T1N, T1M, T1O, T1E, T1I, T1H, T1J; |
278 | | { |
279 | | E T1v, T1w, T1K, T1L; |
280 | | T1v = FNMS(KP707106781, Ty, Tv); |
281 | | T1w = T1k - T1l; |
282 | | T1x = FMA(KP923879532, T1w, T1v); |
283 | | T1N = FNMS(KP923879532, T1w, T1v); |
284 | | T1K = FNMS(KP668178637, T1y, T1z); |
285 | | T1L = FNMS(KP668178637, T1B, T1C); |
286 | | T1M = T1K - T1L; |
287 | | T1O = T1K + T1L; |
288 | | } |
289 | | { |
290 | | E T1A, T1D, T1F, T1G; |
291 | | T1A = FMA(KP668178637, T1z, T1y); |
292 | | T1D = FMA(KP668178637, T1C, T1B); |
293 | | T1E = T1A + T1D; |
294 | | T1I = T1D - T1A; |
295 | | T1F = FMA(KP707106781, T1i, T1h); |
296 | | T1G = TF - TC; |
297 | | T1H = FNMS(KP923879532, T1G, T1F); |
298 | | T1J = FMA(KP923879532, T1G, T1F); |
299 | | } |
300 | | Cr[WS(csr, 13)] = FNMS(KP831469612, T1E, T1x); |
301 | | Ci[WS(csi, 13)] = FMS(KP831469612, T1M, T1J); |
302 | | Cr[WS(csr, 3)] = FMA(KP831469612, T1E, T1x); |
303 | | Ci[WS(csi, 3)] = FMA(KP831469612, T1M, T1J); |
304 | | Ci[WS(csi, 5)] = FMS(KP831469612, T1I, T1H); |
305 | | Cr[WS(csr, 5)] = FNMS(KP831469612, T1O, T1N); |
306 | | Ci[WS(csi, 11)] = FMA(KP831469612, T1I, T1H); |
307 | | Cr[WS(csr, 11)] = FMA(KP831469612, T1O, T1N); |
308 | | } |
309 | | } |
310 | | } |
311 | | } |
312 | | |
313 | | static const kr2c_desc desc = { 32, "r2cf_32", { 88, 0, 68, 0 }, &GENUS }; |
314 | | |
315 | | void X(codelet_r2cf_32) (planner *p) { X(kr2c_register) (p, r2cf_32, &desc); |
316 | | } |
317 | | |
318 | | #else |
319 | | |
320 | | /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 32 -name r2cf_32 -include rdft/scalar/r2cf.h */ |
321 | | |
322 | | /* |
323 | | * This function contains 156 FP additions, 42 FP multiplications, |
324 | | * (or, 140 additions, 26 multiplications, 16 fused multiply/add), |
325 | | * 54 stack variables, 7 constants, and 64 memory accesses |
326 | | */ |
327 | | #include "rdft/scalar/r2cf.h" |
328 | | |
329 | | static void r2cf_32(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
330 | 0 | { |
331 | 0 | DK(KP555570233, +0.555570233019602224742830813948532874374937191); |
332 | 0 | DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
333 | 0 | DK(KP195090322, +0.195090322016128267848284868477022240927691618); |
334 | 0 | DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
335 | 0 | DK(KP382683432, +0.382683432365089771728459984030398866761344562); |
336 | 0 | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
337 | 0 | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
338 | 0 | { |
339 | 0 | INT i; |
340 | 0 | for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(128, rs), MAKE_VOLATILE_STRIDE(128, csr), MAKE_VOLATILE_STRIDE(128, csi)) { |
341 | 0 | E T7, T2b, Tv, T1l, Te, T2o, Ty, T1k, Tt, T2d, TF, T1h, Tm, T2c, TC; |
342 | 0 | E T1i, T1Z, T22, T2k, T2j, T1e, T1C, T19, T1B, T1S, T1V, T2h, T2g, TX, T1z; |
343 | 0 | E TS, T1y; |
344 | 0 | { |
345 | 0 | E T1, T2, T3, T4, T5, T6; |
346 | 0 | T1 = R0[0]; |
347 | 0 | T2 = R0[WS(rs, 8)]; |
348 | 0 | T3 = T1 + T2; |
349 | 0 | T4 = R0[WS(rs, 4)]; |
350 | 0 | T5 = R0[WS(rs, 12)]; |
351 | 0 | T6 = T4 + T5; |
352 | 0 | T7 = T3 + T6; |
353 | 0 | T2b = T3 - T6; |
354 | 0 | Tv = T1 - T2; |
355 | 0 | T1l = T4 - T5; |
356 | 0 | } |
357 | 0 | { |
358 | 0 | E Ta, Tw, Td, Tx; |
359 | 0 | { |
360 | 0 | E T8, T9, Tb, Tc; |
361 | 0 | T8 = R0[WS(rs, 2)]; |
362 | 0 | T9 = R0[WS(rs, 10)]; |
363 | 0 | Ta = T8 + T9; |
364 | 0 | Tw = T8 - T9; |
365 | 0 | Tb = R0[WS(rs, 14)]; |
366 | 0 | Tc = R0[WS(rs, 6)]; |
367 | 0 | Td = Tb + Tc; |
368 | 0 | Tx = Tb - Tc; |
369 | 0 | } |
370 | 0 | Te = Ta + Td; |
371 | 0 | T2o = Td - Ta; |
372 | 0 | Ty = KP707106781 * (Tw + Tx); |
373 | 0 | T1k = KP707106781 * (Tx - Tw); |
374 | 0 | } |
375 | 0 | { |
376 | 0 | E Tp, TD, Ts, TE; |
377 | 0 | { |
378 | 0 | E Tn, To, Tq, Tr; |
379 | 0 | Tn = R0[WS(rs, 15)]; |
380 | 0 | To = R0[WS(rs, 7)]; |
381 | 0 | Tp = Tn + To; |
382 | 0 | TD = Tn - To; |
383 | 0 | Tq = R0[WS(rs, 3)]; |
384 | 0 | Tr = R0[WS(rs, 11)]; |
385 | 0 | Ts = Tq + Tr; |
386 | 0 | TE = Tq - Tr; |
387 | 0 | } |
388 | 0 | Tt = Tp + Ts; |
389 | 0 | T2d = Tp - Ts; |
390 | 0 | TF = FMA(KP923879532, TD, KP382683432 * TE); |
391 | 0 | T1h = FNMS(KP923879532, TE, KP382683432 * TD); |
392 | 0 | } |
393 | 0 | { |
394 | 0 | E Ti, TA, Tl, TB; |
395 | 0 | { |
396 | 0 | E Tg, Th, Tj, Tk; |
397 | 0 | Tg = R0[WS(rs, 1)]; |
398 | 0 | Th = R0[WS(rs, 9)]; |
399 | 0 | Ti = Tg + Th; |
400 | 0 | TA = Tg - Th; |
401 | 0 | Tj = R0[WS(rs, 5)]; |
402 | 0 | Tk = R0[WS(rs, 13)]; |
403 | 0 | Tl = Tj + Tk; |
404 | 0 | TB = Tj - Tk; |
405 | 0 | } |
406 | 0 | Tm = Ti + Tl; |
407 | 0 | T2c = Ti - Tl; |
408 | 0 | TC = FNMS(KP382683432, TB, KP923879532 * TA); |
409 | 0 | T1i = FMA(KP382683432, TA, KP923879532 * TB); |
410 | 0 | } |
411 | 0 | { |
412 | 0 | E T11, T1X, T1d, T1Y, T14, T20, T17, T21, T1a, T18; |
413 | 0 | { |
414 | 0 | E TZ, T10, T1b, T1c; |
415 | 0 | TZ = R1[WS(rs, 15)]; |
416 | 0 | T10 = R1[WS(rs, 7)]; |
417 | 0 | T11 = TZ - T10; |
418 | 0 | T1X = TZ + T10; |
419 | 0 | T1b = R1[WS(rs, 3)]; |
420 | 0 | T1c = R1[WS(rs, 11)]; |
421 | 0 | T1d = T1b - T1c; |
422 | 0 | T1Y = T1b + T1c; |
423 | 0 | } |
424 | 0 | { |
425 | 0 | E T12, T13, T15, T16; |
426 | 0 | T12 = R1[WS(rs, 1)]; |
427 | 0 | T13 = R1[WS(rs, 9)]; |
428 | 0 | T14 = T12 - T13; |
429 | 0 | T20 = T12 + T13; |
430 | 0 | T15 = R1[WS(rs, 13)]; |
431 | 0 | T16 = R1[WS(rs, 5)]; |
432 | 0 | T17 = T15 - T16; |
433 | 0 | T21 = T15 + T16; |
434 | 0 | } |
435 | 0 | T1Z = T1X + T1Y; |
436 | 0 | T22 = T20 + T21; |
437 | 0 | T2k = T21 - T20; |
438 | 0 | T2j = T1X - T1Y; |
439 | 0 | T1a = KP707106781 * (T17 - T14); |
440 | 0 | T1e = T1a - T1d; |
441 | 0 | T1C = T1d + T1a; |
442 | 0 | T18 = KP707106781 * (T14 + T17); |
443 | 0 | T19 = T11 + T18; |
444 | 0 | T1B = T11 - T18; |
445 | 0 | } |
446 | 0 | { |
447 | 0 | E TK, T1Q, TW, T1R, TN, T1T, TQ, T1U, TT, TR; |
448 | 0 | { |
449 | 0 | E TI, TJ, TU, TV; |
450 | 0 | TI = R1[0]; |
451 | 0 | TJ = R1[WS(rs, 8)]; |
452 | 0 | TK = TI - TJ; |
453 | 0 | T1Q = TI + TJ; |
454 | 0 | TU = R1[WS(rs, 4)]; |
455 | 0 | TV = R1[WS(rs, 12)]; |
456 | 0 | TW = TU - TV; |
457 | 0 | T1R = TU + TV; |
458 | 0 | } |
459 | 0 | { |
460 | 0 | E TL, TM, TO, TP; |
461 | 0 | TL = R1[WS(rs, 2)]; |
462 | 0 | TM = R1[WS(rs, 10)]; |
463 | 0 | TN = TL - TM; |
464 | 0 | T1T = TL + TM; |
465 | 0 | TO = R1[WS(rs, 14)]; |
466 | 0 | TP = R1[WS(rs, 6)]; |
467 | 0 | TQ = TO - TP; |
468 | 0 | T1U = TO + TP; |
469 | 0 | } |
470 | 0 | T1S = T1Q + T1R; |
471 | 0 | T1V = T1T + T1U; |
472 | 0 | T2h = T1U - T1T; |
473 | 0 | T2g = T1Q - T1R; |
474 | 0 | TT = KP707106781 * (TQ - TN); |
475 | 0 | TX = TT - TW; |
476 | 0 | T1z = TW + TT; |
477 | 0 | TR = KP707106781 * (TN + TQ); |
478 | 0 | TS = TK + TR; |
479 | 0 | T1y = TK - TR; |
480 | 0 | } |
481 | 0 | { |
482 | 0 | E Tf, Tu, T27, T28, T29, T2a; |
483 | 0 | Tf = T7 + Te; |
484 | 0 | Tu = Tm + Tt; |
485 | 0 | T27 = Tf + Tu; |
486 | 0 | T28 = T1S + T1V; |
487 | 0 | T29 = T1Z + T22; |
488 | 0 | T2a = T28 + T29; |
489 | 0 | Cr[WS(csr, 8)] = Tf - Tu; |
490 | 0 | Ci[WS(csi, 8)] = T29 - T28; |
491 | 0 | Cr[WS(csr, 16)] = T27 - T2a; |
492 | 0 | Cr[0] = T27 + T2a; |
493 | 0 | } |
494 | 0 | { |
495 | 0 | E T1P, T25, T24, T26, T1W, T23; |
496 | 0 | T1P = T7 - Te; |
497 | 0 | T25 = Tt - Tm; |
498 | 0 | T1W = T1S - T1V; |
499 | 0 | T23 = T1Z - T22; |
500 | 0 | T24 = KP707106781 * (T1W + T23); |
501 | 0 | T26 = KP707106781 * (T23 - T1W); |
502 | 0 | Cr[WS(csr, 12)] = T1P - T24; |
503 | 0 | Ci[WS(csi, 12)] = T26 - T25; |
504 | 0 | Cr[WS(csr, 4)] = T1P + T24; |
505 | 0 | Ci[WS(csi, 4)] = T25 + T26; |
506 | 0 | } |
507 | 0 | { |
508 | 0 | E T2f, T2v, T2p, T2r, T2m, T2q, T2u, T2w, T2e, T2n; |
509 | 0 | T2e = KP707106781 * (T2c + T2d); |
510 | 0 | T2f = T2b + T2e; |
511 | 0 | T2v = T2b - T2e; |
512 | 0 | T2n = KP707106781 * (T2d - T2c); |
513 | 0 | T2p = T2n - T2o; |
514 | 0 | T2r = T2o + T2n; |
515 | 0 | { |
516 | 0 | E T2i, T2l, T2s, T2t; |
517 | 0 | T2i = FMA(KP923879532, T2g, KP382683432 * T2h); |
518 | 0 | T2l = FNMS(KP382683432, T2k, KP923879532 * T2j); |
519 | 0 | T2m = T2i + T2l; |
520 | 0 | T2q = T2l - T2i; |
521 | 0 | T2s = FNMS(KP382683432, T2g, KP923879532 * T2h); |
522 | 0 | T2t = FMA(KP382683432, T2j, KP923879532 * T2k); |
523 | 0 | T2u = T2s + T2t; |
524 | 0 | T2w = T2t - T2s; |
525 | 0 | } |
526 | 0 | Cr[WS(csr, 14)] = T2f - T2m; |
527 | 0 | Ci[WS(csi, 14)] = T2u - T2r; |
528 | 0 | Cr[WS(csr, 2)] = T2f + T2m; |
529 | 0 | Ci[WS(csi, 2)] = T2r + T2u; |
530 | 0 | Ci[WS(csi, 6)] = T2p + T2q; |
531 | 0 | Cr[WS(csr, 6)] = T2v + T2w; |
532 | 0 | Ci[WS(csi, 10)] = T2q - T2p; |
533 | 0 | Cr[WS(csr, 10)] = T2v - T2w; |
534 | 0 | } |
535 | 0 | { |
536 | 0 | E TH, T1t, T1s, T1u, T1g, T1o, T1n, T1p; |
537 | 0 | { |
538 | 0 | E Tz, TG, T1q, T1r; |
539 | 0 | Tz = Tv + Ty; |
540 | 0 | TG = TC + TF; |
541 | 0 | TH = Tz + TG; |
542 | 0 | T1t = Tz - TG; |
543 | 0 | T1q = FNMS(KP195090322, TS, KP980785280 * TX); |
544 | 0 | T1r = FMA(KP195090322, T19, KP980785280 * T1e); |
545 | 0 | T1s = T1q + T1r; |
546 | 0 | T1u = T1r - T1q; |
547 | 0 | } |
548 | 0 | { |
549 | 0 | E TY, T1f, T1j, T1m; |
550 | 0 | TY = FMA(KP980785280, TS, KP195090322 * TX); |
551 | 0 | T1f = FNMS(KP195090322, T1e, KP980785280 * T19); |
552 | 0 | T1g = TY + T1f; |
553 | 0 | T1o = T1f - TY; |
554 | 0 | T1j = T1h - T1i; |
555 | 0 | T1m = T1k - T1l; |
556 | 0 | T1n = T1j - T1m; |
557 | 0 | T1p = T1m + T1j; |
558 | 0 | } |
559 | 0 | Cr[WS(csr, 15)] = TH - T1g; |
560 | 0 | Ci[WS(csi, 15)] = T1s - T1p; |
561 | 0 | Cr[WS(csr, 1)] = TH + T1g; |
562 | 0 | Ci[WS(csi, 1)] = T1p + T1s; |
563 | 0 | Ci[WS(csi, 7)] = T1n + T1o; |
564 | 0 | Cr[WS(csr, 7)] = T1t + T1u; |
565 | 0 | Ci[WS(csi, 9)] = T1o - T1n; |
566 | 0 | Cr[WS(csr, 9)] = T1t - T1u; |
567 | 0 | } |
568 | 0 | { |
569 | 0 | E T1x, T1N, T1M, T1O, T1E, T1I, T1H, T1J; |
570 | 0 | { |
571 | 0 | E T1v, T1w, T1K, T1L; |
572 | 0 | T1v = Tv - Ty; |
573 | 0 | T1w = T1i + T1h; |
574 | 0 | T1x = T1v + T1w; |
575 | 0 | T1N = T1v - T1w; |
576 | 0 | T1K = FNMS(KP555570233, T1y, KP831469612 * T1z); |
577 | 0 | T1L = FMA(KP555570233, T1B, KP831469612 * T1C); |
578 | 0 | T1M = T1K + T1L; |
579 | 0 | T1O = T1L - T1K; |
580 | 0 | } |
581 | 0 | { |
582 | 0 | E T1A, T1D, T1F, T1G; |
583 | 0 | T1A = FMA(KP831469612, T1y, KP555570233 * T1z); |
584 | 0 | T1D = FNMS(KP555570233, T1C, KP831469612 * T1B); |
585 | 0 | T1E = T1A + T1D; |
586 | 0 | T1I = T1D - T1A; |
587 | 0 | T1F = TF - TC; |
588 | 0 | T1G = T1l + T1k; |
589 | 0 | T1H = T1F - T1G; |
590 | 0 | T1J = T1G + T1F; |
591 | 0 | } |
592 | 0 | Cr[WS(csr, 13)] = T1x - T1E; |
593 | 0 | Ci[WS(csi, 13)] = T1M - T1J; |
594 | 0 | Cr[WS(csr, 3)] = T1x + T1E; |
595 | 0 | Ci[WS(csi, 3)] = T1J + T1M; |
596 | 0 | Ci[WS(csi, 5)] = T1H + T1I; |
597 | 0 | Cr[WS(csr, 5)] = T1N + T1O; |
598 | 0 | Ci[WS(csi, 11)] = T1I - T1H; |
599 | 0 | Cr[WS(csr, 11)] = T1N - T1O; |
600 | 0 | } |
601 | 0 | } |
602 | 0 | } |
603 | 0 | } |
604 | | |
605 | | static const kr2c_desc desc = { 32, "r2cf_32", { 140, 26, 16, 0 }, &GENUS }; |
606 | | |
607 | 1 | void X(codelet_r2cf_32) (planner *p) { X(kr2c_register) (p, r2cf_32, &desc); |
608 | 1 | } |
609 | | |
610 | | #endif |